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I. INTRODUCTION

Two heavy antiquarks in a doubly heavy antibaryon feel
an attractive force when they are in the 3 of color SU�3�
and therefore are expected to form a compact diquark
whose size, rQQ � �mQv�

�1, is much smaller than ��1
QCD.

Here mQ is the heavy quark mass and v is the typical
velocity of the antiquarks in the diquark. To the light
degrees of freedom in the doubly heavy antibaryon, this
diquark is indistinguishable from a heavy quark in the
mQ ! 1 limit. Therefore, the properties of ground state
doubly heavy baryons should be related to properties of
singly heavy mesons. Savage and Wise [1] first observed
that quark-diquark symmetry is a consequence of the heavy
quark limit and used heavy quark effective theory (HQET)
[2] to derive a relation between hyperfine splittings of
doubly heavy baryons and singly heavy mesons.1 The
correct framework for analyzing the properties of hadrons
with two or more heavy quarks is nonrelativistic QCD
(NRQCD) [5–7] and recently the heavy quark-diquark
symmetry prediction was rederived in both the potential
NRQCD [8] and velocity NRQCD [9] formalisms. An
extension of heavy hadron chiral perturbation theory
(HH�PT) [10–12] that incorporates heavy quark-diquark
symmetry was developed in Ref. [13] and used to derive a
novel quark-diquark symmetry prediction for the electro-
magnetic decays of the spin-3=2 members of the ground
state doubly heavy baryon doublets, as well as study
O�1=mQ� and chiral corrections to the electromagnetic
decays and doubly heavy baryon masses. Some quark-
diquark symmetry predictions for the exotic heavy tetra-
quarks as well as a critical discussion of the applicability of
heavy quark-diquark symmetry to charm hadrons appeared
in Ref. [14].

Much of the recent theoretical work has been stimulated
by the SELEX collaboration reports of candidates for
doubly charm baryons [15–17]. While the masses and
hyperfine splittings of the observed states are consistent
with theoretical calculations in the quark model [4] as well
as quenched lattice QCD, other aspects of the data are
poorly understood at the present time. For example, isospin
splittings, weak decay rates, and production yields are in
disagreement with theoretical expectations. Some excited
states which would be expected to decay electromagneti-
cally are instead observed via their weak decay. For a
review of the experimental situation and discussion of
theoretical interpretations of the SELEX results, see
Refs. [13,14,18]. Recently, the BABAR [19] and BELLE
[20] experiments searched for doubly charmed baryons in
e�e� collisions but failed to observe the SELEX states.
More experimental data and improved theoretical under-
standing of doubly charm baryons are necessary to clarify
the situation.

Lattice gauge theory studies of the properties of doubly
heavy baryons with dynamical quarks would be quite
useful. First principles calculation of the spectroscopy of
doubly heavy baryons could be directly compared with
experiment to test our understanding of QCD and aid in
the interpretation of candidate states. It would also be of
interest to have first principle calculations of electromag-
netic and weak decay matrix elements. Finally, the lattice
could help determine the suitability of quark-diquark sym-
metry for charm and bottom hadrons. In these cases, it is
possible that symmetry breaking corrections could be large
enough to spoil symmetry predictions, but no systematic
study of symmetry breaking corrections in NRQCD is yet
available. A theoretical testing ground in which the heavy
quark mass can be dialed at will could determine whether
this symmetry will turn out to be useful for charm and
bottom. Spectroscopic studies of doubly charm and bottom
baryons in quenched lattice QCD appeared in
Refs. [3,21,22]. The heavy quark-diquark symmetry pre-
diction for the hyperfine splitting holds at the 20% level,
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which is reasonable given the sources of error. In QCD,
corrections are expected to be O�v2� and/or O��QCD=mQ�.
In existing lattice calculations there are also uncontrolled
errors due to quenching, which, as we will see below, could
be significant. Hopefully, the near future will bring studies
of doubly heavy baryons in simulations with dynamical
quarks.

As a step towards such studies, it is clearly useful to
develop extensions of the heavy quark-diquark symmetric
version of HH�PT [13] that include lattice artifacts such as
quenching and partial quenching. These theories provide
the formulas needed for chiral extrapolations in lattice
calculations. We will focus on chiral corrections to the
doubly heavy baryon masses, especially hyperfine split-
tings and the quark-diquark symmetry prediction. We also
apply the formalism to the electromagnetic decays of the
spin-3=2 members of the ground state doubly heavy baryon
doublets.

The organization of our paper is as follows. In Sec. II,
we review the basics of quenched chiral perturbation the-
ory (Q�PT) and partially quenched chiral perturbation
theory (PQ�PT) in the pseudoscalar meson sector. We
then write down versions of PQ�PT and Q�PT that incor-
porate heavy quark-diquark symmetry. In Sec. III, we
calculate the one-loop chiral corrections to the masses of
doubly heavy baryons in PQ�PT and Q�PT. These ex-
pressions can be used to perform the chiral extrapolation of
lattice data on the spectrum of doubly heavy baryons
provided one is in the range of applicability of the chiral
effective theory. In Sec. IV, we calculate to one loop the
dipole and quadrupole transition moments in PQ�PT. For
these transitions, the lattice can be used to test the predic-
tions for the electromagnetic decay widths of the spin-3=2
members of the ground state doubly heavy baryon doublets
[13]. Finally, we conclude with a brief summary in Sec. V.
Some useful formulas are collected in the appendix.

II. PQ�PT AND Q�PT FOR DOUBLY HEAVY
BARYONS

The formalism for constructing effective theories for
quenched and partially quenched QCD is now well estab-
lished. We use the technique of graded Lie algebras that
was formulated in Refs. [23–30]. Equivalently one could
use the replica method [31]. We begin by briefly reviewing
the pseudoscalar meson sector of Q�PT and PQ�PT, and
then write down the quenched and partially quenched
chiral Lagrangians incorporating heavy quark-diquark
symmetry. These theories are an extension of Q�PT and
PQ�PT for singly heavy mesons [32].

A. Pseudoscalar mesons

In the pseudoscalar meson sector, we can treat PQ�PT
and Q�PT as different limits of the same theory. This
theory is described by the Lagrangian

 L �
f2

8
str�@��y@��� �

�
4

str�mq�y �myq��

� ��@��0@��0 ��2
0�2

0; (1)

where the field � is defined by

 � � exp
�
2i�
f

�
� �2; (2)

and the meson fields appear in the U�6j3� matrix,

 � �
M �y

� ~M

� �
: (3)

The quantities �� and �0 are nonvanishing in the chiral
limit. TheM and ~M matrices contain bosonic mesons (with
quantum numbers of q �q pairs and ~q �~q pairs, respectively,
where q is a valence or sea quark and ~q is a ghost quark),
while the � and �y matrices contain fermionic mesons
(with quantum numbers of ~q �q pairs and q �~q pairs, respec-
tively). The upper 3� 3 block of the matrixM contains the
familiar pions, kaons, and eta, while the remaining com-
ponents consist of mesons formed from one or two sea
quarks. The operation str�� in Eq. (1) is a supertrace over
flavor indices, i.e., str�A� �

P
a�aAaa, where �a �

���1��a , and �a are the grading factors of the Lie algebra.
The quark mass matrix appearing above is given by

 mq � diag�mu;md;ms;mj; ml; mr;mu;md;ms�: (4)

We will work in the isospin limit of both the valence and
sea sectors, where md � mu and ml � mj. Expanding the
Lagrangian in Eq. (1) to lowest order in the fields, one finds
that mesons with quark content q �q0 are canonically nor-
malized and their masses are given by

 m2
qq0 �

�

f2 �mq �mq0 �: (5)

The propagators of the off-diagonal mesons have the usual
Klein-Gordon form.

On the flavor diagonal, the situation is more complicated
and differs dramatically between the quenched and par-
tially quenched theories. The flavor singlet field that ap-
pears above is defined to be �0 � str���=

���
6
p

. Using this,
the leading-order �a�b propagator is [29]
 

Gab�q
2� �

i�a�ab
q2 �m2

aa � i�

�
i
3

�q2 �m2
jj��q

2 �m2
rr����q

2 ��2
0�

�q2 �m2
aa � i���q

2 �m2
bb � i��D�q

2�
:

(6)

The function D�q2� is defined as

 D�q2�� �q2�m2
jj��q

2�m2
rr����

2
�q

2��2
0��q

2�m2
X�;

and the mass mX is given by m2
X �

1
3 �m

2
jj � 2m2

rr�.
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Because the fermionic determinant in quenched QCD is
set to a constant, the sea quark masses are effectively
infinite. The mesons containing sea quarks decouple from
the theory, leaving a U�3j3� Goldstone manifold. In this
limit, the flavor neutral propagator in Eq. (6) becomes
 

GQ
ab�q

2� �
i�a�ab

q2 �m2
aa � i�

�
i
3

��q
2 ��2

0

�q2 �m2
aa � i���q2 �m2

bb � i��
; (7)

where we have appended a superscriptQ to denote that this
propagator is for the quenched theory. Notice the flavor
singlet meson does not decouple as the theory still depends

on the parameters �� and �0. Numerical data suggest that
�� is small (for example, a recent study finds �� �
0:03� 0:03 [33]), and we neglect it below; �0 will be
treated in the standard quenched power counting [34].

In the partially quenched theory, sea quark contributions
are retained and partially quenched QCD (PQQCD) has a
strong axial anomaly. Because of this, the mass of the
singlet field �0 can be taken to be on the order of the
chiral symmetry breaking scale, and the �0 integrated out
of the theory. The Goldstone manifold is reduced to
SU�6j3� but the resulting flavor neutral two-point function,
however, still deviates from the familiar form in �PT. In
PQQCD this propagator is given by the �0 ! 1 limit of
Eq. (6), namely

 G PQ
ab �q

2� �
i�a�ab

q2 �m2
aa � i�

�
i
3

�q2 �m2
jj��q

2 �m2
rr�

�q2 �m2
aa � i���q2 �m2

bb � i���q
2 �m2

X � i��
: (8)

The PQ�PT flavor neutral propagator can be conveniently
rewritten as

 G PQ
ab � �a�abPa � P ab�Pa; Pb; PX�; (9)

where
 

Pa �
i

q2 �m2
aa � i�

;

Pb �
i

q2 �m2
bb � i�

;

PX �
i

q2 �m2
X � i�

;

P ab�A;B;C� � �
1

3

�
�m2

aa �m
2
jj��m

2
aa �m

2
rr�

�m2
aa �m

2
bb��m

2
aa �m

2
X�
A

�
�m2

bb �m
2
jj��m

2
bb �m

2
rr�

�m2
bb �m

2
aa��m2

bb �m
2
X�
B

�
�m2

X �m
2
jj��m

2
X �m

2
rr�

�m2
X �m

2
aa��m

2
X �m

2
bb�

C
�
: (10)

B. Doubly heavy baryons

As discussed earlier, in the heavy quark limit the prop-
erties of singly heavy mesons and doubly heavy baryons
are related by a U�5� quark-diquark symmetry [1].
Recently a chiral Lagrangian incorporating this U�5� sym-
metry has been derived [13]. It is written in terms of a
superfield H given by

 H a;�	 � Ha;�	 � Ta;i	; (11)

where a is an antifundamental flavor index, � and 	 are
Pauli spinor indices, while i is a vector spin index. The
superspin index � � 1–5 and is related to � and i via

 � � ���1
� � �2

�� � �i� 2���3
� � �4

� � �5
��: (12)

The field Ha;�	 is the heavy meson field of HH�PT [10–
12] in the rest frame of the heavy meson:

 Ha;�	 � P
	
a 
 ��	 � Pa��	: (13)

Ha contains the vector (P	) and pseudoscalar (P) field
components. The field Ta;i	 is the doubly heavy baryon
field,

 Ta;i	 �
���
2
p �

�	a;i	 �
1���
3
p �a;
�

i

	

�
; (14)

that contains the spin-1=2 (�) and spin-3=2 (�	) field
components. The spin-3=2 field satisfies a nonrelativistic
Rarita-Schwinger constraint, �	a;i	�

i
	
 � 0.

In terms of the superfield H , the Lagrangian for the
quenched (Q) theory is

 L Q � �H y�H iD0

 

�� � gQ�H yHA 
 ��

� g0Q�H yH�� 
 str�A� �
�Q
H

4
�H y� 
H��

� �Q�H yHM� � �0Q�H yH �str�M�;

(15)

while that for the partially quenched theory (PQ) is
 

LPQ � �H y�H iD0

 

�� � gPQ�H yHA 
 ��

�
�PQ
H

4
�H y� 
H�� � �PQ�H yHM�

� �0PQ�H yH �str�M�: (16)

Both Lagrangians include the leading quark-diquark sym-
metry breaking term. The bracket () notation denotes the
contraction of flavor, spinor and superspin indices of field
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bilinears. For a generic superspin matrix X, flavor matrix
Y, and spin matrix Z, () denotes

 �H yXHYZ� �
X
�;�

X
�;	

X
a;b

�aH
y
a;��X��H b;�	YbaZ	�:

(17)

In Eqs. (15) and (16), A is the spatial part of the axial-
vector pion field, A� �

i
2 ��@��

y � �y@���, and M is the
mass operator defined by M � 1

2 ��mq�� �ymq�y�. The
U�5� superspin matrix � is given by

 � �� �
��	 0

0 T jk

 !
; (18)

where �T i�jk � �i�ijk.
Notice that there are separate Lagrangians for quenched

and partially quenched QCD. The low-energy constants of
the two theories are different, e.g. gPQ � gQ. Notice also
that in Q�PT the flavor singlet field cannot be integrated
out. Consequently str�A� � 0 and the axial hairpin cou-
pling g0Q remains. Additionally in Q�PT, str�M� � 0 to
leading order, and so we can effectively set�0Q � 0 for our
calculations. There is no sector of Q�PT that contains
�PT, so in general quenched observables are unrelated to
QCD observables. The sea sector of PQQCD is QCD, and
hence PQ�PT contains the low-energy constants of �PT.
Restricting the flavor indices to the sea sector in Eq. (16),
we recover the chiral Lagrangian of Ref. [13], so gPQ, �PQ

H ,
�PQ and �0PQ are identical to the low-energy constants g,
�H, �, and �0 of �PT, respectively. At this order there are
no additional operators in the partially quenched
Lagrangian. Carrying out the superspin sums in Eqs. (15)
and (16), we produce separate terms for heavy mesons and
doubly heavy baryons but with the same low-energy con-
stants. The heavy meson sector of the PQ�PT and Q�PT
Lagrangians above is that of Ref. [32].

III. MASSES

In this section, we use the quenched and partially
quenched chiral Lagrangians that incorporate quark-
diquark symmetry to calculate chiral corrections to the
masses of doubly heavy baryons. The results can be used
for the chiral extrapolation of lattice data. PQ�PT is con-
sidered in subsection III A and Q�PT is discussed in
subsection III B. It is important to keep in mind that while
PQ�PT actually contains �PT, there is no such connection
between Q�PT and �PT.

Near the chiral limit, the masses of doubly heavy bary-
ons generically have the form

 M� � M0 �
1
2�H �M

�1�
� �M

�3=2�
� � . . .

M�	 � M0 �
1
4�H �M

�1�
�	 �M

�3=2�
�	 � . . . ;

where M0 is the mass of the doubly heavy baryons in the
chiral and heavy quark limit and �H is the hyperfine mass

splitting of the heavy mesons in the chiral limit.2 The
hyperfine splitting of the �	 and � baryons is 3

4 �H in
the chiral limit due to quark-diquark symmetry. The term
M�1� is proportional to mq and comes from tree-level
counterterms. The term M�3=2� comes from the one-loop
diagrams and depends on m, the Goldstone boson mass,
and �, the mass splitting between the external and virtual
doubly heavy baryons. Goldstone boson masses are /�������mq
p , while � receives contributions from SU�3� breaking
counterterms, which are / mq, and/or hyperfine splittings,
which scale as 1=mQ. In our power counting we take ��
m�Q in which case M�3=2� / Q3. In the chiral and heavy
quark limits, � can be neglected relative to m and then
M�3=2� / m3=2

q . The ellipsis denotes higher-order terms in
the Q expansion.

A. PQ�PT

At linear order in the quark mass, the contributions to the
masses of doubly heavy baryons at tree level come from
the mass operators in Eq. (16):

 M�1��	a
� M�1��a

� ���mq�a � �
0str�mq�; (19)

where str�mq� � 2mj �mr in the isospin limit, and the
subscript a denotes the light-quark antifundamental index
of the doubly heavy baryon. Combining these results with
the mass splitting in the chiral limit, we then define the
baryon mass splittings

 �ba � M�b
�M�a

� M�	b
�M�	a � ���mq�a � �mq�b�;

(20)

 �	ba � M�	b
�M�a

� 3
4�H � ���mq�a � �mq�b�: (21)

At one-loop order, the doubly heavy baryons receive
mass contributions in PQ�PT from the sunset diagrams
shown in Fig. 1. The vertices in these diagrams are gen-
erated from the pion-baryon interaction terms in Eq. (16),
while the hairpin interaction corresponds to the discon-
nected part of the flavor neutral propagator in Eq. (8).
Calculating these PQ�PT loop diagrams, we find

2Strictly speaking �H is not same the parameter appearing in
the Lagrangian above, Eq. (16), which in this footnote we denote
by �0

H . This parameter, which transforms as a chiral singlet, is
corrected by a string of operators that differ only by scaling with
powers of �0

H=��. Thus we subsume this dependence as �H �
�H��

0
H� including also contributions to �H arising from loop

graphs. In this way we obtain �H as the chiral limit value. The
same is true of all other low-energy constants in Eq. (16). We
similarly drop their polynomial dependence on �0

H=��, and
absorb contributions from loop graphs to work with the values
of the low-energy constants in the chiral limit. For more details
see, e.g. Ref [35].
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M�3=2�
�	a
�

g2

�4f�2
X

b�j;l;r

�
5

9
K��ba;mba; ��

�
4

9
K���	ab;mba; ��

�

�
g2

�4f�2

�
5

9
K�0; maa; maa; ��

�
4

9
K���	aa; maa; maa; ��

�
; (22)

for the spin-3=2 doubly heavy baryons, �	a, and
 

M�3=2�
�a
�

g2

�4f�2
X

b�j;l;r

�
1

9
K��ba;mba; ��

�
8

9
K��	ba; mba; ��

�

�
g2

�4f�2

�
1

9
K�0; maa; maa; ��

�
8

9
K��	aa; maa; maa;��

�
; (23)

for the spin-1=2 doubly heavy baryons, �a. The nonana-
lytic function K��;m;�� is

 K��;m;�� � 2��2 �m2�

�
mR

�
�
m

�
� � log

�
m2

�2

��

� �m2 log
�
m2

�2

�
; (24)

where R�x� is defined by

 R�x� �
��������������
x2 � 1

p
log

�
x�

�������������������������
x2 � 1� i�
p

x�
�������������������������
x2 � 1� i�
p

�
; (25)

while the function K��;maa;mbb;�� which arises from
hairpins is given by

 

K��;maa;mbb;�� � P ab�K��;maa; ��; K��;mbb; ��;

K��;mX;���; (26)

with P ab appearing in Eq. (10), and a limit is understood
when b � a.

To study the chiral nonanalytic behavior of doubly
heavy baryon mass splittings in PQ�PT, we need values
for the low-energy constants. We choose g � 0:6 [36],
�H � 140 MeV, and f � 130 MeV. The SU�3� splitting
of the ground state D mesons is  100 MeV. Assuming
the same SU�3� splitting for the doubly charm baryons we
obtain �=� � ��337 MeV��3. We shall take the strange
sea quark to be degenerate with its valence counterpart,
mr � ms, and fix the value at the physical strange quark
mass. This leaves three parameters that can be varied, the
valence pion mass, mval � muu, the sea pion mass,
msea � mjj, and the renormalization scale, �. While the
� dependence in the above expressions is exactly canceled
by �-dependent counterterms at this order, we have not
included these counterterms, nor do we have a reliable way
to estimate them. Hence we vary � to effectively obtain a
range for the unknown counterterm contributions.

In Fig. 2, we assess the nonanalytic chiral corrections to
the hyperfine splitting of nonstrange �	 and � baryons in
PQ�PT. To see the effect of partial quenching on this
observable, we plot the difference between the chiral non-
analytic contribution to the hyperfine splitting in PQ�PT
and the corresponding nonanalytic correction in �PT:

 ��HF � �M
�3=2�
�	 �M

�3=2�
� �PQ�PT � �M

�3=2�
�	 �M

�3=2�
� ��PT;

(27)

as a function of msea for a few different values of mval.
For each value of mval, we let msea range from mval up
to the mass of eta-strange, m�s � mss � mrr  700 MeV.
Thus the smallest value of msea corresponds to an un-
quenched theory at m � mval, while the largest value of
msea corresponds to a completely degenerate sea at the
strange quark mass. The bands correspond to varying �
from 500 MeV to 1500 MeV, which is chosen to be the
same for both �PT and PQ�PT. For the �PT hyperfine
splitting, we use the physical Goldstone boson masses, so
by construction ��HF � 0 when msea � mval � m. As
demonstrated by Fig. 2, chiral nonanalytic corrections to
the hyperfine splitting are sizable, and increase with in-
creasing msea. Additionally corrections are enhanced as
mval increases. While we do not trust the chiral expansion
at large pion masses, we have kept these in the plot to show
that chiral corrections can become large and tend to push
the hyperfine splitting down by tens of MeV.

We can use our results to check the chiral corrections to
the mass splitting relation predicted by heavy quark-
diquark symmetry [1,8,9]

 M�	 �M� �
3
4�MP	 �MP�: (28)

FIG. 1. One-loop graphs which give contributions to the
masses of the doubly heavy baryons in PQ�PT. The single
and double lines correspond to � baryons or �	 baryons,
respectively, while the dashed lines correspond to mesons. The
filled squares denote the nonsinglet axial coupling given in
Eq. (16), while crosses denote the hairpin interaction.
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In Fig. 3, we plot the difference between the nonanalytic
chiral corrections to this relation in PQ�PT and �PT,
defined by

 ��QDQ � �M
�3=2�
�	 �M

�3=2�
� � 3

4�M
�3=2�
P	 �M�3=2�

P ��PQ�PT

� �M�3=2�
�	 �M

�3=2�
� � 3

4�M
�3=2�
P	 �M�3=2�

P ���PT;

(29)

in the nonstrange sector. Here M�3=2�
P	 and M�3=2�

P are the
chiral contributions to the masses of the vector and pseu-
doscalar heavy mesons, respectively [32]. As in Fig. 2, we

vary � from 500 MeV to 1500 MeV for three different
values of mval. Figure 3 shows that the chiral corrections
to the heavy quark-diquark symmetry prediction are re-
markably small compared to chiral corrections to the hy-
perfine splittings and much less sensitive to �. It was
demonstrated in Ref. [13] that chiral corrections to the
quark-diquark symmetry prediction for the hyperfine split-
tings are small and insensitive to �. Interestingly, this
conclusion is not changed as the pion mass is increased,
nor is it altered by partial quenching. While the hyperfine
splittings of heavy mesons and doubly heavy baryons
receive considerable chiral corrections for larger pion
masses, the quark-diquark symmetry relation fortuitously
does not. Lattice calculations of this quantity will not
suffer large uncertainty due to chiral extrapolation.

B. Q�PT

In the quenched theory we can similarly calculate the
masses of doubly heavy baryons to one-loop order. The
tree-level contribution from SU�3� breaking counterterms
is

 M�1��	a
� M�1��a

� ��Q�mq�a: (30)

The tree-level baryon mass splittings are

 �ba � M�b
�M�a

� M�	b
�M�	a

� �Q��mq�a � �mq�b�; (31)

 �	ba � M�	b
�M�a

� 3
4�

Q
H � �

Q��mq�a � �mq�b�: (32)
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FIG. 3 (color online). ��QDQ as a function of msea for differ-
ent values of mval. The width of the bands is the result of
varying � between 500 MeV and 1500 MeV.
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between 500 MeV and 1500 MeV.
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The differences in low-energy constants notwithstand-
ing, the one-loop mass contributions in Q�PT are consid-
erably altered from those in PQ�PT and �PT. The sunset
diagrams in Fig. 1 again contribute, however, it is clear that
only hairpin contributions survive quenching. There are
additional one-loop diagrams present in the quenched the-
ory that have no counterparts in PQ�PT or �PT. These
diagrams are depicted in Fig. 4 and involve the axial hair-
pin interaction in Eq. (15). Combining the hairpin dia-
grams and axial hairpin diagrams, we arrive at the one-
loop quenched mass contributions
 

M�3=2�
�	a
�

2gQg0Q

�4f�2

�
5

9
K�0; maa; �� �

4

9
K���	aa; maa; ��

�

�
�gQ�2�2

0

3�4f�2
@

@m2
aa

�
5

9
K�0; maa; ��

�
4

9
K���	aa; maa; ��

�
; (33)

for the spin-3=2 doubly heavy baryons, and
 

M�3=2�
�a
�

2gQg0Q

�4f�2

�
1

9
K�0; maa; �� �

8

9
K��	aa; maa; ��

�

�
�gQ�2�2

0

3�4f�2
@

@m2
aa

�
1

9
K�0; maa; ��

�
8

9
K��	aa; maa; ��

�
; (34)

for the spin-1=2 doubly heavy baryons.
With the quenched chiral nonanalytic corrections in

hand, we can investigate their impact on the spectrum of

doubly heavy baryons as we did for the partially quenched
theory. To determine these corrections, we must estimate
the parameters in the quenched chiral Lagrangian. Little is
known about these parameters. We adopt a central value of
�0 � 700 MeV from the analysis of Ref. [33]. The re-
maining parameters are taken to be the same values as in
�PT, though there is no justification for this. Finally we use
two values, g0Q � �0:6, for the parameter that has no
analogue in the unquenched theory. In Fig. 5, we plot the
quenched chiral correction to the hyperfine splitting,
M�3=2�

�	 �M
�3=2�
� , as a function of the pion mass. The band

plotted corresponds to a variation of � from 500 MeV to
1500 MeV. As in the partially quenched theory, we see that
the mass splitting receives sizable chiral corrections that
increase with the pion mass. The trend is the same as in the
partially quenched theory provided gQ and g0Q have the
same sign: quenched lattice calculations at larger pion
masses than that in nature will underestimate the hyperfine
splitting. When gQ and g0Q have opposite signs, it is
possible for the splitting to be overestimated. Lastly we
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FIG. 5 (color online). The quenched chiral correction to the hyperfine splitting, M�3=2�
�	 �M

�3=2�
� , as a function of the quenched pion

mass. The �PT band shows the corresponding range of chiral corrections to the hyperfine splitting in QCD.

FIG. 4. Additional loop graphs which contribute to the masses
of the doubly heavy baryons in Q�PT. The single and double
lines correspond to � baryons or �	 baryons, respectively, while
the dashed lines correspond to mesons. The filled squares denote
the nonsinglet axial coupling, and the cross denotes the axial
hairpin interaction given in Eq. (15).
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FIG. 6 (color online). The quenched chiral correction to the
heavy quark-diquark symmetry breaking parameter, �Q

QDQ, as a
function of the quenched pion mass. The �PT band shows the
corresponding range of chiral corrections to quark-diquark sym-
metry in QCD.
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can test how well heavy quark-diquark symmetry holds up
in the presence of quenched chiral corrections. In Fig. 6,
we plot the quenched chiral correction to the quark-diquark
symmetry relation for the hyperfine splittings,

 �Q
QDQ � M�3=2�

�	 �M
�3=2�
� � 3

4�M
�3=2�
P	 �M�3=2�

P �; (35)

as a function of the pion mass, again varying� from 500 to
1500 MeV. Surprisingly, the quenched chiral corrections
do not sizably alter the quark-diquark symmetry predic-
tion. The corrections are only a few MeV. The � depen-
dence of the result is minimal and in fact one can show
analytically that the � dependence vanishes for this ob-
servable if g0Q � 0.

IV. ELECTROMAGNETIC TRANSITIONS IN
PQ�PT

As a final application we determine the electromagnetic
transition moments of the doubly heavy baryons in PQ�PT
and �PT. To include electromagnetism into the theory, we
merely gauge a background U�1� field. In doing so, recall
that the light-quark electric charge matrix Q is not
uniquely defined in PQQCD [37]. The only constraint
one must impose is that the charge matrix Q has vanishing
supertrace. Following Refs. [38,39], we use

 Q � diag�qu; qd; qs; qj; ql; qr; qu; qd; qs�; (36)

along with the condition qj � ql � qr � 0. QCD is recov-
ered in the limit of degenerate valence and sea quarks only
for the particular choice: qu � qj �

2
3 , and qd � qs �

ql � qr � �
1
3 . Letting the charges be arbitrary, however,

enables us to track the flow of charge in loop diagrams.
The relevant electromagnetic couplings in the chiral

Lagrangian with quark-diquark symmetry are contained
in the terms [13]

 L �
	e
2
�H yHQ� 
B� �

Q0e
2mQ

�H y ~� 
 BH �

�
	E2e

2mQ��
�H y ~�iHQ� j�rfiEjg; (37)

where Q0 is the charge of the heavy quark and the 5� 5

matrices ~� are

 

~� �� �
��	 0

0 �2T jk

 !
: (38)

The first term in Eq. (37) gives the leading contribution to
the decay rate in the 1=mQ expansion. The contribution of
this term at tree level is similar to the light quark magnetic
moment contribution to the transition in the nonrelativistic
quark model, i.e. the quark model reproduces the tree-level
result of HH�PT upon the identification 1=mq ! 	. The
second term in Eq. (37) is the contribution from the mag-
netic moment of the heavy quark which is O�1=mQ�. The

third term in Eq. (37) is also O�1=mQ� suppressed. The
notation fijg denotes symmetrization and tracelessness in
the indices ij. In the heavy meson sector, this term con-
tributes to the electric quadrupole moment of the P	 but not
to the P	 ! P
 transition. It does give a contribution to the
decay �	 ! �
, which however is suppressed by
1=m2

Q�2
� rather than 1=mQ�� because it does not interfere

with the leading-order contribution. Explicitly the formula
for the decay width is given by
 

���	a ! �a
� �
4�
9

��
	Qa �

Q0

2mQ
� �	a

�
2

�
3

4
E2



�
	E2Qa

mQ��
� �	E2a

�
2
�
M�

M�	
E3

;

(39)

where �	a and �	E2a represent chiral corrections to the
tree-level magnetic dipole and electric quadrupole transi-
tion moments, respectively. The loop diagrams shown in
Fig. 7 give the leading nonanalytic chiral corrections.

The Lagrangian in Eq. (37) is easily extended to
PQ�PT. Using the definition of the superfield H in
Eq. (11), we can expand the Lagrangian in Eq. (37) to
find the doubly heavy baryon part and thereby determine
the contribution to the transition moments at tree level. As
this contribution only involves valence quarks, the result is
the same as in �PT [13]. The coefficients 	 and 	E2 have
the same value as in �PT which can be demonstrated by
matching to PQ�PT in the sea sector. In the heavy quark
limit, the operator proportional to 	E2 can be neglected.
When O�1=mQ� hyperfine splittings are included in the
loop diagrams, there are nonanalytic corrections to both
	 and	E2. At one-loop order in PQ�PT, we must calculate
the diagrams shown in Fig. 7. Explicitly we find
 

�	a � �
g2

242f2

X
b�j;l;r

�Qb �Qa�

�
Z 1

0
dx
�
�1�x� log

m2
ab

�2 �mabR
�
�1�x�
mab

�

� 5
�

�2�x� log
m2
ab

�2 �mabR
�
�2�x�
mab

���
; (40)

FIG. 7. One-loop graphs contributing to the doubly heavy
baryon electromagnetic transitions in PQ�PT. The single lines
correspond to � baryons, double lines to �	 baryons. The
dashed lines correspond to mesons, while the wiggly lines
correspond to photons. The coupling of Goldstone mesons to
baryons is the nonsinglet axial coupling given in Eq. (16).

THOMAS MEHEN AND BRIAN C. TIBURZI PHYSICAL REVIEW D 74, 054505 (2006)

054505-8



 

�	E2a �
g2

242f2

X
b�j;l;r

�Qb �Qa�

�
Z 1

0
dx x�1� x�

�
�1�x�mab

��1�x��2 �m2
ab

R
�
�1�x�
mab

�

�
�2�x�mab

��2�x��2 �m2
ab

R
�
�2�x�
mab

��
; (41)

In expressing the transition moments, we have made the
following definitions

 �1�x� � ��	ab � x�	aa (42)

 �2�x� � ��ab � x�	aa; (43)

and used the function R�x� defined in Eq. (25). The �PT
result can be deduced by replacing the sea charges and sea
masses with the values of their valence counterparts.

Reference [13] considered the loop corrections in �PT
in the approximation where �H � 0 and � � 0. This
corresponds to taking the heavy quark limit and keeping
only O� �������mq

p
� nonanalytic chiral corrections. In this limit

the result can be inferred from the calculation of
Refs. [40,41] for heavy mesons:

 �	a �
g2

4f2

X
b

�Qb �Qa�mab �	E2a � 0: (44)

For �PT with physical parameters, using Eq. (40) instead
of Eq. (44) has little effect on the transition magnetic
moment, 	Qa �Q0=�2mQ� � �	a. The transition mag-
netic moment changes by �14% (� 1%) for � �
500 MeV (1500 MeV) for a � 1 and by �1% (� 3%)
for � � 500 MeV (1500 MeV) for a � 2. We conclude
that keeping only the O� �������mq

p
� nonanalytic chiral correc-

tion is an adequate approximation for estimating the elec-
tromagnetic decay width of the �	 in QCD. Away from the
physical value of the quark mass, chiral corrections be-
come increasingly important and hence formulas in
Eqs. (40) and (41) should be considered for lattice
extrapolations.

The x-integrals can be evaluated analytically as shown
in the appendix. In actual lattice calculations of transition
moments, the current insertion method is limited by the
discrete lattice momenta available. The matrix elements
contributing to the electromagnetic decay are zero for
vanishing photon three-momentum q. If we wish to extract
these matrix elements from a lattice simulation, it is nec-
essary to know the momentum transfer dependence of the
corresponding form factors in order to perform a model
independent zero-momentum extrapolation. Formulas for
the multipole transition form factors can be recovered from
our expressions above by merely using the replacement

 mab !
�������������������������������������
m2
ab � x�1� x�q

2
q

; (45)

where q2 is the virtuality of the photon.

While we do not wish to encourage quenched calcula-
tions of the transition moments, we shall comment briefly
on the oddities of the quenched chiral calculation at one-
loop order. None of the diagrams in Fig. 7 survive quench-
ing. There is, however, quark mass dependence at this
order, but it arises from the hairpin interactions depicted
in Fig. 8. These diagrams are enhanced over their PQ�PT
and �PT counterparts due to the size of the singlet parame-
ter �2

0. This was first observed for baryon magnetic mo-
ments in Ref. [42], and applied to baryonic transition
moments in Ref. [43]. Thus in the chiral limit, the Q�PT
transition moments have chiral singularities

 	QM1 � 	
�0�Q
M1 �

Q0

mQ
� �M1�

2
0 logmq � . . .

	QE2 � 	
�0�Q
E2 � �E2�

2
0 logmq � . . . ;

which should be contrasted with the chiral limit behavior in
both PQ�PT and �PT

 	M1 � 	
�0�
M1 �

Q0

mQ
� 	�1=2�

M1
�������
mq
p

� . . .

	E2 � 	
�0�
E2 � 	

�1�
E2mq logmq � . . . ;

which are nonsingular.
The inclusion of dynamical quarks thus makes a dra-

matic difference in the chiral behavior of these observ-
ables. There are two types of dynamical contributions:
those from the gauge configurations and those from the
current operator self-contraction. The latter contributions
are notoriously difficult to determine from the lattice. The
effective theory can remedy this situation for the electro-
magnetic current in three-flavor simulations. Because we
require strQ � 0, the choice qj � ql � qr � 0 is not ex-

FIG. 8. Additional loop graphs for the doubly heavy baryon
electromagnetic transitions in Q�PT. The single lines corre-
spond to � baryons, double lines to �	 baryons. The dashed
lines correspond to mesons, while the wiggly lines correspond to
photons. The filled circles denote the nonsinglet axial coupling
given in Eq. (15), the photon coupling is proportional to the
magnetic couplings in Eq. (37), and crosses denote the quenched
hairpin interaction.
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cluded, i.e. one can ignore the self-contraction of the
current. In this case, one is not determining the physical
transition moments, but rather the physical parameters 	
and	E2 in the effective theory. These in turn can be used to
make physical predictions.

V. SUMMARY

In this paper, we have extended the chiral Lagrangian
with heavy quark-diquark symmetry to quenched and par-
tially quenched theories. This extension allows for the
derivation of extrapolation formulas necessary to connect
lattice QCD data to the chiral limit. These formulas are
easily modified to include the effects of finite volume, see
Ref. [44]. Furthermore light-quark discretization effects
can be incorporated, but depend on the particular fermion
discretization employed in the lattice calculation.

As an example, we determined the quark mass depen-
dence of doubly heavy baryons in both quenched and
partially quenched chiral perturbation theory. We demon-
strated that the hyperfine splitting between �	 and �
baryons is sensitive to chiral nonanalytic corrections both
in the quenched and partially quenched theories. Thus
careful chiral extrapolation is required to connect lattice
data to the doubly heavy baryon spectrum in the chiral
regime. Surprisingly, we found that the heavy quark-
diquark symmetry relation is rather insensitive to chiral
corrections. Despite the possible enhancement by factors
of �2

0 multiplying quenched chiral logarithms, this con-
clusion is true in the quenched theory.

We also investigated the chiral corrections to the elec-
tromagnetic transition moments. The width of the �	

baryons should be dominated by the decay �	 ! �
.
The lattice can be used to predict the electromagnetic
decay widths and our results should be helpful for chiral
extrapolations in these calculations. Since the doubly
heavy baryon hyperfine splitting is expected to be 
100 MeV, lattice pion masses will not allow on-shell in-
termediate states as one nears the chiral regime. This is in
contrast to the �! N
 transitions where the pion mass
must be m * 300 MeV to avoid the multiparticle contin-
uum. Furthermore, lattice data can test heavy quark-
diquark symmetry relations between the �	 ! �
 and
P	 ! P
 decays.

Investigation of heavy mesons and doubly heavy bary-
ons on the lattice provides a way to explore the implica-
tions of heavy quark-diquark symmetry. By varying the
light quark mass, one will be able to see how well the
predictions hold up against chiral corrections. Additionally
by varying the heavy quark mass, one will be able to see in
what regime this symmetry of the strong interaction
emerges.
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APPENDIX

Here we give some formulas which are useful for eval-
uating the x-integrals in Eqs. (40) and (41). A useful
observation is that

 

dR�x�
dx

�
x

x2 � 1
R�x� � 2: (A1)

Using this it is straightforward to verify the following
antiderivatives:

 Z
dxR�x� �

1

8

1

x2 � 1
R2�x� �

x
2
R�x� �

x2

2
;

Z
dx

1

x2 � 1
R�x� � �

1

4

1

x2 � 1
R2�x�;

Z
dx

x

x2 � 1
R�x� � R�x� � 2x;

Z
dx

x3

x2 � 1
R�x� �

x2 � 2

3
R�x� �

2x3 � 12x
9

: (A2)

All integrals in Eqs. (40) and (41) can be evaluated using
these identities. For example, for one of the integrals
appearing in �	a, we find

 

Z 1

0
dx
�

�1�x� log
�
m2
ab

�2

�
�mabR

�
�1�x�
mab

��

�
m2
ab

�	aa

Z ��	aa��	ab�=mab

���	ab=mab�
du
�
u log

�
m2
ab

�2

�
� R�u�

�

�
m2
ab

�	aa

�
G
�
�	aa � �	ab

mab
;
mab

�

�
�G

�
�

�	ab
mab

;
mab

�

��
;

where

 G�x; y� � x2 log�y� �
x2

2
�

1

8
log2

�
x�

�������������������������
x2 � 1� i�
p

x�
�������������������������
x2 � 1� i�
p

�

�
x
��������������
x2 � 1
p

2
log

�
x�

�������������������������
x2 � 1� i�
p

x�
�������������������������
x2 � 1� i�
p

�
:
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