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Two-body Dirac equations of constraint dynamics provide a covariant framework to investigate the
problem of highly relativistic quarks in meson bound states. This formalism eliminates automatically the
problems of relative time and energy, leading to a covariant three dimensional formalism with the same
number of degrees of freedom as appears in the corresponding nonrelativistic problem. It provides bound
state wave equations with the simplicity of the nonrelativistic Schrödinger equation. Here we begin
important tests of the relativistic 16 component wave function solutions obtained in a recent work on
meson spectroscopy, extending a method developed previously for positronium decay into two photons.
Preliminary to this we examine the positronium decay in the 3P0;2 states as well as the 1S0. The two-
gamma quarkonium decays that we investigate are for the �c, �0c, �c0, �c2, �0, �2, a2, and f02 mesons.
Our results for the four charmonium states compare well with those from other quark models and show the
particular importance of including all components of the wave function as well as strong and c.m. energy
dependent potential effects on the norm and amplitude. The results for the �0, although off the
experimental rate by 13%, are much closer than the usual expectations from a potential model. We
conclude that the two-body Dirac equations lead to wave functions which provide good descriptions of the
two-gamma decay amplitude and can be used with some confidence for other purposes.
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I. INTRODUCTION

Relativistic treatments of the two-body problem arise in
many problems in particle and nuclear physics. Relativistic
effects are important for composite systems with light
quarks, in systems with large coupling strength, and in
reactions of these composite objects. In recent years, there
is much interest in the dissociation and the recombinations
of the J= particle in hadron matter or in the quark-gluon
plasma [1]. Reactions of the form

 J= � �$ D� �D� (1.1)

provide useful information on the suppression or the en-
hancement of J= in high-energy heavy-ion collisions and
are relevant to the use of heavy quarkonium as a diagnostic
tool for the quark-gluon plasma [2].

Previously, Wong, Barnes, and Swanson studied the
above reactions using a nonrelativistic model of the react-
ing composite objects including pions [1,3]. While the
results have been calibrated with the �� scattering phase
shifts for the I � 2 S-wave channel, the use of the non-
relativistic formalism for pions with light constituents may

be subject to question. One should examine the reaction
process using a well tested relativistic formalism. The two-
body Dirac equations (TBDE) of constraint dynamics has
had successful applications to relativistic two-body bound
states in QED [4,5], QCD [6,7], and two-body nucleon-
nucleon scattering [8,9]. But its relativistic extension [10]
of the nonrelativistic four-body scattering formalism of
Barnes and Swanson [11,12] involves untested assump-
tions beyond the standard constraint formalism. The reac-
tion process is sensitive to the spatial distribution of the
reacting objects. It is thus important to have a sensitive test
of the wave functions obtained in [7].

We perform this test in this paper by examining the
application of the relativistic constraint formalism in the
description of decays of mesons into two photons. In the
next section we present a brief review of the constraint
formalism as it applies to quark-antiquark bound states.
Part of the purpose of this review section is to outline some
of the numerous tests made so far on the formalism. We
give the Pauli forms of the two-body Dirac equations of
constraint dynamics that we used in [7] to describe the
entire meson spectrum (exceptions being light quark iso-
scalars such as the �, !, �0 and their orbital and radial
excitations). We review those aspects of the formalism
which give one confidence in the accurate accounts for
all bound states from the excited states of bottomonium to
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the pion. We also list those aspects particularly related to
the pion and its Goldstone boson behavior. A perturbative
treatment of the TBDE formalism for the QED bound state
spectra gives the standard perturbative results. However,
unlike other formalisms that purport to account for the
entire meson spectrum, the constraint formalism has been
shown to produce these same standard perturbative results
in nonperturbative and numerical treatments of QED [5].
We emphasize the importance of this by showing the
correlation between that agreement for the singlet and
triplet positronium systems and the � and � states, includ-
ing the Goldstone behavior of the former.

This connection to QED brings us in Sec. III to our
treatment of the 2� decays of positronium and quark-
onium. In constraint dynamics, the two-body Dirac equa-
tions lead to an analytic solution of the singlet states of
positronium. For the singlet ground state the wave function
is mildly singular. Standard formalisms [13] will fail with
wave functions that are singular at the origin,

 ��e�e� ! 2�� � �tot�e�j �0�j
2: (1.2)

Independent treatments by Crater [14] and Ackleh and
Barnes [15] develop related (but distinctly different) ap-
proaches for folding in the effect of the Yukawa fermion
exchange mass, giving a smearing of the singularity over
the corresponding Compton wave length. We give a brief
review of the first of these approaches and how we extend it
to include the effects of the full 16 component two-body
Dirac wave function. This extension does not have any
significant effect on the 1S0 positronium decay rate.
However, the effects on the decays of the more relativistic
quark-antiquark systems is significant.

We include in Sec. III technical aspects in which we
establish in the context of a 4� 4 matrix wave function,
more natural for use in the decay formalism of a particle-
antiparticle system than the 16 component form, the rela-
tion between the sector of the full wave function used in the
Pauli form of the bound state equations and the remaining
sectors necessary for a complete description of the decay.
We review our 1S0 positronium decay results as well as
those of our constraint approach for 3P0 and 3P2 positro-
nium decay. Finally we present the results for the decay
rates of the �c, �0c, �c0, �c2, �0, �2, a2, f02 mesons. We
conclude in Sec. IV with a discussion of our results and a
comparison with other approaches.

II. CONSTRAINT DYNAMICS AND MESON
BOUND STATES

A. Constraint dynamics for two classical spinless
particles

Here we give a brief review of the highlights of the
constraint approach serving also to introduce notations.
Although Sazdjian has shown that the bound state equa-
tions of constraint dynamics are to be viewed as ‘‘quantum

mechanical transforms’’ of the Bethe-Salpeter equation
[16–18] the constraint approach to the two-body problem
has its origins in classical relativistic physics [19–24]. Our
review here is base on [21,25]. Two free spinless particles
are described by the mass-shell constraints

 H 0
1 � p2

1 �m
2
1 	 0; H 0

2 � p2
2 �m

2
2 	 0: (2.1)

We introduce Poincare’ invariant world scalar interactions
(to display most simply the basic ideas) by

 m1 ! m1 � S1�x; p1; p2� � M1�x; p1; p2�;

m2 ! m2 � S2�x; p1; p2� � M2�x; p1; p2�;

x � x1 � x2:

(2.2)

Kinematical constraints then become dynamical mass-
shell constraints:

 H 0
i � p2

i �m
2
i ! p2

i �M
2
i �H i

� p2
i �m

2
i ��i�x; p1; p2�: (2.3)

Each constraint must be conserved, implying that the
two constraints must be compatible
 

0 	 fH 1;H 2g � ��p1 � p2� 

@
@x
��2 ��1�

� �p1 � p2� 

@
@x
��2 ��1� � f�1;�2g: (2.4)

Its simplest solution is

 �1 � �2 � ��x?; p1; p2� � �w; (2.5)

and requires abandoning x � x1 � x2 in favor of

 x�12? � ��
�	 � P̂�P̂	��x1 � x2�	 � ��	? �x1 � x2�	;

P̂� �
P�����������
�P2
p ; P� � p�1 � p

�
2 ; x12? 
 P̂ � 0:

(2.6)

Thus we have a ‘‘third law’’ condition (2.5) of action and
reaction plus a restriction on how the quasipotential �w
may depend on relative separation. The invariant r defined
below is the interparticle separation in the center of mo-
mentum (c.m.) frame P̂ � �1; 0�

 r �
������
x2
?

q
�

�����
r2

p
in c.m. frame P̂ � �1; 0�; (2.7)

since the time component of x? is zero in that frame.
Relative time is thus controlled in a covariant way.
Assume the two invariants Mi, i � 1, 2 are simply func-
tions of r and the c.m. energy

 w �
����������
�P2

p
: (2.8)

The invariant potentials Mi are not independent. The third
law condition implies they are related by

 M2
1 �M

2
2 � m2

1 �m
2
2: (2.9)
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Hence there is only one independent invariant function
controlling the scalar interaction which we designate by

 S�r�; (2.10)

the underlying scalar interaction. Alternatively, the third
law allows us to recast the mass potentials into hyperbolic
function solutions depending on a single invariant function
L,

 M1 � m1 coshL�S�r�� �m2 sinhL�S�r��;

M2 � m2 coshL�S�r�� �m1 sinhL�S�r��:
(2.11)

Subtracting the constraints gives us a complimentary
covariant restriction [to Eq. (2.7)] on the relative energy

 H 1 �H 2 � p2
1 �M

2
1 � p

2
2 �M

2
2

� p2
1 �m

2
1 � p

2
2 �m

2
2 � 2P 
 p 	 0;

(2.12)

with relative momentum

 p� �
�"2p

�
1 � "1p

�
2 �

w
;

"1 � "2 � w; "1 � "2 �
�m2

1 �m
2
2�

w
;

"i � c.m. energy of particle i:

(2.13)

The relative momentum is canonically conjugate to x?,

 fx�?; p
	g � ��	? : (2.14)

The other combination of our constraints is the primary
dynamical equation

 H �
�"2H 1 � "1H 2�

w
� p2

? ��w � b2�w� 	 0;

(2.15)

and incorporates exact two-body kinematics with

 b2�w� �
�w4 � 2w2�m2

1 �m
2
2� � �m

2
1 �m

2
2�

2�

4w2

� "2
w �m

2
w; (2.16)

and

 mw �
m1m2

w
; "w �

�w2 �m2
1 �m

2
2�

2w
; (2.17)

defined as the mass and energy of the fictitious particle of
relative motion. Under quantization all of the constraints
become equations the wave functions must satisfy.

B. Two-body Dirac equations

The constraint formalism embodies spin in a system of
two coupled, compatible Dirac equations on a single wave
function. For particles interacting through world vector and
scalar interactions the TBDE take this general minimal-

coupling form

 S 1 � �51��1 
 �p1 � ~A1� �m1 � ~S1� � 0;

S2 � �52��2 
 �p2 � ~A2� �m2 � ~S2� � 0:
(2.18)

The wave function has 16 components

  � � 1;  2;  3;  4�; (2.19)

in which each  i is a four component Pauli spinor for two
spin-one-half particles. The two equations are compatible:

 �S1;S2� � 0: (2.20)

This is a result of the presence of spin supersymmetries
[25,26], in addition to the relativistic third law, and cova-
riant restrictions on the relative time and energy appearing
in the spinless case. There is automatic incorporation of
correct spin-dependent recoil terms [27],

 

~A�
i �

~A�i �A�r�; p?; P̂; w; �1; �2�;

~Si � ~Si�S�r�; A�r�; p?; P̂; w; �1; �2�:
(2.21)

This two-body formalism has many advantages over the
traditional Bethe-Salpeter equation and its numerous three
dimensional truncations. One is its simplicity. A Pauli
reduction and scale transformation brings our equations
to this covariant Schrödinger-like form

 �p2 ��w��1; �2; p?; A�r�; S�r��� � b2�w� : (2.22)

1. Schrödinger-like form of the two-body Dirac equations

From classical [28] or quantum field theories [18] for
separate scalar and vector interactions one can show that
the spin independent part of the quasipotential �w involves
the difference of squares of the invariant mass and energy
potentials (Mi and Ei respectively)

 M2
i � m2

i � 2mwS� S2; E2
i � "2

i � 2"wA� A2

M2
i � E

2
i � 2mwS� S

2 � 2"wA� A
2 � b2�w�:

(2.23)

‘‘Squaring’’ the TBDE (2.18) yields a Schrödinger-like
equation [5] for the upper-upper  1 component
 

fp2 � 2mwS� S2 � 2"wA� A2 ��Dir̂ 
 p��D0

��SO1L 
 �1 ��SO2L 
 �2 ��SS�1 
 �2

��TSTg 1 � f�
0
SS�1 
 �2 ��0TSTg 4 � b2�w� 1;

(2.24)

coupled to a Schrödinger-like wave equation for the lower-
lower component  4 [29]
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fp2 � 2mwS� S
2 � 2"wA� A

2 � ~�Dir̂ 
 p� ~�D0

� ~�SO1L 
 �1 � ~�SO2L 
 �2 � ~�SS�1 
 �2

� ~�TSTg 4 � f ~�
0
SS�1 
 �2 � ~�0TSTg 1 � b2�w� 4:

(2.25)

These equations can be solved nonperturbatively for
QED (S � 0) or quark model calculations since everyone
of the quasipotentials terms �i (including the Darwin
pieces �D) is quantum mechanically well defined (less
singular than �1=4r2).

2. Nonperturbative solutions of the two-body Dirac
equations

For two-body Dirac equations of constraint dynamics
applied to QED we have

 A�r� � �


r
: (2.26)

For singlet positronium system we can obtain an exact
solution [4] for the total c.m. energy w
 

w�m

��������������������������������������������������������������������������������������������������
2�2

� �������������������������������������������������������������������������������
1�
2

��
n�

�����������������������������
l�

1

2

�
2
�
2

s
� l�

1

2

�
2

vuut
vuuut

�2m�m
2=4n2�m
4=2n3�2l�1��11=64m
4=n4

�O�
6�; (2.27)

that agrees through order 
4 with the standard spectrum
found by perturbative treatments of the Darwin and spin-
dependent terms in our Pauli form. Numerical triplet state
calculations agree equally well with perturbative QED [5].

Many of the standard approaches to QED bound states
have been applied in QCD in nonperturbative numerical
calculations of the meson spectra without first testing them
nonperturbatively in QED. Sommerer et al. [30] have
shown that the Blankenbecler-Sugar equation and the
Gross equations fail this test. This indicates danger in
applying such three dimensional truncations of the
Bethe-Salpeter equation to quark models, for if failure
occurs in their applications to QED how can similar non-
perturbative (i.e. numerical) approaches based on the same
truncations (but with QCD kernels) give results that are
trustworthy representations of the physics for meson
spectroscopy?

C. Two-body Dirac equations for meson
spectroscopy—The Adler-Piran potential

We obtain a constraint version of the naive quark model
for mesons by employing a covariant adaptation of a static
quark potential due to Adler and Piran [31]. From an
effective nonlinear field theory derived from QCD they
obtain

 VAP�r� � ��U��r� �U0��� A� S�: (2.28)

The original VAP is nonrelativistic, and appears in our
equations in that limit as the sum of world vector and
scalar potentials with
 

�U��r
 1��
1

r ln�r
;

VAP�r� ��
�
c1�r� c2 log��r��

c3�������
�r
p �

c4

�r
� c5

�
;

�r> 2: (2.29)

The explicit form for VAP�r� at all distances is given in
[31,32].

1. Relativistic naive quark model

We reinterpret the static VAP covariantly by replacing

the nonrelativistic r by
������
x2
?

q
� r, and parceling out the

static potential VAP into the invariant functions A�r� and
S�r� [7] as follows:

 A � exp���r�
�
VAP �

c4

r

�
�
c4

r
�
e1e2

r
;

S � VAP �
e1e2

r
� A:

(2.30)

(The constants c1, c2, c3, c4 are fixed by the Adler-Piran
formalism while e1, e2 are the quark and antiquark electric
charges). Thus at short distances the potential is strictly
vector while at long distances the vector portion is strictly
Coulombic with the confining portion at long distance
(including subdominant portions) strictly scalar. Once A
and S have been determined, so are all the accompanying
spin-dependent interactions

 �i � �i��1; �2; p?; A�r�; S�r��;

i � D;D0; SO1; SO2; SS; T; . . . :
(2.31)

Our bound state results are quite accurate, from the
heaviest bottomonium states to the pion. They compare
quite favorably with the results of Godfrey and Isgur [33],
but with only two parametric functions �A; S� as opposed to
the six or so used in their approach. In Table I we reproduce
a portion of the entire spectrum given in [7]. The quark
masses and potential parameters are given by mu �
55 MeV, mc � 1:5 GeV, md � 58 MeV, � �
0:216 GeV, and �U0 � 1:865 GeV.

2. Positronium and the pion

Positronium numerical spectral predictions of the con-
straint approach for hyperfine splittings are inadequate if
we ignore coupling to the small (including the lower-lower
one  4) components of the wave function [5]. In Table II,
Nc refers to the number of coupled equations, which for the
fully coupled system is two for the singlet and four for the
triplet states [5] (We are not including the effects of the
annihilation diagram for the triplet states). Units are in eV.
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As seen in the table, only the fully coupled system of
equations (lower-lower and upper-upper for the singlet,
the same in addition to tensor coupling for the triplet)
produces accurate results to the require precision.

The corresponding good �� � splitting obtained in [7]
is spoiled if the we ignore these couplings, leading tom� �
850 MeV, m� � 1060 MeV. The same relativistic struc-
ture in the constraint equations responsible for the success
of the Sommerfeld-Balmer formula for positronium spin-
singlet states appears to be important for bringing the pion
mass down to its observed value.

3. Goldstone behavior of the pion

As a bonus, we find [6,7,32] that the pion is a Goldstone
boson in the sense that

 m��mq ! 0� ! 0; (2.32)

while the � and excited � have finite mass in this limit.
However, if the TBDE for the pion is truncated so that the
coupling to the lower-lower component is dropped, then
the pion loses its Goldstone boson behavior. Its mass no
longer decreases toward zero with vanishing quark mass.
This and the �� � result above support our contention
that the pion does not need to be treated in a special way
insofar as the binding mechanism is concerned. The light
pion mass as well as its Goldstone behavior is a natural
outgrowth of the covariant two-body Dirac formalism. We

now see how this model for the pion and other mesons
holds up for a different probe, that of 2� decays.

III. TWO-GAMMA DECAY AMPLITUDES FOR
POSITRONIUM AND QUARKONIUM

Our treatment of decays in the sections below are for
general angular momentum states but for illustrative pur-
poses we begin by considering a treatment of singlet
positronium or quarkonium systems. They can be viewed
as bosons given by the state vector

 j1S0i �
1���
2
p

Z
d3p ~ �p��by1

p d
y2
�p � b

y2
p d

y1
�p�j0i: (3.1)

Both the electron and positron (or quark and antiquark) are
off shell but on energy shell. The amplitudes for the
annihilation of a quark-antiquark pair into two photons
are given by the Feynman diagrams in Fig. 1.

The singlet amplitude for annihilation of a free e�e�

pair with momenta p� and p� into two photons with
polarizations �
1 ; �
2 and momenta k1 � �w=2;k�, k2 �
�w=2;�k� is
 

M
��
e2

�2��3w
���
2
p

�
�v�s���p��

�
� 
��
1�

m�� 
 �p��k1�

�p��k1�
2�m2� i0

�� 
��
2��� 
��
2�
m�� 
 �p��k2�

�p��k2�
2�m2� i0

� 
��
1�

�

�u�s���p����s�, s��
�
: (3.2)

FIG. 1. Feynman diagrams for the annihilation of a quark-
antiquak pair into two photons.

TABLE II. Nonperturbative (numerical) positronium spectral
results

l s j n Nc Perturbative (eV) Numerical (eV) Diff=�
4

0 0 0 1 1 �6:8033256279 �6:8032861579 5.45E-02
0 0 0 1 2 �6:8033256279 �6:8033256719 �6:08E-05
0 1 1 1 1 �6:8028426132 �6:8028074990 �0:84E-02
0 1 1 1 2 �6:8028426132 �6:8028082195 �4:75E-02
0 1 1 1 2 �6:8028426132 �6:8028239499 �2:58E-02
0 1 1 1 4 �6:8028426132 �6:8028426636 �6:97E-05

TABLE I. Selected portions of meson spectrum.

Meson Exp (GeV) (� MeV) Theory

�c: c �c11S0 2.980 (2.1) 2.978
 : c �c13S1 3.097 (0.0) 3.129
�0: c �c11P1 3.526 (0.2) 3.520
�0: c �c13P0 3.415 (1.0) 3.407
�1: c �c13P1 3.510 (0.1) 3.507
�2: c �c13P2 3.556 (0.1) 3.549
�c: c �c21S0 3.594 (5.0) 3.610
 : c �c23S1 3.686 (0.1) 3.688
 : c �c13D1 3.770 (2.5) 3.808
 : c �c33S1 4.040 (10.0) 4.081
 : c �c23D1 4.159 (20.0) 4.157
 : c �c33D1 4.415 (6.0) 4.454
�: u �d11S0 0.140 (0.0) 0.144
�: u �d13S1 0.767 (1.2) 0.792
b1: u �d11P1 1.231 (10.0) 1.392
a0: u �d13P0 1.450 (40.0) 1.491
a1: u �d13P1 1.230 (40.0) 1.568
a2: u �d13P2 1.318 (0.7) 1.310
�: u �d21S0 1.300 (100.0) 1.536
�: u �d23S1 1.465 (25.0) 1.775
�2: u �d11D2 1.670 (20.0) 1.870
�: u �d13D1 1.700 (20.0) 1.986
�3: u �d13D3 1.691 (5.0) 1.710
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For positronium or quarkonium, we replace this decay
amplitude by

 M
� !
Z
d3p ~ 1S0

�p�M
� �
1

�2��3w
M1S0!2�: (3.3)

Unlike free amplitudes, the fermion spinors and momenta
in M1S0!2� are not on mass shell but on energy shell.

A. Sixteen component two-gamma decay formalism

The amplitude in Eq. (3.3) above is of the form (in c.m.)

 

MX!2� �
Z
d3p �p�

1���
2
p � �v�s����p���p;k�u�s���p�

� �v�s����p���p;k�u�s���p��

�
1���
2
p

Z
d3p �p�Tr��p;k��u�s���p� �v�s����p�

� u�s���p� �v�s����p��; (3.4)

in which

 

��p;k� � e2

�
� 
 ��
1�

m� � 
 �p� k�

�p� k�2 �m2 � 
 �
�
2�

� � 
 ��
2�
m� � 
 �p� k�
�p� k�2 �m2 � 
 �

�
1�

�
: (3.5)

We replace this decay amplitude for general angular mo-
mentum states by

 

Z
d3pTr��p;k� �p�; (3.6)

where  �p� is our bound state wave function in matrix form
in an arbitrary angular momentum state. Thus we are
expanding our investigation from 1S0 states to general
1Ll and 3Ll�1 states. In the case of 1S0 states what we
are doing amounts to replacing the matrix wave function
 �p��u�s���p� �v�s����p� � u�s���p� �v�s����p�� having a spin
structure governed by free (but off mass-shell) Dirac spin-
ors by the matrix wave function  �p� which, unlike the
solution constructed from free spinors, is a solution of the
full interacting set of two-body Dirac equations. Similar
comments apply for the other angular momentum states. In
terms of the Fourier transformed matrix wave function
 �r� [defined below in Eq. (3.24) and (3.28)],

 

Z
d3pTr��p;k� �p� �

Z
d3rTr

�
 �r�

�
Z
d3p

exp��ip 
 r�

�2��3=2
��p;k�

�
:

(3.7)

Performing the transforms of each term [34] of (3.5) gives

 

MX!2� �
Z
d3r exp��ik 
 r�Tr

�
 �r�

�
Z
d3p

exp��ip 
 r�

�2��3=2
��p;k�

�

� e2

����
�
2

r Z
d3rTr

�
 �r�

�
exp��ik 
 r�

� � 
 ��
1��m� i� 
 r�
exp��mr�

r
� 
 ��
2�

� exp�ik 
 r�� 
 ��
2��m� i 
 r�

�
exp��mr�

r
� 
 ��
1�

��
: (3.8)

This decay amplitude generalizes the configuration space
form previously given in [14] to one depending on the full
4� 4 matrix wave function.

Relativistic wave functions will often display mild sin-
gularities at the origin. For example the ground state
solution corresponding to Eq. (2.27) is

 

 �r� �
�m
�3=2������������������������������������������������

4���2� 2
��������������������
1=4� 
2

p
�

q �rm
��1=2�
�������������
1=4�
2
p

�

� exp��
mr=2�: (3.9)

The mild singularity at the origin appearing in this equa-
tion is rendered harmless by the smearing action of the
Yukawa distribution that comes from folding the effects of
the decay amplitude with that of the wave function [14].

1. 4� 4 matrix form of solutions of the two-body Dirac
equations

To accommodate the structure of the TBDE to the above
decay amplitude we explicitly construct the 4� 4 matrix
wave function solution  �r� of the equation. First we
observe that one can write Eqs. (2.18) in terms of mass
and energy potentials and their derivatives analogous to
what is done in the case of two-spinless particles
[5,6,8,35]. In analogy to the solution (2.11) we gave to
the third law condition in the spinless case we define

 M1 � m1 coshL�S; A� �m2 sinhL�S; A�;

M2 � m2 coshL�S; A� �m1 sinhL�S; A�;
(3.10)

 E1 � "1 coshG�A� � "2 sinhG�A�;

E2 � "2 coshG�A� � "1 sinhG�A�:
(3.11)

In terms of these functions the coupled two-body Dirac
equations in an arbitrary frame have the form Si � 0 in
which
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S1 � exp�G��1�1 
 P 1 � E1�1�51 �M1�51

� exp�G�
i
2

�2 
 @�G�1 � L�2��51�52;

S2 � � exp�G��2�2 
 P 2 � E2�2�52 �M2�52

� exp�G�
i
2

�1 
 @�G�2 � L�1��51�52; (3.12)

with

 P i � p�
i
2

�i 
 @G�i: (3.13)

The gamma matrices have block forms given in
Appendix A.

If we use the combinations 
� �  1 �  4 and �� �
 2 �  3, then unlike Eqs. (2.24) and (2.25), the corre-
sponding Schrödinger-like equations decouple [6,7,35].
We obtain [7]

 �
p2� 2mwS� S

2� 2"wA�A
2�

1

2
r2G�

3

4
G02

� �G0 �L0�2�G0F0 �
L 
 ��1��2�

r
F0 �L 
 ��1��2�l0

� iq0L 
 ��1��2� � 2F0ir̂ 
p� iK0��1 
 r̂�2 
p

��2 
 r̂�1 
p� ��1 
�2

�
1

2
r2G�

1

2r
L0 �

1

2
G02�G0F0

�

��1 
 r̂�2 
 r̂
�
1

2
r2L�

�
3

2r
�F0

���

� � b2�w�
�;

(3.14)

where the prime symbol stands for d=dr. We have used the
abbreviations

 

F �
1

2
logD� G; D � E2M1 � E1M2;

K �
�G � L�

2
; l0�r� � �

1

2r
E2M2 � E1M1

E2M1 � E1M2
�L�G�0;

q0�r� �
1

2r
E1M2 � E2M1

E2M1 � E1M2
�L�G�0: (3.15)

We work in the c.m. frame in which P̂ � �1; 0� and r̂ �
�0; r̂�. Once we find the four component solutions 
� to
this equation we can obtain the other 12 components 
�,
��. In Appendix B of [36] we find from Eq. (3.12)

 

���
exp�G�

D

�
M2

�
�1 
p�

i
2
�2 
r��G�L�G�1 
�2�

�

�M1

�
�2 
p�

i
2
�1 
r��G�L�G�1 
�2�

��

�;

(3.16)

and similarly

 

����
exp�G�

D

�
E2

�
�1 
p�

i
2
�2 
r��G�L�G�1 
�2�

�

�E1

�
�2 
p�

i
2
�1 
r��G�L�G�1 
�2�

��

�;

(3.17)

and

 


� �
�E2E1 �M2M1�

D

� �

1

2D
��E2D��1 � E1D��2 �

1

D

� �M2D��1 �M1D��2 � � �M2D��1 �M1D��2 �

�
1

D
�E2D

��
1 � E1D

��
2 ��
�; (3.18)

in which

 

D��1 � exp�G�
�
�1 
 p�

i
2
�2 
 r��G � L�G�1 
 �2�

�
;

D��1 � exp�G�
�
�1 
 p�

i
2
�2 
 r�G � L� G�1 
 �2�

�
;

D��1 � exp�G�
�
�1 
 p�

i
2
�2 
 r�G � L� G�1 
 �2�

�
;

(3.19a)

and

 D��2 � exp�G�
�
�2 
 p�

i
2
�1 
 r�G � L� G�1 
 �2�

�
;

D��2 � exp�G�
�
�2 
 p�

i
2
�1 
 r�G � L�G�1 
 �2�

�
;

D��2 � exp�G�
�
�2 
 p�

i
2
�1 
 r�G � L�G�1 
 �2�

�
:

(3.19b)

We then further define four component wave functions  �,
�� related to the above by [8]

 
� � exp�F� K�1 
 r̂�2 
 r̂� �

� expF�coshK � sinhK�1 
 r̂�2 
 r̂� �;

�� � exp�F� K�1 
 r̂�2 
 r̂���

� expF�coshK � sinhK�1 
 r̂�2 
 r̂���:

(3.20)

In this case the decoupled form of the Schrödinger-like
equation for  � has the convenient property that the co-
efficients of the first order relative momentum terms
2F0ir̂ 
 p� iK0��1 
 r̂�2 
 p� �2 
 r̂�1 
 p� in Eq. (3.14)
vanish. We obtain [8]
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 �
p2 � 2mwS� S

2 � 2"wA� A
2 �

2F0�cosh2K � 1�

r
� 2F02 � 2K02 �

2K0 sinh2K
r

� r2F� F02 � K02

�
2�cosh2K � 1�

r2 �m�r� �L 
 ��1 � �2�

�
�
F0

r
�
F0�cosh2K � 1�

r
�
�cosh2K � 1�

r2 �
K0 sinh2K

r

�
�L 
 ��1 � �2��l

0 cosh2K � q0 sinh2K� � iL 
 �1 � �2�q
0 cosh2K � l0 sinh2K� � �1 
 r̂�2 
 r̂L 
 ��1 � �2�

�

�
�
K0�cosh2K � 1�

r
�

sinh2K

r2 �
K0

r
�
F0 sinh2K

r

�
� �1 
 �2

�
k�r� �

F0 sinh2K
2r

�
F0�cosh2K � 1�

r

�
K0 sinh2K

r
�
K0�cosh2K � 1�

r
�

sinh2K

r2 �
�cosh2K � 1�

r2

�
� �1 
 r̂�2 
 r̂

�
n�r� �

3F0 sinh2K
r

�
F0�cosh2K � 1�

r
� 2F0K0 �

K0 sinh2K
r

�
3K0�cosh2K � 1�

r
� r2K �

3 sinh2K

r2 �
�cosh2K � 1�

r2

��
 � � b2 �;

(3.21)

in which

 k�r� �
1

2
r2G �

1

2
G02 �

1

2
G0K0 �

1

2

G0

r
�
K0

r
;

n�r� � r2K �
1

2
r2G � 2K0F0 � G0F0 �

3

2r
G0;

m�r� � �
1

2
r2G �

3

4
G02 � G0F0 � K02;

(3.22)

For equal mass singlet states, the hyperbolic terms can-
cel. The spin-orbit difference terms in general produce spin
mixing.

2. Matrix form of the wave functions

We now construct the 4� 4 matrix forms of the wave
functions (appropriate for a spin-one-half particle-
antiparticle system) from the 16 component forms (appro-
priate for system of two spin-one-half particles). We begin
by writing the 16 component spinor wave function as

  �  1

1
0
0
0

0BBB@
1CCCA�  2

0
1
0
0

0BBB@
1CCCA�  3

0
0
1
0

0BBB@
1CCCA�  4

0
0
0
1

0BBB@
1CCCA (3.23)

 

�

�
2

� 1

0

 !
�

1

0

 !
�

0

1

 !
�

0

1

 !�
�

�
2

� 1

0

 !
�

1

0

 !

�
0

1

 !
�

0

1

 !�
�
��
2

� 1

0

 !
�

0

1

 !
�

0

1

 !
�

1

0

 !�

�
��
2

� 1

0

 !
�

0

1

 !
�

0

1

 !
�

1

0

 !�
: (3.24)

The spinors  i as well as 
� �  1 �  4, �� �  2 �  3

are themselves four component Pauli spinors (upon which
�1i, �2i operate). The conversion from 16 component
spinor wave functions to four by four matrix wave func-
tions now can be carried out in a two-step process. First, as
in [35,37], the ‘‘energy’’ or q space column vector direct

products are converted to 4� 4 matrices as follows (recall
the factor of i
y plus the transpose operation changes
particle spinor into antiparticle spinor)

 ��1� ���2� ! ��1��
T
�2�i
2 � ��1��

T
�2�i�2 � q1; (3.25)

in which �0, �i, q0, qi; i � 1, 2, 3 are the 2� 2 unit and
three Pauli matrices in commuting spaces (spin and energy
space)

 �i�j � �ij�0 � i"ijk�k; qiqj � �ijq0 � i"ijkqk;

(3.26)

and whose direct products form the Dirac matrices.
Second, the 
�, �� four component Pauli spinors are
converted to 2� 2 matrices in � and q space by

 
� ! 
� � �
�0�0 ��� 
 ��;

�� ! �� � ���0�0 � �� 
 ��:
(3.27)

Together, the 4� 4 matrix wave function in �, q space is
 �

�
2
� q0�


�
2
� q3�

��
2
� q1�

��
2
� iq2

�
i�2 � q1

�

�

�
2
� q1�


�
2
� iq2�

��
2
� q0�

��
2
� q3

�
i�2 � 1

�

�

�i�2

2
� q1�


�i�2

2
� iq2�

��i�2

2
� q0

�
��i�2

2
� q3

�

!

�

�
2
� q1�


�
2
� iq2�

��
2
� q0�

��
2
� q3

�
: (3.28)

where for convenience we have absorbed the factor i�2

into the wave functions as the wave function is arbitrary up
to a constant multiplicative matrix and we have used the
same symbol for each of the transformed wave functions to
simplify notation. In our work below we drop the direct
product symbol �, it being understood to apply whenever
� and q space matrices multiply one another. The four
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component spinors  � and �� are similarly transformed
into matrices which can be expanded in terms of �0 and �,

  � !  � � � �0�0 �  � 
 ��;

�� ! �� � ���0�0 � �� 
 ��:
(3.29)

With A a generic matrix, Eq. (3.25) leads to

 

�1 
A � !A 
�� �0�0� � 
��

�A 
 ��0�A 
� �0� iA� � 
�;

�2 
A � !�A 
 � �0�0� � 
���

��A 
 ��0�A 
� �0� iA� � 
�;

�1 
A�2 
A � !�� 
A� �0�0� � 
��� 
A

��A2
�0�0��A2 �� 2A 
 �A� 
�

(3.30)

which are needed to convert Eqs. (3.16), (3.17), and (3.18)
into their matrix counterparts. In terms of matrix wave
functions 
�, ��,  �, and ��, we find that Eq. (3.20)
becomes

 
�0 � exp�F� K� �0;

�� � exp�F� K��1� �1� exp��2K��r̂ r̂� 
  �;

��0 � exp�F� K���0;

�� � exp�F� K��1� �1� exp��2K��r̂ r̂� 
 ��:

(3.31)

The 4� 4 matrix wave function form  of the 16
component  used in our decay amplitude is thus

  � exp�F��coshK��r� � sinhK� 
 r̂��r�� 
 r̂�; (3.32)

in which

 ��r� �
1

2
���
2
p � �q1 �  �iq2 � ��q0 � ��q3�; (3.33)

where  � �  �0�0 �  � 
 � is the 2� 2 matrix form of
the solution of the above Schrödinger-like Pauli Eq. (3.21).

Using these four components, the remaining 12 compo-
nents  �0,  �, ��0, and �� are obtained from Eqs. (3.16),
(3.17), (3.18), and (3.31). In all of our decays the particle-
antiparticle pairs have the same mass: m1 � m1 � m and
so "1 � "2 � " � w=2. Using the definition

 M1 � M2 � M � m exp�L�;

E1 � E2 � E � " exp��G�;
(3.34)

we show in [36] that

 

��0 �
exp�G � 2K�

E

�
p�

i
2
r�L� 2F� 2K�

�

 �1�Qmr̂ r̂� 
  �;

�� �
exp��L�

E

��
p�

i
2
rL

�
�Qp

�
r̂ r̂ 
p�

i
2
rL

��
 �0;

(3.35)

and
 

��0 � 0;

�� � �
exp�G�

M
�1�Qpr̂ r̂� 


�
ip�

1

2
r�L� 2G�

�
� �1�Qmr̂ r̂� 
  �: (3.36)

The final four components of the four by four matrix wave
function found in [36] are
 

 �0 �

�
�E2 �M2�

2EM
�

exp�2G�

2ME

�
p�

i
2
rL

�




�
p�

i
2
rL

��
 �0;

 � �
�E2 �M2�

2EM
 � �

exp�2G�

2EM
�1�Qpr̂ r̂�




��
p�

i
2
r�L� 6G�

��
p�

i
2
r�3L� 2G�

�

� �1�Qmr̂ r̂� 
  � �
�

p�
i
2
r�L� 2G�

�

�

��
p�

i
2
r�L� 2G�

�
� �1�Qmr̂ r̂� 
  �

��
;

(3.37)

where

 Qp � exp�2K� � 1; Qm � exp��2K� � 1: (3.38)

We also show in [36] how for both singlet and triplet states
these solutions together with Eq. (3.33) are related to the
solutions governed by the free Dirac spinors in the absence
of interactions [see also Eq. (3.4) and discussion below
(3.6)].

3. Covariant normalization conditions for the matrix
wave function

In this section we discuss how the norm of our matrix
wave function will differ from the naive form of
 

1

8

Z
d3xTrq��y� �

1

4

Z
d3xTr�� 

y
� � �  

y
� �

� �y��� � �
y
���� � 1: (3.39)

In a series of papers in the context of constraint dynamics,
H. Sazdjian has shown [38] how this norm must be modi-
fied so that, like its nonrelativistic counterpart, its con-
stancy is connected to a conserved, in this two-body
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case, tensor current. The norm he developed was not for the
solution of a quasipotential equation like Eq. (3.21) but
rather developed from a set of two-body Dirac equations
similar to those we use here. It deviated from one like the
above by terms that depend on the interaction as well as the
way in which the interaction depends on the c.m. energy.
Later work [39] simplified the norm to one that is interac-
tion independent when the interaction is independent of the
energy. In terms of the 16 component spinor solutions  of
the two-body Dirac equations given in Eqs. (2.18) we
found the norm condition of

 

Z
d3x

�
 y
�
1� 4w2�1�2

@�

@w2

�
 
�
�
Z
d3x yL � 1:

(3.40)

If the matrix � is c.m. energy independent, then the norm is
like that of the (one body) Dirac equation (with no energy
dependence of the interactions). We call the norm of
Eq. (3.39) the naive norm (NN) and that of Eq. (3.40) the
two-body Dirac norm (TBDN). The connection between
the matrix interaction function � and the core scalar and
vector interactions appearing in Eqs. (2.18) were found in
[39]. There we showed that (2.18) has the hyperbolic
structure

 S 1 � �cosh���S1 � sinh���S2� � 0;

S2 � �cosh���S2 � sinh���S1� � 0;
(3.41)

in which

 S 1 � �S10 cosh��� � S20 sinh���� � 0;

S2 � �S20 cosh��� � S10 sinh���� � 0;
(3.42)

with

 S 10 � ���1�1 
 p� �1�1�51 �m1�51� ;

S20 � ��2�2 
 p� �2�2�52 �m2�52� ;
(3.43)

and

 � � 1
2�51�52�L�x?� � �1 
 �2G�x?��; (3.44)

with L and G given in Eq. (3.34) (see also [40]). In matrix
form the connection given in Eqs. (3.31), (3.24), and (3.28)
between the matrix form of the wave function  of (2.18)
and (3.41) and � is given in Eq. (3.32) which we write in
symbolic form

  �K��r�: (3.45)

In Appendix B we show that in terms of the matrix wave
function � solution (3.33) to Eq. (3.21) the nomalization
condition can be written as

 

Z
d3xTr yL �

Z
d3xTr�K��r��yLK��r� � 1:

(3.46)

There we also give the matrix form of the operator L. The

deviation of the matrices K and L from the unit matrix
will affect the decay rates. The decay amplitude (3.8) in
terms of the matrix wave function ��r� is
 

MX!2��e
2

����
�
2

r Z
d3rTr�q

�
K��r�

�
exp��ik 
r�q3q1

�� 
��
1��m� iq3q1� 
r
exp��mr�

r
q3q1� 
�

�
2�

�exp�ik 
r�q3q1� 
�
�
2��m� iq3q1� 
r�

�
exp��mr�

r
q3q1� 
�

�
1�

��
: (3.47)

4. Scalar and vector wave functions in vector spherical
harmonics

Given the above wave functions we now write down the
total 4� 4 matrix wave function in terms of  �. The spin-
zero part of the total wave function is governed by  �0, the
spin-one portion by  �. These wave functions appear in
the forms

  � �  �0�0 �  � 
 �;  �0 �
u�j0j
r
Yjm;

 � �
u�
�j�1�1j

r
Yjm� �

u�
�j�1�1j

r
Yjm� �

u�j1j
r

Xjm;

(3.48)

where the labels on the radial wave function u refer to the
lsj quantum numbers of the solutions to Eq. (3.21) and
 

Yjm� � �a�r̂� rb�p�Yjm;

Yjm� � �a�r̂� rb�p�Yjm; Xjm �
LYjm�����������������
j�j� 1�

p ;
(3.49)

are vector spherical harmonic eigenfunctions of L2 with
eigenvalue l�l� 1� where l � j� 1, j� 1, j respectively.
The coefficients are

 a� � �

��������������
j� 1

2j� 1

s
; a� �

��������������
j

2j� 1

s
;

b� �
i

j� 1

��������������
j� 1

2j� 1

s
; b� �

i
j

��������������
j

2j� 1

s
:

(3.50)

In our work below, there will be no spin mixing and the
unnatural parity solutions �u�j1j=r�Xjm will not contribute.

For spin-singlet states ( � � 0), Eqs. (3.33), (3.35), and
(3.37) imply the following combination of scalar and vec-
tor wave functions

 �js�0 �
1

2
���
2
p � �0�0q1 �  �0�0iq2 � �� 
 �q0�:

(3.51)

In Appendix C of [41] we show that the TBDN for spin-
singlet states is
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 1 �
1

2

Z
d3x exp�2F�

�
�exp��2K�� y�0 �0 �  

y
�0 �0�

� exp�2K��y� 
 �� � 2 sinh2K�y� 
 r̂�� 
 r̂�

� 2w2 @L

@w2 �exp��2K�� y�0 �0 �  
y
�0 �0�

� exp�2K��y� 
 �� � 2 sinh2K�y� 
 ��� � 2w2 @G

@w2

��2 exp��2K��2 y�0 �0 �  
y
�0 �0��

�
:

(3.52)

The naive norm is given by L, K! 1 or equivalently by
exp�F�, exp�K� ! 1, @L=@w2, and @G=@w2 ! 0.

Appendix D of [42] gives from Eqs. (3.35) and (3.37) the
needed radial forms for the contributing wave functions in
terms of the radial portions of the solution to Eq. (3.21). It
requires the radial form of Eq. (3.21) which is simply
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r
; (3.53)

where [40]
 

B2 � E2 �M2;

�B2 exp��2G� � 2mwS� S
2 � 2"wA� A

2: (3.54)

Reference [42] gives us the relations between the contrib-

uting wave functions  �0,  �0, and ��. They are
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M
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M
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Yjm; (3.55)

and
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s
: (3.56)

For spin-triplet states ( �0 � 0), Eqs. (3.33), (3.35),
(3.36), and (3.37) imply the combination

 

�js�1 �
1

2
���
2
p � � 
 �q1 �  � 
 �iq2 � ��0q0

� �� 
 �q3�; (3.57)

and the contributing wave functions are  �,  �, ��0, and
��. In [41] we show that the TBDN for spin-triplet states is
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r̂���
��
� 1: (3.58)

The naive norm (NN) is obtained from Eq. (3.39) or from the above with K, L! 1 (or exp�F�, exp�K� ! 1, and @L=@w2,
@G=@w2 ! 0). In [42] we show that Eq. (3.37) gives  � from

  � �
�E2 �M2�

2EM
 � �

exp�2G�

2EM
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M
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J ; (3.59)

in which
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(see [42] for explicit forms of the functions Amm; . . . ; Gpm,). This equation requires the coupled radial wave equations for
spin-triplet states that follow from Eq. (3.21). They have the form [8]
 �
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r
: (3.61)

(See [42] for the explicit forms of ���). Thus with Eq. (3.48) we have
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and
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In [42] we also show that
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Yjm; (3.64)

and
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Xjm; (3.65)

in which
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; (3.66)

and
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: (3.67)

We use these various wave functions to compute composite 2� decay amplitude Eq. (3.8) which after performing the q
space trace gives
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:

(3.68)

The trace eliminates the contribution of the portion  ��r�q1 of the wave function.

5. Decay amplitude for 1Ll composites

Substituting Eq. (3.51) into (3.68),
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performing the remaining trace and using (3.55) and (3.56) gives
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with unit vectors defined in terms of the photon decay momenta and transverse polarization vectors

 ẑ � k̂;
�x̂� iŷ����

2
p � ����: (3.71)

The integral forms appearing in Eq. (3.70) are treated in Appendix E of [43] in which we show (with g�r� appropriately
defined)
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We also show (with f��r� appropriately defined)
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in which
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Notice that decay amplitude (3.75) is zero for j odd consistent with the Landau-Yang Theorem. We call this amplitude the
two-body (Dirac) decay amplitude (TBDA). What we call the naive decay amplitudes (NDA) would correspond the use of
the naive norm (K � L � 1) together with exp�F�, exp�K� ! 1 in Eq. (3.76).

6. Decay amplitude for 3Ll�1 composites

Using Eq. (3.57) in (3.68) leaves us with
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Notice that only two of the four portions of the triplet wave function (3.57) survive that trace. Performing the � space trace
and using Eqs. (3.59) and (3.64) together with
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we obtain
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With Eq. (3.71), the simplest terms in the above expression include forms like
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Stepping up in complexity we have the transverse parts of the dyad form
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In [43] we show that transverse portion is
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Finally, we need the trace as well as transverse parts of the dyad forms
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In [43] we show that with Eq. (3.71) the trace portion of Eq. (3.83) is
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while the transverse part is
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After integrations by parts, substitution of values of a�, ib� and combining with the other portions, we obtain
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(3.87)

As in the singlet case we obtain zero amplitude (3.86) for
odd j. We also call these amplitudes the two-body Dirac
decay amplitudes. Again, the corresponding naive decay
amplitudes would correspond the use of the naive norm
(K � L � 1) together with exp�F�, exp�K� ! 1 in
Eq. (3.87).

B. Decay rates

From the above two sets of amplitudes we construct the
decay rates. In our present case, we have

 "�1 � "�2 �
w
2
; b � jp�j �

w
2
: (3.88)
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Also, we are not interested in the decay of a state with a
definite magnetic quantum number. Rather we are inter-
ested in the average over all m. The Lagrangian that leads
to the Feynman amplitude for the decay process is Lorentz
invariant. Consequently the amplitude and our bound state
adaptation conserves total j, m. This implies that we can
sum over final states in an unrestricted way that is most
convenient, without picking only special helicities that one
expects to contribute. The details of the decay amplitude
should do this automatically. Using the general decay rate
formula [44] we obtain
 

��X! 2�� �
1

2!

1

�2j� 1�w2�2��6
Z
d�k

2�"�1"�2b

w

�
X

m;��
1�;��
2�

jMX!2�j
2

�
1

�2j� 1�16�2��5
Z
d�k

X
m;��
1�;��
2�

jMX!2�j
2;

(3.89)

in which we carry out the initial state m average and final
state polarization sum independently. For spin-singlet
states with the decay amplitude (3.75) this becomes
 

��1Ll!2���
1

�2j�1�16�2��5
Z
d�k

X
m;��
1�;��
2�

j��
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���
2� 
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0
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2: (3.90)

We have summed over the following four independent
polarization combinations

 � �
1�; ��
2� � ����; ����; ��
1� 
 k̂ � ��
2� 
 k̂ � 0;

(3.91)

with
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��
1�;��
2�

j��
1� � ��
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X

��
1�;��
2�

�1� j��
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2���j2�

� 2: (3.92)

Note that only the zero helicity states (corresponding to
both photons being either left or right handed polarized)
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(3.93)

give nonzero contributions to the rate factor 1� j��
1� 


���
2���j2. The total helicity �2 states
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1���
2
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(3.94)

give zero contribution. Performing the angular integration
gives [45]
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and
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Using Eq. (3.86) for triplet states 3Ll�1 our rate formula
is
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Notice from Eqs. (3.93) and (3.94) that this rate in general includes both helicity zero and helicity two contributions.
In the case of 3P0 decay we have j � m � 0 and so performing the polarization sum gives [45]
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1

2�2��4
X

��
1�;��
2�
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2: (3.98)

This rate includes only helicity zero contributions.
In the case of 3P2 decay we have [45]
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: (3.99)

1. Positronium decays

For these decays we ignore the effects of the potentials
on the norms and decay amplitudes since they are rela-
tively weak, (K � L � 1) or ( exp�F�, exp�K� ! 1�.

(a) 1S0 Decay—The amplitude for 1S0 positronium de-
cay is from Eq. (3.75)

 F 1S0
� �F0 �G

�1�
0 �; (3.100)

where for the weak potentials we expect in QED
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(3.101)

with
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and
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This wave function is one of the small component
ones. For positronium, w � 2m�O�
2� and so
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and (with k � m�1�O�
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with the nonrelativistic wave function given by

  000 �
�m
�3=2�������

8�
p exp��
mr� �

R�r��������
4�
p ; (3.106)

replacing the relativistic one u�000=r. In Appendix F
of [46] we give the details of our formalism leading
to the well known form for the decay rate,
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jG�1�0 j
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�2��4
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2
: (3.107)

showing that the small component portion F0 does
not contribute to the singlet decay rate at this order.
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(b) 3P0;2 Decay—The branching ratio for these decay
have not been measured since the decays of those
states is so largely dominated by the dipole transi-
tion to the 3S1 state. Nevertheless, it will be of value

to determine if our covariant formalism yields the
standard results given in [47,48]. The relevant am-
plitudes given in Eq. (3.87) for weak potentials
�L;K � 1� or �exp�F�; exp�K� ! 1� are
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The connection between the wave functions u�
�j�1�1j

and u�
�j�1�1j (see Eqs. (3.62) and (3.63) appears com-

plicated, but specializing as in the singlet case, we
find that the terms beyond the first include higher
order 
 terms from the various potential.
For the nonrelativistic wave functions we have
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We also need the small component wave function
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For the 3P0 state we have
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and the decay rate (3.98) involves the amplitude
combination
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in which (from [42] we find for this state that ���
cancels with the remaining portions of J )
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We also have
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and

 

d
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R110�r�jr�0 �

d
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r�110�r�jr�0 � �110�0�:

(3.114)

Our multicomponent results uses these relations in
Eq. (3.111). In [46] we present the details that allows
us to obtain the result of

 ��3P0 ! 2�� �
3m
7

256
: (3.115)

We point out there that in the limit in which the
variation of the positronium wave function is ne-
glected (the nonrelativistic approximation and single
component result) we obtain vanishing amplitude in
the 3P0 case. As stressed in [47] the inclusion of the
small components of the wave functions is essential
for this decay.
For the 3P2 amplitude j � 2, l � j� 1 � 1, j0 � 0,
2, 4. The relevant decay amplitudes are (ignoring
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angular momentum coupling)
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and
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(3.117)
with the neglect of orbital mixing where
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Using the above expressions for ��202 and u�112�r�
with
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r
� R112�r� � r�112�r�; (3.119)

and Eq. (3.99) leads to [46]

 ��3P2 ! 2�� �
m
7

320
; (3.120)

and the ratio ��3P0 ! 2��=��3P2 ! 2�� � 15
4 .

Even though our approach leads to the earlier results
of [47,48] it is of interest to see how our constraint
formalism based approach differs from other ap-
proaches. We first note that in the constraint ap-
proach, the general frame form of the c.m. decay
amplitude of Eqs. (3.5) and (3.6) is
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in which
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(3.122)

In the constraint approach, from Eqs. (2.6) and (2.13)

 p� �
P̂
2
� p; p� �

P̂
2
� p: (3.123)

The c.m. form is seen to follow directly from this
since there we have p � �0;p� and
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(3.124)

This interpretation of the amplitude follows directly
from the constraint formalism and is distinct from
that used in other approaches which assume an on
shell form for the amplitude (see e.g. [15] which uses

p0
i �

������������������
m2 � p2

i

q
). The decay amplitude we use in-

corporates an off-mass-shell assumption which is
true for constituent particles of the bound state.
The constraint modification of the off-mass-shell
amplitude in addition places it on energy shell.
This gives us the Yukawa modification seen in
Eq. (3.8) not appearing in other approaches.

2. Meson decays

(a) �c, �c0 Decays—For the �c the state vector is

 j�ci �
1���
3
p

X
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jc �ci; (3.125)

with the charge of the charmed quark equal to 2e=3.
Since the interaction is color independent the result-
ant TBDA is
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(3.126)

In (3.126) we take numerical wave functions from

CRATER, WONG, AND VAN ALSTINE PHYSICAL REVIEW D 74, 054028 (2006)

054028-20



the work of [7]. The remaining parts of our multi-
component wave functions are
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and
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which appear in that equation and satisfy the TBDN
condition Eq. (3.52). Its radial form is [41]
 

1

2

Z 1
0
drr2 exp�2F�

�
exp��2K�

��
u�000

r

�
2
�

�
u�000

r

�
2

�

�
��110

r

�
2
�
� 2w2 @L

@w2 exp��2K�

�

��
u�000

r

�
2
�

�
u�000

r

�
2
�

�
��110

r

�
2
�

� 4w2 @G

@w2 exp��2K�
�

2
�
u�000

r

�
2

�

�
u�000

r

�
2
��
� 1: (3.129)

Our NDA approximate to (3.126) becomes
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The multicomponent forms given by the TBDA and
TBDN in (3.126) and (3.129) respectively give a
decay rate of 9.18 keV, while that obtained from
the corresponding multicomponent forms given by
the NDA and NN is 9.15 keV. If we further ignore
the small components in these latter forms by taking
u�000 � u�000 and ��110 � 0, then the decay rate is
9.09 keV. Including first order QCD radiative cor-
rections [49] damps these decay rates by a factor of
�1� 
s=���2=3� 20=3�� [50]1 giving us 9.18 into
6.20 and 9.15 into 6.18 keV (and 9.09 to 6.14 keV
when ignoring small components). These are to be
compared with the observed rate of 7:44� 1:0 keV.
For the �0c our results are 4.81 and 2.79 keV (and
2.68 keV), respectively, compared with the observed
rate of 1:3� :6 keV. The QCD radiative corrections
reduce these from 4.81 to 3.36 and 2.79 to 1.95 keV
(and 2.68 to 1.87 keV) to be compared with the
observed rate of 1:3� 0:6 keV. The overall addi-
tional effects of using the TBDN and TBDA above
that of the NN and NDA appear to be very small for
the �c but for the �0c they are substantial (but in the
wrong direction). It is of interest to trace the origin

of these contrasting behaviors. The square root of
the norm (starting with a normed u�000=r) for the �c
in the TBDN and TBDA case is 1.64, compared with
1.03 in the NN and NDA case. The respective raw
decay amplitudes (with the norm effects taken out)
are 0.252 and 0.160. These are both substantial
differences. However, including the norm effect in
the amplitude cancels out these differences giving us
about a 0.155 amplitude in both cases. This cancel-
lation hides the substantial effects of both the TBDA
and TBDN. Things are different in the case of the
�0c. There the square root of the norm in the TBDN
and TBDA case is 1.22, compared with 1.008 in the
NN and NDA case. The respective raw decay am-
plitudes (with the norm effects taken out) are
�0:138 and �0:087. Unlike the case of the �c the
effect of including the norm in the amplitude does
not cancel out these differences giving us about a
�0:113 amplitude in the first case and a �0:086
amplitude in the second. The ratio of the TBDA to
the NDA are 1.58 in both cases. However, the square
root norm ratios are quite different, being 1.59 in the
case of the �c but only 1.21 in the case of the �0c.
This difference for the �0c may point to a limitation
of the linear confining model used in working out
the wave functions near threshold for the �c0 decay.

(b) �0 Decay—The 3P0 decay amplitudes are from
Eqs. (3.87) and in the combination from (3.98)
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with the same color and flavor factors as before, in
which (see [42])
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We also have
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Our multicomponent TBDA results uses these rela-
tions in Eq. (3.131). The TBDN condition (3.58)
becomes [41]

1For the running coupling constant 
s we use the value 
s �
12�=�27 log�10� �w=0:31 GeV�2�� given in Ref. [1]
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The NDA becomes
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Our multicomponent TBDA and TBDN result from
(3.131) and (3.134) is 3.90 keV, while that obtained
from the corresponding NDA form of (3.135) is
3.28 keV. If we further ignore the small components
in these latter forms by taking u�110 � u�110 and
��000 � 0, then the decay rate is 0.646 keV. The
QCD radiative corrections [49] modify these by a
factor of �1� �s=��2=3� 28=9�� from 3.90 to 3.96
and from 3.28 to 3.34 keV (and 0.646 to 0.656 keV).
These are to be compared with the observed rate of
2:6� 0:65 keV. The multicomponent effects are
substantial even if we do not include the effects of
the TBDA and TBDN. Those additional effects are
small compared with the effects of including the
multicomponents by themselves. This parallels
that which occurs in the 3P0 positronium decay
where the amplitude vanishes without the multicom-
ponent (small) parts of the wave function.

(c) �2 Decay—The 3P2 decay amplitudes (3.87) appear
from Eq. (3.99) in the separate combination
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and
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in which
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with ���;���; Amm; . . . ; Gmp given in [42] and
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with the expression for ���;���; App; . . . ; Gpm also in [42]. The other radial wave functions are
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Only the first of these latter two wave functions contributes to the decay amplitude. All wave functions contribute to
the TBDN condition (3.58) which has the form [41]
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Our multicomponent results uses these relations in Eq. (3.136) and (3.137). Our corresponding NDAs are
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and
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Our multicomponent TBDA and TBDN result from
(3.136), (3.137), and (3.142) is 1.43 keV, while that
obtained from the corresponding multicomponent
NDA result of (3.143) and (3.144) is 0.836 keV. If
we further ignore the small and tensor coupled com-
ponents in these latter forms by taking u�112 � u�112
and u�312 � u�312 � ��202 � ��212 � 0, then the decay
rate is 0.033 keV. THe QCD radiactive corrections
[49] modify these by a factor of �1� 16
8=�� from
1.43 to 0.743 and 0.836 to 0.435 keV (0.033 to
0.017 keV). These are to be compared with the
observed rate of 0:528� :09 keV. Full tensor cou-
plings are included in the first two results. As with
the 3P0 decay the NDA and NN multicomponent
effects are substantial even if we do not include those
of the TBDA and TBDN. Those effects are them-
selves significantly larger than the effects of the
NDA and NN.

(d) �0 Decay The �0 state vector is
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where the charge of the u is �2e=3 that of the d is
�e=3. Thus, the amplitude for its annihilation is
modified by a factor of
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3
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.
Otherwise the wave function discussion is the same
as in the section on �c decay. So we obtain
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Our multicomponent TBDA and TBDN result from
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this is 24.7 eV, while that obtained from the multi-
component NDA and NN result is 94.4 eV. If we
further ignore the small components in the weak
potential form by taking u�000 � u�000 and ��110 � 0,
then the decay rate is 89.5 eV. QCD radiative cor-
rections modify these by a factor of �1� �
s=���
��2=3� 20=3�� from 24.7 eV to 8.73 eVand 94.4 eV
to 33.5 eV (89.5 eV to 31.5 eV). These are to be
compared with the observed rate of 7:72� :04 eV,

so that our primary result of 8.73 is off by only 13%.
The influence of including the TBDA and TBDN
multicomponent effects in the norm and the ampli-
tude are substantial when compared to that of in-
cluding just the NDA and NN effects and bring our
pion decay rate reasonably close to the observed
rate.

(e) �2 Decay—For this spin-singlet decay the relevant
amplitude is
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where
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together with the normalization condition (3.52) (for details see [41])
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Our multicomponent TBDA and TBDN result from
this is results is 180 eV while the NDA and NN result
is 142 eV. If we further ignore the small components
in the latter form by taking u�202 � u�202 and ��112 �
��112 � 0, then the decay rate is 4.66 eV. The experi-
mental situation is unclear. Earlier results had very
large widths on the order of 1 keV. In the latest
compilation, one result is listed as <70 eV and
one at <190 eV both at the 90% confidence level.

In any event, the multicomponent effects here are
substantial which ever result we use. The difference
between the results are small compared with the
effects of including the multicomponents by
themselves.

(f) 1D2�3872� Decay—The quark-content of this state
is unsure. If we assume this is a 1D2 spin singlet,
then the relevant decay amplitude has the same wave
function structures as with the �2 except for the
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flavor factor. Our multicomponent TBDA and
TBDN result from this is 65.7 eV while the NDA
and NN result is 73.2 eV. If we further ignore the
small components in the latter form by taking u�202 �
u�202 and ��112 � ��112 � 0, then the decay rate is
168 keV. The experimental situation is unclear.
Using ratios given in the latest table (for the (c �c, l �
2, j � 2 state) we take the observed value to be
435 eV. As with the �2 decay, both multicomponent
effects here are substantial. The difference between
them are small compared with the effects of includ-
ing the multicomponents by themselves. However,
unlike the �2 the effects are to reduce rather than
enhance the rate.

(g) a2 Decay—Except for the quark content (same as
with �0, �2) this particle has a 3P2 decay amplitude
and wave functions given as with the �2. Except for
the quark content (same as with �0, �2) this particle
has a 3P2 decay amplitude and wave functions given
as with the �2. Our multicomponent TBDA and
TBDN decay rate result is 31.5 keV reducing to
9.02 keV when QCD radiative effects are included.
The corresponding NDA and NN rate result is
10.9 keV reducing to 3.12 keV when QCD radiative
effects are included. The observed rate of 1:00�
:06 keV. Including TBDN and TBDA effects in the
norm and the amplitude are substantial and produce
too large a decay rate.

(h) f02 Decay—With an s�s quark content, this particle
has a 3P2 decay amplitude otherwise similar to that
of the above a2. Our strong potential, multicompo-
nent decay rate is 2.36 keV reducing to 760 eV when
QCD effects are included. The corresponding weak
component rates is 1.08 keV reducing to 348 eV
when QCD radiative effects are included. The ob-
served rate is 81� 9:6 eV. As with the a2, including
TBDN and TBDA effects in the norm and the am-
plitude are substantial and produce too large a decay
rate.

IV. DISCUSSION AND EARLIER RESULTS

A. Charmonium

Table III (units are in keV) compares our results (both
the ones that come from TBDA and NDA multicomponent
results) with a variety of other quark models (ones that
have not yet been subjected to the tests imposed on the

TBDE and which for the most part do not include the light
mesons in their spectroscopic calculations).

Ackleh and Barnes [15] independently developed a
similar approach to the one we developed for positronium
decay [14] and then applied it to spin-singlet quarkonium
decay into two gammas. As in our approach, they include
the effects of the bound state wave function on the initial
decaying particle. Gupta, Johnson, and Repko [50] follow a
similar approach. The two numbers displayed in their
column correspond to two distinct approaches used in
incorporating off shell effects. The first is similar to that
used in [15] where the energy factors which arise from the
Feynman amplitude are treated on mass shell (E �������������������

p2 �m2
p

; energy conservation, which would have E �
w=2, is not used) while the second set of numbers come
from treating the particle on energy shell (E � w=2 but
with m2 � E2 � p2). Our approach is different from both
of these in that it is on energy shell, E � w=2, but with
m2 � E2 � p2 it is off-mass-shell. The energy factors that
appear in our equations are those required from the way in
which the constraint formalism eliminates the c.m. relative
energy—see Eq. (2.12) and (2.13). (See also our discussion
in our section on 3P0;2 positronium.) To be more explicit,
the portion of the Feynman propagator �p� � k1�

2 �m2 �
i0 in the approaches of [15] and the first of [50] is treated as

2p 
 k� w
������������������
p2 �m2

p
, in the second of [50] as 2p 
 k�

w2=2 and in the constraint approach as �p� k�2 �m2. The
treatment of the spin-dependent aspects of the wave func-
tion in [15,50,51] is similar to that appearing in our earlier
paper on positronium decay in [14]. We point out, however,
that in our paper here, the spin-dependent aspects of the
wave function do not arise from the free spinor factors in
the Feynman decay amplitude, but rather from the multi-
component structure of the interacting TBDE. The treat-
ment appearing in [51] uses a quasipotential wave equation
that gives a Schrödinger-like equation for the bound states.
Their amplitude treatment is otherwise similar to that of
[15] except that they include (as we do here) QCD radiative
corrections. Another treatment is that of [52]. They list
decay rates of 5.5 and 2.1 keV for the �c and �0c respec-
tively, similar to the results of [51] (see also recent result of
[53]). Their treatment of the spin-dependent aspects of the
wave function appearing is more like ours except that they
use the Salpeter truncation of the Bethe-Salpeter equation
but with energy factors in the amplitude treated on shell as
in [15]. The treatment in [54] is similar to that of [52]
except that it involves the four-dimensional Bethe-Salpeter

TABLE III. Charmonium 2� decay rates

Expt TBDE-TBDA. TBDE-NDA [15] [50] [51] [54]

�c�1
1S02976� 7:4� 1:0 6.20 6.18 4.8 10.94,10.81 5.5 3.50

�c�2
1S03263� 1:3� 0:6 3.36 1.95 3.7 . . . 1.8 1.38

�0�1
3P03415� 2:6� :65 3.96 3.34 . . . 6.38,8.13 2.9 1.39

�2�1
3P23556� 0:53� :09 0.743 0.435 . . . 0.57,1.14 0.50 0.440
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amplitude constructed from the Salpeter solution. As with
[52] they use a combination of scalar and timelike confin-
ing potentials. Unlike [51,52], and like the treatment of
[15] and the present one, [54] then goes on to treat the light
quark pseudoscalar decays. For the 1D2�3872� particle,
Ackleh and Barnes obtain a result of 20 eV compared to
ours of 27 eV. None of the other authors include this
particle.

B. Light quark mesons

Our formalism at this stage does not include the effects
of flavor mixing and consequently we do not compute the
rates for �, �0 ! 2�. This leaves us with the 2 � decays of
�0, �2, a2, f02. We present the results of the decay width in
Table IV, including those approaches above that give pre-
dictions for some of these decays. The units are in eV.

Our pion rate is comparable to the others. However, the
assumptions of [15] are quite different from ours. First they
use a nonrelativistic potential model for the wave function.
As pointed out by [54–56] standard approaches to the pion
decay fail miserably for such models, typically too large by
3 orders of magnitude (by comparison our result is only off
by 20%). Ackleh and Barnes, however, included, as did
Hayne and Isgur [57] in an earlier paper, a phenomeno-
logical resonance mass factor motivated by an effective
field theory Lagrangian (� 1

2g
F�	
~F�	) which greatly

suppresses the ‘‘bare’’ rate. The approach we have taken
above did not include such a factor. Of course, as they point
out, the factor implied by that effective field theory is not
contained within the positroniumlike model that they and
we use. (The range of values in their column correspond to
a range of assumed constituent masses). The approach
taken by Münz [54] is much closer in spirit to the one we
employ. He uses the framework of the Salpeter equation for
the formulation of two photon decays and finds that in-
cluding relativistic effects, and the negative energy, i.e.
small components of the wave function, is important
even for heavy quarkonia. In addition, unlike our approach,
which in the c.m. frame would have momentum space
wave function dependence only on the relative three mo-
mentum, he works out a decay matrix element which
includes relative four-momentum dependence (including
relative energy dependence in the c.m.). It is his claim that
in this way, not only does the amplitude depend on off-
mass-shell annihilating quark pairs (through the wave
function) but also the exchanged quark within the diagram
that are both off mass shell and off energy shell. In contrast

to our Eq. (3.6) his amplitude involves an additional inte-
gral over the relative energy. However, he finds it necessary
to introduce a cutoff factor in his spectral analysis for the
one-gluon exchange. In addition he finds that he must
assume not only a different confinement mechanism for
the light and heavy quarks, but different confinement
strengths. The spectral results we obtain do not treat the
heavy and light quark bound states differently. Further, in
the two models that he considers, he finds that it is not
possible to formulate the one-gluon exchange gauge invar-
iantly and so uses the Feynman gauge in one parameter set
for a semirelativistic model and the Coulomb gauge in the
other. By contrast, the constraint approach displays gauge
invariance, and, for simplicity uses the Feynman gauge.

There are other approaches that develop formalisms
with natural suppression of the�0 ! 2�width in the quark
model. Guisasu and Koniuk [56], using a multipair struc-
ture in the context of the Bethe-Salpeter formalism, show
how the extremely bound highly relativistic nature of the
pion suppress the decay rate. The authors of [55] also show
how the assumption of a completely diagonalized QCD
Hamiltonian (with meson eigenstates predominantly q �q),
implies bound state effects can greatly suppress the width.

V. CONCLUDING REMARKS

The two-body Dirac equations are based on Dirac’s
constraint formalism and a minimal interaction structure
for the effective particle of relative motion (first used by
Todorov) confirmed by both classical [28] and quantum
field theory [18]. This formalism displays spectral results
with flavor independent interactions in very good experi-
mental agreement for most of the meson spectra. At the
same time, and we have stressed the importance of this in a
recent publication [7], the formalism when treated in a
nonperturbative manner naturally accounts for the pertur-
bative results of QED bound states. So far this has not been
fully replicated in any other approach. In a natural way it
leads not only to good singlet-triplet ground state splittings
for the light meson, but also a Goldstone behavior for the
pion. This we showed is tied to the same relativistic
structures that account for the nonperturbative positronium
and muonium results. Based on this and the successful off
shell treatment of positronium two photon decay we had
reason to anticipate that the quarkonium decays to two
photons would be reasonable. We have found this to be
particularly true for the �0 and �c. There we found rela-
tivistic effects, including most importantly the full multi-

TABLE IV. Light quark meson 2� decays.

Expt. TBDE-TBDA TBDE-NDA [15] [54]

�0�
1S00:135� 7:72� :04 8.73 33.5. 3:4! 6:4 3.81,5.07

�2�
1D2� <70; 190 181 142 110! 270 73.2129

a2�
3P21:318� 1000� 60 9020 3120 . . . 766 900

f02�
3P21:525� 81� 10 760 34 . . . . . .

TESTS OF TWO-BODY DIRAC EQUATION WAVE . . . PHYSICAL REVIEW D 74, 054028 (2006)

054028-27



component wave function and the influence of the TBDN
and TBDA, to be of crucial importance. The results com-
pare favorably with models based on two-body formalisms
not tested as extensively as that of the two-body Dirac
equations. Our pion results are unlike some of the compet-
ing approaches in that no additional effective field theory
assumptions were made that go beyond the relativistic
potential model approach, and spectral results for all me-
sons are obtained in a flavor independent way. In light of
this our results are not too unreasonable. Still one may
speculate on assumptions made in the constraint approach
which may be relaxed. For example, it may very well be
that even though spectral results are independent of the
method by which the relative time is controlled in the
constraint formalism [26], the decay and other amplitudes
may depend on this effect. The work in [26] (see
Appendix A in that paper), allows one to show how the
relative energy restriction Eq. (2.12) which in quantum
form is P 
 p � 0 or  �p� � ��p 
 P̂� �p?�, could be
replaced in the amplitude Eq. (3.121) by a more general
form, say

  �p� � ��p 
 P̂� �p?� ! ��p 
 P̂� �p?� (5.1)

in which � is a distribution with nonzero support [58]. In
future work, having shown that the meson wave functions
of [7] used in this paper give in most circumstances rea-
sonable results, one will now consider applications of them
to the meson-meson scattering process such as discussed in
the beginning of this paper.
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APPENDIX A: DIRAC MATRICES FOR THE TWO-BODY DIRAC EQUATIONS

 

�1 �
18 0

0 �18

" #
; �51 �

0 18

18 0

" #
; �1�51 � �1 �

0 18

�18 0

" #
; �2 �

� 0
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" #
; ��

14 0

0 �14

" #
;

�52 �
�5 0

0 �5

" #
; �5 �

0 14

14 0

" #
; �2�52 � �2 �

� 0

0 �

" #
; ��

0 14

�14 0

" #
; �51�52 �

0 �5
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" #
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�1�2 �
0 �

�� 0

" #
�1�51�52 �

0 �5

��5 0

" #
; �2�52�51 �

0 �

� 0

" #
; �i ���i 
 P̂; �i � �5i�i�?i: (A1)

APPENDIX B: INTERACTION DEPENDENT MODIFICATIONS OF THE NORM

In order to implement the interaction dependent modification

 

Z
d3xTr

�
 y
�
1� 4w2�1�2

@�

@w2

�
 
�
� 1 (B1)

of Eq. (3.40) we first need the matrix connection
 

 �

 1

 2

 3

 4

2666664

3777775 �
1

2
��1 � �51�52�


�
��
��

�

2666664

3777775 �
1

2
��1 � �51�52� expF�coshK � sinhK�1 
 r̂�2 
 r̂�

 �
��
��
 �

2666664

3777775 � L0
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��
��
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2666664

3777775;

(B2)

between the Dirac spinor solutions of Eqs. (2.18) and those of (3.21).
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The transformation between the 16 component column vector form of the wave function that satisfies our quasipotential
Eq. (3.21) and the one which satisfies the two-body Dirac equation in hyperbolic form is given in Eq. (B2). The
corresponding 4� 4 matrix form is

 

 �
exp�F�

2
���
2
p �coshK� �q1 �  �iq2 � ��q0 � ��q3� � sinhK� 
 r̂� �q1 �  �iq2 � ��q0 � ��q3�� 
 r̂�

�K��r� (B3)

where

 ��r� �
1

2
���
2
p � �q1 �  �iq2 � ��q0 � ��q3�: (B4)

Whereas the normalization condition (3.40) in 16 component form is
 

Z
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 y
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Z
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 r̂ 2 
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1

2
��1��51�52�
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��
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2
666664

3
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9>>>>=>>>>;
� 4w2

Z
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2
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1
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(B5)

since the matrix form of

 

�
1� 4w2�1�2
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1� 2w2

�
�1�2
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@w2 � ��51�52 ��1 
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(B6)

in terms of matrix wave functions the norm condition
(3.40) is
 

1 �
Z
d3xTr yL �

Z
d3xTr�K��r��yLK��r�

�
Z
d3xTr

�
�K��r��yK��r� � �K��r��y

�

�
2w2 @L

@w2 iq2K��r�iq2

� 2w2 @G

@w2 �q1K��r�q1 �K��r� 
 ��
��
: (B7)

Substituting Eq. (B3) and its conjugate, taking traces and

using for the spin-singlet case (3.51)

  � �  �0�0;  � �  �0�0;

�� � �� 
 �; �� � 0;
(B8)

together with matrix identities such as
 

��� 
 r̂�� 
�� 
 r̂� 
����2�� 
 r̂� 
 r̂��� 
�� 
�

���2�� 
 r̂� 
 r̂��� 
��
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y
� 
��; (B9)
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leads to Eq. (3.52) in the text. (For details see [41]) From
that equation and Eqs. (3.55) and (3.56) we obtain the
general radial forms of the norm [41] given in the text.
Using for the spin-triplet case (3.57)

  � �  � 
 �;  � �  � 
 �;

�� � ��0�0; �� � �� 
 �:
(B10)

gives Eq. (3.58) in the text (For details see [41]). From that
equation and Eqs. (3.48), (3.64), and (3.65) and

  � �
u�
�j�1�1j

r
Yjm� �

u�
�j�1�1j

r
Yjm� (B.25)

we obtain the general radial forms [41] given in the text.

[1] C. Y. Wong, E. S. Swanson, and T. Barnes, Phys. Rev. C
62, 045201 (2000); K. Martins, D. Blaschke, and E.
Quack, Phys. Rev. C 51, 2723 (1995); K. L. Haglin and
Charles Gale, Phys. Rev. C 63, 065201 (2001); Ziwei Lin
and C. M. Ko, Phys. Rev. C 62, 034903 (2000); Yongseok
Oh, Taesoo Song, and Su Houng Lee, Phys. Rev. C 63,
034901 (2001).

[2] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[3] C. Y. Wong, E. S. Swanson, and T. Barnes, Phys. Rev. C

62, 045201 (2000).
[4] P. Van Alstine and H. Crater, Phys. Rev. D 34, 1932

(1986).
[5] H. W. Crater, R. Becker, C. Y. Wong, and P. Van Alstine,

Phys. Rev. D 46, 5117 (1992).
[6] H. W. Crater and P. Van Alstine, Found. Phys. 24, 297

(1994).
[7] H. W. Crater and P. Van Alstine, Phys. Rev. D 70, 034026

(2004).
[8] B. Liu and H. W. Crater, Phys. Rev C 67, 024001 (2003).
[9] H. V. von Geramb, B. Davaadorj, and St. Wirsching, nucl-

th/0308004.
[10] H. Crater and C. Y. Wong, J. Phys.: Conf. Ser. 9, 178

(2005).
[11] T. Barnes and E. S. Swanson, Phys. Rev. D 46, 131 (1992).
[12] C. Y. Wong, E. S. Swanson, and T. Barnes, Phys. Rev. C

65, 014903 (2001).
[13] J. J. Sakurai, Advanced Quantum Mechanics (Addison

Wesley, Reading, MA, 1967).
[14] H. W. Crater, Phys. Rev. A 44, 7065 (1991).
[15] E. S. Ackleh and T. Barnes, Phys. Rev. D 45, 232 (1992).
[16] H. Sazdjian, Phys. Lett. B 156, 381 (1985).
[17] H. Sazdjian, in Proceedings of the International

Symposium on Extended Objects and Bound Systems,
Kairuzawa, Japan, 1992, pp. 117–130.

[18] H. Jallouli and H. Sazdjian, Ann. Phys. (N.Y.) 253, 376
(1997).

[19] P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva
University, New York, 1964).

[20] M. Kalb and P. Van Alstine, Yale Report Nos. C00-3075-
146, C00-3075-156 (1976); P. Van Alstine, Ph.D.
Dissertation Yale University, 1976.

[21] I. T. Todorov, Dubna Joint Institute for Nuclear Research
Report No. E2-10175, 1976; Ann. Inst. H. Poincare A 28,
207 (1978).

[22] L. P. Horwitz and F. Rohrlich, Phys. Rev. D 24, 1528
(1981); F. Rohrlich, Phys. Rev. D 23, 1305 (1981). See
also H. Sazdjian, Nucl. Phys. B161, 469 (1979).

[23] A. Komar, Phys. Rev. D 18, 1881 (1978).
[24] P. Droz-Vincent, Rep. Math. Phys. 8, 79 (1975).
[25] P. Van Alstine and H. W. Crater, J. Math. Phys. (N.Y.) 23,

1697 (1982); H. W. Crater and P. Van Alstine, Ann. Phys.
(N.Y.) 148, 57 (1983).

[26] H. W. Crater and P. Van Alstine, Phys. Rev. D 36, 3007
(1987).

[27] The invariant function A�r� plays the same role for four
vector interactions as does S�r� for scalar.

[28] H. Crater and P. Van Alstine, Phys. Rev. D 46, 766 (1992).
[29] For the explicit forms of the various quasipotentials see

[5], Eqs. (4.14a-b).
[30] A. J. Sommerer et al., Phys. Lett. B 348, 277 (1995).
[31] S. L. Adler and T. Piran, Phys. Lett. B 117, 91 (1982), and

references contained therein.
[32] H. W. Crater and P. Van Alstine, Phys. Rev. D 37, 1982

(1988).
[33] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[34] For details please refer to H. W. Crater, C. Y. Wong, and P.

Van Alstine, hep-ph/0603126.
[35] P. Long and H. W. Crater, J. Math. Phys. (N.Y.) 39, 124

(1998).
[36] For details please refer to H. W. Crater, C. Y. Wong, and P.

Van Alstine, hep-ph/0603126 (v3), Appendix B.
[37] H. W. Crater, C. W. Wong, and C. Y. Wong, Int. J. Mod.

Phys. E 5, 589 (1996).
[38] H. Sazdjian, J. Math. Phys. (N.Y.) 29, 1620 (1988), and

references contained therein.
[39] H. W. Crater, and P. Van Alstine, J. Math. Phys. (N.Y.) 31,

1998 (1990).
[40] Strickly speaking, Eq. (2.23) is for scalar and timelike

vector interactions. Equations (2.24), (2.25), (3.14), and
(3.21) involve combined scalar and electromagneticlike
interactions (this amounts to working in the Feynman
gauge with the simplest relation between space- and time-
like parts, see [7,32]). In that case the mass and energy
potentials are M2

i � m2
i � exp�2G��2mwS� S2� and

E2
i � exp�2G��"i � A�

2, with exp�2G� � 1=�1� 2A=w�.
This leads to Eq. (3.54) with the same factors in
Eqs. (2.24), (2.25), (3.14), and (3.21).

[41] For details please refer to H. W. Crater, C. Y. Wong, and P.
Van Alstine, hep-ph/0603126 (v3), Appendix C.

[42] For details please refer to H. W. Crater, C. Y. Wong, and P.
Van Alstine, hep-ph/0603126 (v3), Appendix D.

[43] For details please refer to H. W. Crater, C. Y. Wong, and P.
Van Alstine, hep-ph/0603126 (v3), Appendix E.

[44] S. Weinberg, The Quantum Theory of Field (Cambridge

CRATER, WONG, AND VAN ALSTINE PHYSICAL REVIEW D 74, 054028 (2006)

054028-30



University Press, Cambridge, England), Vol. 1,
Chap. Sec 3.4.

[45] We take our Clebsch Gordon coefficients from the equa-
tions given in Albert Messiah, Quantum Mechanics
(Wiley, New York, 1961), Vol. 2, Appendix C.

[46] For details please refer to H. W. Crater, C. Y. Wong, and P.
Van Alstine, hep-ph/0603126 (v3), Appendix F.

[47] R. Barbieri, R. Gatto, and R. Kögerler, Phys. Lett. B 60,
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