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We develop the minimal model of a new leading order parametrization of generalized parton
distributions (GPDs) introduced by Polyakov and Shuvaev. The model for GPDs H and E is formulated
in terms of the forward quark distributions, the Gegenbauer moments of the D-term, and the forward limit
of the GPD E. The model is designed primarily for small and medium-size values of xB, xB � 0:2. We
examine two different models of the t dependence of the GPDs: the factorized exponential model and the
nonfactorized Regge-motivated model. Using our model, we successfully described the deeply virtual
Compton scattering (DVCS) cross section measured by H1 and ZEUS, the moments of the beam-spin
Asin�

LU , the beam-charge Acos�
C , and the transversely polarized target Asin’ cos�

UT DVCS asymmetries
measured by HERMES and Asin�

LU measured by CLAS. The data on Acos�
C prefer the Regge-motivated

model of the t dependence of the GPDs. The data on Asin’ cos�
UT indicate that the u and d quarks carry only a

small fraction of the proton total angular momentum.

DOI: 10.1103/PhysRevD.74.054027 PACS numbers: 13.60.�r, 12.38.Lg

I. INTRODUCTION

Generalized parton distributions (GPDs) parametrize
nonperturbative parton correlation functions in hadronic
targets [1–7]. The GPDs generalize and interpolate be-
tween the common parton distributions and form factors.
Collinear factorization theorems for deeply virtual
Compton scattering [8] and for hard electroproduction of
mesons [9] give a theoretical possibility to experimentally
constrain the GPDs. However, since the GPDs are func-
tions of three arguments (excluding the known dependence
on the renormalization scale) and since experimental ob-
servables involve convolution of the GPDs with hard scat-
tering coefficients and not the GPDs themselves, it is very
difficult to experimentally constrain the GPDs. Therefore,
there is continuing interest in modeling GPDs using vari-
ous models of the hadronic structure [10–19].

The most convenient and widely used parametrization of
GPDs is based on the double distribution (DD) model
introduced by Radyushkin [17,18]. Adding to the DD
model the so-called D-term [20], which is required to
restore the full form of polynomiality of the DD model,
one obtains a simple, almost analytical, parametrization of
GPDs, which can be readily used for the calculation of
various observables; see e.g. [4]. However, such a parame-
trization of the GPDs has several phenomenologically un-
satisfactory features. First, the successful description of the
low Bjorken x HERA data on the total deeply virtual
Compton scattering (DVCS) cross section requires a very
specific (�-independent) shape for the input GPDs, which
is very different from the input required for the description
of the DVCS asymmetries measured at higher x [5,21].

Second, the parametrization ‘‘does not commute’’ with
QCD evolution, i.e. it serves only to define the input for
QCD evolution of GPDs at a certain initial scale �0. The
result of the QCD evolution to the higher scale� cannot be
generally expressed in the form used for the input.
Therefore, one has to separately perform the rather non-
trivial QCD evolution of GPDs. Third, the parametrization
does not allow for an intuitive physical motivation and
interpretation; see [22,23] for a discussion of the physics
of GPDs.

In this paper, we continue and extend the analysis [24] of
a new parametrization of proton GPDs first introduced by
Polyakov and Shuvaev [25].

Initially, the dual representation of quark GPDs of the
pion was derived by Polyakov [26] as a formal solution
reproducing Mellin moments of the pion GPDs. In turn, the
moments were related by crossing to the moments of the
two-pion distribution amplitude, which was expanded in
terms of eigenfunctions of the corresponding QCD evolu-
tion equation (the Gegenbauer polynomials C3=2

n ) and ei-
genfunctions of the operator of the relative orbital
momentum of the pion pair (the Legendre polynomials
Pl). The resulting parametrization of GPDs was termed
dual because the idea of its derivation follows the hypothe-
sis of duality of soft hadron-hadron interactions, which is
the assumption that the 2! 2 scattering amplitude in the s
channel can be represented as an infinite series over
t-channel exchanges [27]. In the context of the quark
GPDs of the pion, the dual parametrization implies that
the GPDs are formally given by an infinite sum of
t-channel resonances, which build up the two-pion distri-
bution amplitude.

In the successive work, Polyakov and Shuvaev postu-
lated that a similar dual parametrization holds for proton
singlet GPDs [25],
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In this equation, the superscript i denotes the quark flavor;
x, �, t, and �2 stand for the usual arguments of GPDs [4];
Binl and Cinl denote the unknown form factors. In this work,
we restrict ourselves only to the helicity-even spin-
independent GPDs H and E and do not consider the two
remaining helicity-even spin-dependent GPDs ~H and ~E.
Since we are concerned with DVCS observables, which
probe the singlet combinations of GPDs, we shall consider
only singlet GPDs: The left-hand side of Eq. (1) represents
the singlet combinations of the GPDs, Hi�x; �; t� �
Hi�x; �; t� �Hi��x; �; t� and Ei�x; �; t� � Ei�x; �; t� �
Ei��x; �; t�, which are antisymmetric with respect to x.

It should be stressed that the series in Eq. (1) diverges
and, hence, one should explain how this should be under-
stood. As follows from the derivation [26], Eq. (1) is
nothing but a shorthand notation for the x moments of
the GPDs. Therefore, the formal representation of Eq. (1)
should be understood as a generalized mathematical func-
tion, which, acting on the polynomials of x, reproduces
correctly the Mellin moments of the corresponding GPDs.
Note that the divergence in Eq. (1) is analogous to the
divergence of any dual representation of the 2! 2 scat-
tering amplitude in soft hadronic physics: The s-channel
series must diverge to reproduce infinities (poles) of the
amplitude in the crossed t channel [27].

Naturally, since the series in Eq. (1) diverges, one cannot
use it to study the GPDs as functions of their variables.
However, since Eq. (1) fixes all Mellin moments of the
GPDs, one can readily obtain different representations of
the GPDs, which would give continuous and finite GPDs.
For instance, expanding Eq. (1) over the Gegenbauer poly-
nomials C3=2

n �x� on the interval �1 � x � 1, one obtains
[28]

 Hi�x; �; t;�2� � �1� x2�
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The functions Rnp��� are polynomials of the order n of the
variable �, which are defined in terms of the hypergeomet-
ric function,
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The representation for the GPDs Ei is obtained by replac-
ing the form factors Binl by Cinl.

The dependence of the GPDs Hi and Ei on the renor-
malization scale � is contained in the form factors Binl. By
construction (1), Binl are proportional to the nth conformal
moment of the GPDs, which is multiplicatively renormal-
ized to the leading �s accuracy [28]. Therefore, under
leading order (LO) QCD evolution, the form factors Binl
have a very simple, well-established �2 dependence,

 Binl��
2� � Binl��

2
0�

�
ln��2

0=�2�

ln��2=�2�

�
�n=B

; (5)

where B � 11� �2=3�Nflav (Nflav is the number of active
parton flavors); �n are LO nonsinglet anomalous dimen-
sions [29,30]. Alternatively, as will be clear from the
following sections, the �2 dependence of Binl for all l is
given by the �2 dependence of the n� 1 Mellin moment
of the forward singlet quark distribution,R

1
�1 dxx

nqi�x;�2�.
In addition to the simple LO evolution of Binl, the DVCS

amplitude has a very simple form in terms of Binl, also only
to the LO accuracy. Therefore, we shall use the dual
parametrization of the GPDs as a LO parametrization.

II. MINIMAL MODEL OF THE DUAL
PARAMETRIZATION OF GPDS Hi AND Ei

In this section, we consider a minimal model of the dual
parametrization of the GPDs Hi and Ei, which is formu-
lated in terms of the forward limit of the GPDs Hi and Ei

and the Gegenbauer moments of the D-term. The t depen-
dence of the GPDs is modeled separately.

A. Derivation of the minimal model

As explained in the Introduction, the dual representation
in the form of Eqs. (2)–(4) gives finite and continuous
expressions for GPDsHi and Ei. However, these equations
are impractical to use since one has to sum an infinite series
of large sign-alternating terms. An elegant method to sum
the series of Eq. (2) was offered by Polyakov and Shuvaev
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[25]. The method consists of the introduction of a set of
functions whose Mellin moments generate the form factors
Binl and Cinl,

 Binn�1�k�t; �
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Z 1

0
dxxnQi
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(6)

Note that, for the singlet combinations of the GPDs that we
consider in this paper, n is odd and k is even. Using the
methods detailed in Appendix B of [25], one obtains the
following representation of the GPDs Hi in terms of the
generating functions Qi

k (the GPDs Ei are obtained by
replacing Qi

k by Rik):
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where
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Note that the term proportional to limy!0Q
i
k for Hi�k� is

missing in the original formulation [25]: Its presence was
noticed in Ref. [31].

In the present work, we consider a minimal version of
the dual representation, which consists of retaining only
the contributions of the generating functions Qi

0 and Qi
2 to

the GPDsHi, and functions Ri0 and Ri2 to the GPDsEi. This
means that we keep only the form factors Binn�1, Binn�1,
Cinn�1, and Cinn�1, i.e. we keep only the maximal l � n�
1 and next-to-maximal l � n� 1 orbital momenta in
Eq. (1). The main motivation for such an approximation
is the prefactor �k in Eq. (7): In the HERA kinematics (� <
0:005), the contribution of Qi

k and Rik with k 	 2 is kine-
matically suppressed. In the HERMES kinematics (� <
0:1), we keep Qi

2 and Ri2 as a first correction. This is also
true for the contribution of the third term in Eq. (7).

The formal representation (1) enables one to readily
establish the connection between the Mellin moments of
the GPDs Hi and the form factors Binl (a similar equation
holds for Ei),
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Taking the �! 0 limit in this equation, one determines the
form factors Binn�1 and Cinn�1,
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In the forward limit t! 0, qi�x; t;�2� � �qi�x; t; �2� be-
come the singlet combination of forward quark parton
distributions and ei�x; t;�2� � �ei�x; t;�2� become the un-
known forward limit of the singlet combination of GPDs
Ei.

Since Eqs. (10) fix all Binn�1 and Cinn�1, they completely
determine the generating functions Qi

0 and Ri0 [25,31],
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Therefore, up to the t dependence, the functions Qi
0 and Ri0

are completely constrained by the forward parton distribu-
tions and the forward limit of the GPDs Ei. Note that
Eqs. (11) are valid at all scales �2.

Turning to the generating functions Qi
2, we notice that

their modeling is more ambiguous as compared to the
functions Qi

0 since only the Mellin moments of Qi
2 are

constrained. The constraints can be derived as follows.
Considering the Mellin moments of the GPDs Hi [see
Eq. (9)], we notice that the coefficient in front of �N�1,
which is denoted h�N�N�1 [4], is

DUAL PARAMETRIZATION OF THE PROTON . . . PHYSICAL REVIEW D 74, 054027 (2006)

054027-3



 hi�N�N�1 �
XN
n�1
odd

Xn�1

l�0
even

Binl�t; �
2�Pl�0�

�
��32���N � 1��n� 1��n� 2�

2N��N�n2 � 1���N�n2 �
5
2�

: (12)

On the other hand, decomposing the D-term in terms of its
Gegenbauer moments
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and using the definition
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one obtains the desired relation between the D-term and
the form factors Binl,
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Within the framework of the minimal version of the dual
parametrization, we keep only the form factors with l �
n
 1 and, hence, obtain
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This equation allows us to constrain the generating func-
tion Qi

2 as follows. Decomposing Qi
2 as
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and substituting this in Eq. (16), one obtains the following
constraint on the new unknown function ~Qi

2,
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The introduction of the functions ~Qi
2 is an attempt to

reduce the intrinsic theoretical uncertainty in the functions
Qi

2 by separating the latter into the contribution given by
the known functions Qi

0 and the contribution of the func-
tions ~Q2, whose Mellin moments are proportional to the
Gegenbauer moments of the nucleon D-term.

Turning to the generating functions Ri2 for the GPDs Ei,
we notice that, since the D-term contribution to the GPDs
Ei and Hi are equal and opposite in sign (see e.g. [4]), then
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Therefore, the functions Ri2 can be written in the form
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Note that this representation for Ri2 was first suggested by
Polyakov and Shuvaev; see Eq. (56) of [25].

B. Details of the minimal model

So far we have presented a rather general consideration
involved in the construction of the minimal model of the
dual parametrization of the GPDsHi and Ei. In the follow-
ing, we shall discuss such details of the parametrization as
the modeling of the functions ~Qi

2 and ei � �ei and the
modeling of the t dependence of Qi

k and Rik.
In the following discussion of ~Qi

2 and ei � �ei, we as-
sume that t � 0 and do not explicitly write the t depen-
dence. The shape of the functions ~Qi

2 is unconstrained. We
assume a simple form for ~Qi

2,
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with the coefficients ai, bi, and ci fixed by the constraint of
Eq. (18) evaluated for n � 1, 3, and 5. Note that the �2

dependence of din and, hence, the �2 dependence of ai, bi,
and ci are given by Eq. (5). In Eq. (21), we assumed that,
similarly to Qi

0, ~Qi
2 ! 0 in the x! 1 limit and that ~Qi

2 is a
nonsingular polynomial in x like the nucleon D-term (13).

The singlet combination of the first three Gegenbauer
moments of the D-term was evaluated in the chiral quark
soliton model at the low normalization point �0 �
0:6 GeV [32],
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where Mi
2 is the proton momentum fraction carried by the

quark and antiquark of the flavor i. Note that the last
equality in the first line of Eq. (22) comes from the fact
that, at the low normalization point �0, in the SU(2)-
symmetric chiral quark soliton model, the u and d quarks
carry the entire proton momentum. At higher �2 of the
order of a few GeV2, the quarks carry about half of the
proton momentum, which reduces the numerical values in
Eq. (22) by a factor of 2 [32]. In our analysis, we use

 dun��2� �RnMu
2 ��

2�; ddn��2� �RnM
d
2��

2�; dsn� 0:

(23)

Note that Eq. (23) is valid at all scales �2. The quark
momentum fractions are evaluated using the leading order
CTEQ5L parton distributions [33].

Since the GPDs Ei decouple in the forward limit, the
functions ei � �ei in Eq. (10) are unconstrained. In this
work, we follow the simple model of Ref. [4], which
correctly reproduces the forward limit of the first moment
of the GPDs Ei and which allows us to vary the fraction of

V. GUZEY AND T. TECKENTRUP PHYSICAL REVIEW D 74, 054027 (2006)

054027-4



the nucleon spin carried by quarks,
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where qival�x;�
2� � qi�x;�2� � �qi�x;�2� is the valence

quark distribution. Note that, unlike �qi, �ei is a symmetric
function of x. The coefficients Ai and Bi for u and d quarks
are found from the first and second Mellin moments of the
GPDs Ei [4],
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where Ji is the contribution to the proton total angular
momentum of the quark with flavor i; Mi;val

2 is the proton
momentum fraction carried by the valence part of the quark
distribution function; ku � 1:673 and kd � �2:033 are
quark anomalous magnetic moments. We assume that,
for the strange and charm quarks, ei�x� � �ei�x� � 0.
Note also that the �2 dependence of Ji is the same as for
Mi

2; see e.g. [4].
In summary, the x and � dependence of the GPDs Hi is

specified by Eqs. (11), (17), (18), and (21). The GPDs Ei

are specified by Eqs. (11), (20), (24), and (25).
The t dependence of the form factors Binl and Cinl is not

known and has to be specified separately. In this work, we
consider two models of the t dependence. The first model
assumes that all Binl and Cinl and, hence, Hi and Ei have a
factorized exponential t dependence with the
�2-dependent slope [24],
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2
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where

 B��2� � 7:6�1� 0:15 ln��2=2�� GeV2: (27)

The decrease of the slope with increasing �2 was taken
from the model [34]. The normalization of the slope was
chosen in order to reproduce the result of the exponential
fit to the t dependence of the differential DVCS cross
section measured by the H1 Collaboration at HERA for
0:1 � jtj � 0:8 GeV2 and at �2 � 8 GeV2, B��2 �
8 GeV2� � 6:02
 0:35
 0:39 GeV�2 [35]. Note that a
factorized model of the t dependence with the
�2-independent slope commutes with the QCD evolution.
While this is not so in our case (26), effects of the �2

dependence of the slope B��2� on the QCD evolution are
numerically small and, thus, have been neglected.

The second model of the t dependence is much more
involved: It is nonfactorized and, hence, the t dependence
nontrivially changes with QCD evolution. Since the dual
parametrization of GPDs is constructed as an infinite series
of t-channel exchanges, which resembles the representa-
tion of hadron-hadron scattering amplitudes in Regge the-
ory, this analogy can serve as a guide for the t dependence
of the GPDs. In particular, we use the following Regge-
theory-motivated model for qi�t� and �qi�t� [4]:
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where qi�x;�2� and �qi�x;�2� are quark and antiquark
forward parton distributions and g�x;�2� is the gluon
forward distribution.

The model of Eq. (28) is specified at some low normal-
ization point. In this work, �2

0 � 1 GeV2. The functions
qi�t� and �qi�t� at higher �2 >�2

0 are obtained by LO
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution at fixed t. While the gluon function g�x; t; �2� does
not enter any LO expressions for DVCS observables (the
handbag approximation), one still needs to specify
g�x; t;�2

0� for the QCD evolution.
The parameters �0val, �

0, and �0g can be thought of as
effective slopes of the corresponding Regge trajectories.
For the valence quarks, we use �0val � 1:1�1� x� GeV�2

[36], which gives a good description of the nucleon elastic
form factors. Numerically similar options for �0val were
also considered in the literature [4,37–39]. All of them
correspond to �0val � 0:9–1:0 GeV�2, which is the typical
slope of all known meson and baryon Regge trajectories.

Drawing an analogy between the parameters �0 and �0g
and the slope of the Pomeron trajectory �0IP, one would
expect that �0 � �0g � �0IP � 0:25 GeV�2. However, our
analysis of the DVCS cross section in Sec. III shows that
larger values should be taken. In this work, we use

 �0 � 0:9 GeV�2; �0g � 0:5 GeV�2: (29)

The inconsistency between the phenomenologically large
values of �0 and �0g and the ones expected on the basis of
the Regge theory was discussed in Ref. [39].

Since theD-term does not have a partonic interpretation,
we cannot use the model of Eq. (28) to constrain the t
dependence of the Gegenbauer moments din and, hence, the
t dependence of ~Qi

2. Instead, we employ the results of the
lattice calculations of the t dependence of the first moments
of GPDs, which were fitted to the dipole form [40], and use
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 du;dn �t� � du;dn �t � 0�
1

�1� t=M2
D�

2 ; (30)

where MD�1:11
0:20 GeV in the continuum limit [40].
Finally, the same dipole form of the t dependence was

assumed for the �-function contribution to the functions ei

and �ei; see Eq. (24).

C. Predictions for the GPDs Hi and Ei

The numerical predictions for the x, �, and �2 depen-
dence of the GPDs Hu and Eu at t � 0 are presented in
Figs. 1–3 (see the captions).

In Fig. 1, the results of the dual parametrization are
presented as solid curves. For comparison, the predictions

of the DD model with the D-term added are given by
dashed curves. In addition, for the � � 0:1 case, the dot-
dashed curves present the calculation using the dual pa-
rametrization, when the contribution of Qi

2 is omitted.
Therefore, the deviation of the dot-dashed curve from the
solid curves can serve as an estimate of the theoretical
uncertainty associated with the modeling of the function
Qi

2. Note that, for � � 0:01, the dot-dashed and solid
curves are indistinguishable: Only the contribution of Qi

0

is important at sufficiently low �.
The predictions of the DD model (dashed curves) for the

singlet combination of the GPDs Hi were made using the
standard expressions [4,17,18]

 

Hi
DD�x; �; �

2� �
Hi�x; �;�2� �Hi��x; �;�2�

2

�
Z 1

�1
d	

Z 1�j	j

�1�j	j
d����x� 	� ��� � ���x� 	� ���
h�	;��

qi�	;�2�

2
� ���� jxj�Di

�
x
�
;�2

�

�
Z 1

0
d	

Z 1�	

�1�	
d����x� 	� ��� � ��x� 	� ���
h�	;��

�
qi�	;�2� � �qi�	;�2�

2

�

� ���� jxj�Di
�
x
�
;�2

�
; (31)
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FIG. 1. The singlet GPD Hu as a function of x, �, and �2. The dual parametrization results (7) (solid curves) are compared to the
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function Qi
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V. GUZEY AND T. TECKENTRUP PHYSICAL REVIEW D 74, 054027 (2006)

054027-6



where

 h�	;�� �
3

4

�1� j	j�2 � �2

�1� j	j�3
(32)

and

 Di�z; �2� � �1� z2�
X5

n�1

din��
2�C3=2

n �z�: (33)

Note the coefficient 1=2 in the first line of Eq. (31): It is
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required to have the correct normalization of the first mo-
ment of Hi

DD.
The dual parametrization predictions for the singlet

GPD Eu are summarized in Fig. 2. We would like to
emphasize that the shape of the GPDs Ei is unknown.
The model for the forward limit of the GPDs Ei that we
used [see Eqs. (24) and (25)] was chosen rather arbitrary
and, eventually, might turn out to be wrong. In this model,
the shape of Ei is correlated with the fraction of the proton
total orbital momentum carried by the quark, Ji. In Fig. 2,
the solid curves correspond to Ju � 0; the dashed curves
correspond to Ju � 0:1; the dot-dashed curves correspond
to Ju � 0:2.

For an alternative model of GPDs Ei, we refer the reader
to the calculations within the framework of the chiral quark
soliton model [41].

In Fig. 3, the dual parametrization calculation of the
singlet Eu with Ju � 0 (solid curves) is compared to the
DD model calculation (dashed curves). The latter was
performed using Eq. (31) after the replacement of qi by
ei and after changing the sign in front of the D-term.

III. DVCS CROSS SECTION

The differential cross section of DVCS reads [4]

 

d


dQ2dxBdtd�
�

1

32�2��4
xBy

2

Q4

�
e6��������������������������������

1� 4m2
Nx

2
B=Q

2
q j �T DVCSj

2; (34)

where xB, Q2, and y � Q2=�xBs� (
���
s
p

is the lepton-proton
invariant mass) are the usual Bjorken variables; � is the
angle between the plane formed by the leptons and the
plane formed by the final photon and the final proton [5];
T DVCS is the full DVCS amplitude. The bar over the
DVCS amplitude squared means that we have summed
over the final polarization and averaged over the initial
polarizations of all involved particles.

The results of high-energy DVCS measurements at
HERA are usually presented in terms of the DVCS cross
section on the photon level [35,42,43],

 
DVCS�xB;Q
2� �

1

�

�
xB
y

�Z
dtd�

d


dQ2dxBdtd�
; (35)

where

 � �
�em�1� y� y

2=2�

�Q2y
(36)

is the flux of the equivalent photons [35]. Squaring the full
DVCS amplitude, averaging over initial polarization and
summing over final polarizations, one obtains the follow-
ing unpolarized, t-integrated DVCS cross section on the
photon level:

 
DVCS�xB;Q
2� �

��2
emx2

B

Q4
��������������������������������
1� 4m2

Nx
2
B=Q

2
q

�
Z tmax

tmin

dtjADVCS��; t;Q2�j2; (37)

where
 

jADVCS��; t;Q
2�j2 � jH j2�1� �2� � �2�H �E �HE��

� jEj2
�
t

4m2
N

� �2

�
(38)

and
 

H ��; t;Q2� �
X
i

e2
i

Z 1

0
dxHi�x; �; t; Q2�

�

�
1

x� �� i0
�

1

x� �� i0

�
;

E��; t;Q2� �
X
i

e2
i

Z 1

0
dxEi�x; �; t; Q2�

�

�
1

x� �� i0
�

1

x� �� i0

�
: (39)

Throughout this paper, the skewedness parameter � is
related to the Bjorken variable xB as � � xB=�2� xB�
[4]. Equations (37) and (38) for the unpolarized DVCS
cross section can also be obtained from more general
expressions derived in Ref. [5].

It is important to note that, in Eq. (39), we used the
notation of Ref. [4], which differs from the notation of
Ref. [5] by an overall minus sign. While this is immaterial
for the DVCS cross section, it matters for the DVCS
asymmetries.

One appealing feature of the dual parametrization of
GPDs is that the convolution integrals in Eq. (39) can be
readily taken and expressed in terms of the generating
functions Qi

n and Rin [25],
 

H ��; t;Q2� � �
X
i

e2
i

Z 1

0

dx
x

X1
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xkQi
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1�����������������������

1� 2x
� � x

2
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1�����������������������
1� 2x

� � x
2

q � 2�k0

�
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E��; t;Q2� � �
X
i

e2
i

Z 1

0

dx
x

X1
k�0

xkRik�x; t;Q
2�

�

�
1�����������������������

1� 2x
� � x

2
q �

1�����������������������
1� 2x

� � x
2

q � 2�k0

�
:

(40)

The high-energy HERA data on the total DVCS cross
section corresponds to very small �, � < 0:005, and to
small t, t < 1 GeV2. Therefore, the contribution of the
GPD E to the DVCS cross section is negligible.
Moreover, as discussed in Sec. II, at small �, the contribu-
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tion of Qi
n with n 	 2 can be safely neglected. Therefore,

our predictions for
DVCS within the framework of the dual
parametrization are made keeping only the functions Qi

0,
which, up to the t dependence, are given by the forward
quark distributions.

Figures 4 and 5 present our predictions for theQ2 andW
dependence of 
DVCS. The calculations are performed
using the Regge-motivated t dependence (28) (solid
curves) and the factorized exponential t dependence (26)
(dashed curves). The theoretical predictions are compared
to the H1 [35] and ZEUS [43] data.

Note that the ZEUS data, which were taken at W �
89 GeV and Q2 � 9:6 GeV2, have been rescaled to the
H1 values of W � 82 GeV and Q2 � 8 GeV2 using the
fitted W and Q2 dependence of the DVCS cross section
measured by ZEUS, 
DVCS / W0:75 and 
DVCS /
1=�Q2�1:54 [43].

One can see from Fig. 4 that the absolute value and the
Q2 dependence of the total DVCS cross section are repro-
duced well using both the nonfactorized Regge-motivated
(28) and factorized exponential (26) models of the t de-
pendence. However, at the highest values of Q2, the ex-
ponential model of the t dependence gives somewhat larger

DVCS because of the Q2-dependent slope B (27), which
provides a better agreement with the highest Q2 ZEUS
point.

Note that the parameters �0 and �0g of the Regge-
motivated model of the t dependence [see Eq. (29)] were
chosen such that the theoretical calculations reproduce
well the absolute value of 
DVCS in Fig. 4. Smaller values

of �0 and �0g, which would be closer to �0IP, would give
inconsistently large values of 
DVCS.

From Fig. 5 one can see that the absolute value and the
W dependence of 
DVCS are also reproduced well. The H1
data [35] somewhat prefer the results of the calculation
using the Regge-motivated t dependence. However, large
experimental errors at large values of W and the discrep-
ancy between the H1 and ZEUS data do not allow one to
draw a more quantitative conclusion.

In addition to the t-integrated DVCS cross section, for
the first time, the H1 reported the differential DVCS cross
section [35]. The dual parametrization predictions for
d
DVCS=dt as a function of t are compared to the H1
data in Fig. 6. The theoretical predictions are made using
Eq. (37) without the integration over t,

 

d
DVCS�xB;t;Q2�

dt
�

��2
emx2

B

Q4
�������������������������������
1�4m2

Nx
2
B=Q

2
q jADVCS��;t;Q

2�j2:

(41)

As one can see from Fig. 6, for jtj< 0:5 GeV2 both models
of the t dependence give rather similar predictions and
describe the data well. However, for jtj> 0:5 GeV2, the
exponential model corresponds to a steeper decrease of
d
DVCS=dtwith increasing jtj and allows us to describe the
highest jtj � 0:8 GeV2 data point very well. The experi-
mental errors on d
DVCS=dt are small enough to conclude
that the Regge-motivated model of the t dependence of
GPDs (29) seems to be disfavored by the large-jtj H1 data
[35].

It is important to appreciate that, within the framework
of the dual parametrization of GPDs, the HERA data on the
DVCS cross section were described so well without any
free parameters: We used only the forward parton distri-
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butions for the input. To be more precise, the parameters �0

and �0g were adjusted to reproduce only the normalization
of the DVCS cross section: TheQ2,W, and t-dependencies
of the cross section were then predicted without any further
adjustments. The calculation using the factorized exponen-
tial t dependence contained no free adjustable parameters
since the slope B��� (27) has been experimentally mea-
sured [35] and, hence, it could not be varied.

The DVCS cross section can also be described using
other models of GPDs. Within the framework of the double
distribution model, the H1 and ZEUS data on 
DVCS were
successfully described with the asymptotic ansatz for
h�	;�� in Eq. (31), which corresponds to the
�-independent input, Hi

DD�x; �; �
2
0� � �q

i�x;�2
0� �

�qi�x;�2
0��=2 [5,21]. The observation that the DVCS cross

section at high energies (small xB) and at high Q2 can be
described by the GPDs, whose shape at the low input scale
�2

0 is �-independent, can be qualitatively explained as
follows. Under QCD evolution, a GPD at a given small x
and large �2 is obtained using the GPD at the low input
scale �2

0, which is probed for x0 � x. Therefore, the small
external parameter � can be neglected in the input GPDs
[44].

Other theoretical approaches, which enable one to suc-
cessfully describe the HERA data on 
DVCS, include the
dipole formalism [45,46] and the formalism based on the
conformal moments of the GPDs [47].

IV. DVCS ASYMMETRIES

Complete expressions for various DVCS asymmetries
are well known [5]. In this work, we consider the beam-
spin ALU, beam-charge AC, and transversely polarized

target AUT asymmetries. The first two asymmetries are
predominantly sensitive to the GPD H, while the AUT

asymmetry is sensitive to both GPDs H and E. Since
most of the data on these DVCS asymmetries have come
from the HERMES Collaboration at DESY [48–55], we
will predominantly make numerical predictions for the
above asymmetries using the dual parametrization of
GPDs H and E in the HERMES kinematics. In addition,
predictions for the Jefferson Lab kinematics will also be
presented.

A. Beam-spin asymmetry

Using results of Ref. [5], one obtains the following
approximate expression for the sin� moment of the
beam-spin asymmetry:

 Asin�
LU � �

�
xB
y

�
8Ky�2� y��1� �2�2

�
�F1�t� ImH ��; t; Q2� � jtj

4m2
N
F2�t� ImE��; t;Q2�


cBH
0;unp

;

(42)

where � � xBmN=Q; the kinematic suppression factor K
and the leading harmonic of the Bethe-Heitler amplitude
squared cBH

0;unp are given in [5]; F1 and F2 are the Dirac and
Pauli proton form factors (see e.g. [5]); H and E are
defined by Eq. (40). Equation (42) is approximate because
we have neglected subleading harmonics (proportional to
cBH

1;unp and cBH
2;unp) in the expansion of the Bethe-Heitler

amplitude squared and the DVCS amplitude squared in
the denominator of Eq. (42).

Note that we have introduced an additional minus sign in
order to take into account the sign difference between our
notation for H and the notation of Ref. [5]. Therefore, in
Eq. (42), the plus sign corresponds to the positively
charged lepton beam. Since in our notation ImH < 0 in
the bulk of the considered kinematics, Asin�

LU in the
HERMES kinematics is negative.

One should point out that we use the reference frame of
Ref. [5], which differs from the frame used by the
HERMES Collaboration by the direction of the z axis
(the Trento sign conventions [56]). This means that
�HERMES � ��� [5,57]. Obviously, for the sin� mo-
ment of the beam-spin asymmetry, this difference in the
notations is irrelevant.

Using the dual parametrization of GPD discussed in
Sec. II and substituting it in Eq. (42), we obtain the
following range of predictions at the average kinematic
point of the HERMES measurement, hxBi � 0:11, hQ2i �
2:6 GeV2, and hti � �0:27 GeV2 [48],
 

Asin�
LU � �0:22 . . .� 0:24; exponential t dependence;

Asin�
LU � �0:27 . . .� 0:29; Regge t dependence: (43)
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The smaller absolute values of Asin�
LU correspond to the

calculation with Ju � Jd � 0; the larger absolute values
of Asin�

LU correspond to the calculation with Ju � 0:3 and
Jd � 0 (the variation of Jd has no noticeable effect). As
expected, the small range of predictions (for a given model
of the t dependence) indicates small sensitivity of Asin�

LU to
the GPD E.

Our theoretical calculations compare very well to the
HERMES measurement [48]

 Asin�
LU � �0:23
 0:04
 0:03: (44)

In addition to the average HERMES kinematics, we
studied the dependence of Asin�

LU on t, xB, and Q2 bin by
bin [51,57]. Figure 7 summarizes our predictions, which
are made using Ju � Jd � 0.

As can be seen from Fig. 7, only Asin�
LU as a function of jtj

can be helpful in distinguishing between the exponential
and Regge models of the t dependence, provided the
experimental uncertainties are sufficiently small.

We also make predictions for the beam-spin asymmetry
in the CLAS kinematics. For the 2001 average kinematic
point of the CLAS kinematics [58], E � 4:25 GeV,

hQ2i � 1:25 GeV2, hxBi � 0:19, and hti � �0:19 GeV2,
our predictions compare very well to the experimental
value,
 

Asin�
LU � 0:15 . . . 0:17; exponential t dependence;

Asin�
LU � 0:18 . . . 0:20; Regge t dependence;

Asin�
LU � 0:202
 0:028; CLAS �58
: (45)

The lower values of the theoretical predictions correspond
to Ju � Jd � 0; the larger values correspond to Ju � 0:3
and Jd � 0. Note the sign change in Asin�

LU when going from
the positron beam (HERMES) to the electron beam
(CLAS).

Recently, CLAS performed dedicated measurements of
DVCS and, in particular, of the beam-spin asymmetry with
higher energies of the lepton beam and with much wider
kinematic coverage in Q2, xB, and t. Figure 8 presents our
predictions for the t dependence of Asin�

LU at E � 5:7 GeV,
Q2 � 1:5 GeV2, and xB � 0:25.

It is important to point out that, by construction, the
minimal model of the dual parametrization of GPDs is
designed for small values of xB, xB � 0:2. The increase
of xB from xB � 0:2 (HERMES) to xB � 0:3 (current
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CLAS) leads to the increasing role of the generating func-
tions Qi

2 and Ri2 (the latter plays a role at large jtj, jtj>
0:5 GeV2), which results in a significant model depen-
dence of our results. Therefore, our predictions in Fig. 8
should be taken as semiquantitative. Strictly speaking, in
order to make quantitative predictions for the current
CLAS kinematics, one has to extend the minimal model
by including higher generating functions Qi

k and Rik with
k 	 4.

B. Beam-charge asymmetry

Next we turn to the beam-charge asymmetry, AC. Using
the results of Ref. [5], the approximate expression for AC
reads [we have neglected the same terms in the denomina-
tor as in Eq. (42)]

 AC��� �
�
xB
y

�
�1� �2�2

cI0;unp � c
I
1;unp cos�

cBH
0;unp

; (46)

where cI0;unp and cI1;unp are given in Ref. [5]. While cI0;unp is
smaller than cI1;unp, it is not negligibly small. In this work,
we shall concentrate on the larger contribution to AC
proportional to cI1;unp, which can be singled out by consid-
ering the cos� moment of AC,

 Acos�
C � �

�
xB
y

�
8K�2� 2y� y2��1� �2�2

�
�F1�t�ReH ��; t; Q2� � jtj

4m2
N
F2�t�ReE��; t;Q2�


cBH
0;unp

:

(47)

As discussed above, �HERMES � ���. Therefore,

Acos�HERMES
C � �Acos�

C . Since in the considered kinematics
ReH > 0, we obtain Acos�HERMES

C > 0. Until the end of this
subsection, we shall imply �HERMES, but we will use � for
brevity.

The range of predictions for Acos�
C using the dual pa-

rametrization of GPDs can be compared to the HERMES
measurements. For the 2002 HERMES average kinematic
point, hxBi � 0:12, hQ2i � 2:8 GeV2, and hti �
�0:27 GeV2 [50], we obtain
 

Acos�
C � 0:01 . . . 0:03; exponential t dependence;

Acos�
C � 0:19 . . . 0:23; Regge t dependence;

Acos�
C � 0:11
 0:04
 0:03; HERMES �50
: (48)

The lower values of Acos�
C correspond to the calculation

with Ju � Jd � 0; the larger values correspond to Ju �
0:3 and Jd � 0.

For the very recent 2006 HERMES average kinematic
point, hxBi � 0:10, hQ2i � 2:5 GeV2, and hti �
�0:12 GeV2 [55], we obtain
 

Acos�
C � 0:013 . . . 0:022; exponential t dependence;

Acos�
C � 0:080 . . . 0:092; Regge t dependence;

Acos�
C � 0:063
 0:029
 0:026; HERMES �55
:

(49)

The following two features of Eqs. (48) and (49) deserve
further discussion. First, the exponential model of the t
dependence predicts the values of Acos�

C , which are much
smaller than those calculated with the Regge model of the t
dependence. The reasons for this are the nontrivial t de-
pendence of the real part of H (more precisely, the non-
trivial cancellation between two contributions to the real
part of H ) and the large values of jtj involved.

Second, predictions with the exponential model of the t
dependence are much more sensitive to the fraction of
proton spin carried by the quarks, Ji.

In addition to the average kinematic point, the recent
HERMES analysis [55] presented Acos�

C as a function of t.
Figure 9 presents the comparison of our theoretical

predictions to the data. It can be seen from Fig. 9 that the
Regge model describes the data points well for jtj<
0:2 GeV2 and underestimates the asymmetry for the larger
jtj � 0:4 GeV2. The exponential model of the t depen-
dence dramatically fails to describe the rise of Acos�

C with
increasing jtj. Therefore, on the basis of the comparison of
our theoretical predictions to the t dependence of the cos�
moment of the beam-charge asymmetry, we conclude that
the nonfactorized Regge model of the t dependence of
GPDs is preferred over the factorized exponential model.

In addition to the t dependence of Acos�
C , we make

predictions for the Q2 and xB dependence of Acos�
C in the
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HERMES kinematics [51,57] in Fig. 10. Our theoretical
predictions are made using Ju � Jd � 0.

C. Transversely polarized target asymmetry

The DVCS asymmetry with the unpolarized beam and
the transversely polarized target, AUT, is sensitive to all
four GPDs of the nucleon [5]. Since we are concerned with
the GPDs H and E, we shall consider the sin’ cos� mo-
ment of AUT, where the angle ’ is the angle between the
vector of the target polarization and the hadron scattering
plane in the notation of Ref. [5]. The main interest in
considering this DVCS observable is that it is sensitive to
the GPD E and, hence, to the fraction of the proton total
angular momentum carried by quarks, Ji.

According to the Trento sign convention [56], it is
recommended to use different angles, which are used e.g.

in the HERMES analysis: �HERMES � ��� and
�S;HERMES ��HERMES � �� ’ [57]. Obviously,

Asin’ cos�
UT � Asin��S;HERMES��HERMES� cos�HERMES

UT .
Using the results [5], the approximate expression for

Asin’ cos�
UT reads

 

Asin’cos�
UT �

�
xB
y

�
�1� �2�2

1

cBH
0;unp

8mN
������������
1� y
p

Q
�2� 2y� y2�

�

�
1

2� xB

�
x2
BF1�t� � �1� xB�

t

m2
N

F2�t�
�

� ImH ��; t;Q2� �

�
x2
B

2� xB
F1�t�

�
t

4m2
N

�
�2� xB�F1�t�

�
x2
B

2� xB
F2�t�

��
ImE��; t;Q2�

�
: (50)

Note that, similarly to the above considered Asin�
LU and

Acos�
C , we have introduced an additional minus sign to

compensate for the sign difference between our definition
of H and E and the notation of Ref. [5].

The theoretical predictions for the t, Q2, and xB depen-
dence of Asin’ cos�

UT using the dual parametrization of GPDs
and Eq. (50) are compared to the preliminary HERMES
data [53] in Fig. 11. Note that the error bars shown corre-
spond to the statistical and systematic uncertainties added
in quadrature and that the systematic uncertainty does not
include the effect of the HERMES acceptance.

The plots for the t and Q2 dependence appear to be most
informative. As can be seen from the upper and middle
panels of Fig. 11, our theoretical calculations reproduce the
data fairly well, except for one point. Judging by the
central experimental values, one concludes that the data
seems to prefer the scenario with Ju � Jd � 0.
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Also, both models of the t dependence give rather close
results. Therefore, in view of large experimental uncertain-
ties, it is impossible to differentiate between the Regge and
exponential models of the t dependence of the GPDs using
the current preliminary HERMES data on Asin’ cos�

UT [53].
In addition, we compare our predictions for Asin’ cos�

UT to
the HERMES measurement at the average kinematic point,
hxBi � 0:095, hQ2i � 2:5 GeV2, and h�ti � 0:12 GeV2

[54],

 

Asin’cos�
UT ��0:14.. .�0:10; exponential t dependence;

Asin’cos�
UT ��0:15.. .�0:10; Regge t dependence;

Acos�
C ��0:149
0:058
0:033;

prelim:HERMES �54
: (51)

The lower absolute values of Asin’ cos�
UT correspond to the

calculation with Ju � Jd � 0; the larger values correspond
to Ju � 0:3 and Jd � 0. As can be seen from Eq. (51), the
agreement between our predictions and the experimental
value is very good. The central experimental value prefers
Ju � Jd � 0.

Predictions for Asin’ cos�
UT were also made within the

framework of the double distribution model of GPDs
[57]. The comparison of the theoretical predictions [57]
to the HERMES data [53] does not allow one to make a
definite conclusion about the fraction of the proton total
angular momentum carried by the u-quark: The data on the
t dependence somewhat prefer Ju � 0 and Ju � 0:2, while
the data on xB and Q2 dependence prefer Ju � 0:2 and
Ju � 0:4.

In conclusion of this short discussion of the fraction of
the total angular momentum of the proton carried by
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quarks, we would like to mention the lattice results of the
QCDSF Collaboration: Ju � 0:37
 0:06 and Jd �
�0:04
 0:04 [40]. Our analysis presented in this section
indicates that the value of Ju should be significantly
smaller.

V. CONCLUSIONS AND DISCUSSION

In this work, we considered the new LO dual parame-
trization of GPDs introduced by Polyakov and Shuvaev
[25]. The advantages of the dual parametrization include
simple (forward) QCD evolution of resulting GPDs and a
simple expression for the LO DVCS amplitude. We ex-
tended the work by Guzey and Polyakov [24] and formu-
lated the minimal model of the dual parametrization of
GPDs Hi and Ei, which enables one to relate the GPDs to
the fairly well-known quantities. In particular, apart from
the t dependence, the GPDs Hi can be formulated in terms
of the forward quark distributions qi and Gegenbauer mo-
ments of the D-term. The GPDs Ei can be formulated in
terms of the unknown forward limit of the GPDs Ei and,
again, the Gegenbauer moments of the D-term. The price
to pay for the simplicity of our dual model is that the model
is designed for not too large xB, xB � 0:2. Within the
considered model, the t dependence of GPDs has to be
modeled separately. We considered two different models of
the t dependence: the factorized exponential model and the
nonfactorized Regge-motivated model.

We compared predictions of our model to all available
data on the DVCS cross section and asymmetries. The Q2,
W, and t dependence of the DVCS cross section at high
energies (small �) measured by the H1 and ZEUS collab-
orations was successfully described by both models of the t
dependence. It should be stressed that our predictions for

DVCS are virtually model independent: Only the normal-
ization of the cross section at one kinematic point was
fitted by appropriately choosing the effective slope pa-
rameters in the Regge-motivated model of the t
dependence.

Turning to the beam-spin DVCS asymmetry, ALU, we
successfully described both HERMES and CLAS data on
Asin�

LU at their respective average kinematic points. We also
made predictions for the t, Q2, and xB dependence of Asin�

LU

in the HERMES kinematics bin by bin and for the t
dependence of Asin�

LU in the CLAS kinematics with E �
5:7 GeV. We observed that only the t dependence of Asin�

LU

has a chance to distinguish between the two considered
models of the t dependence.

We found that, within our framework, the beam-charge
asymmetry AC is the only considered observable which
distinguishes between the Regge-motivated and exponen-
tial models of the t dependence of GPDs. While the Regge-
motivated model provides a reasonable description of
Acos�
C in the average HERMES kinematics and of the t

dependence of Acos�
C measured at HERMES, the exponen-

tial model of the t dependence fails dramatically.
We also compared our predictions to the HERMES

measurement of the DVCS asymmetry measured with the
unpolarized beam and the transversely polarized target,
AUT. We obtained a fairly good description of the prelimi-
nary HERMES data on t, Q2, and xB dependence of
Asin’ cos�

UT using both models of the t dependence. While
the experimental uncertainties are large, the data still
seems to indicate that, within our model, Ju � Jd � 0,
i.e. that the u and d quarks carry only a small fraction of
the proton total angular momentum.

All comparisons to the experimental values presented in
this work were done taking the minimal version of the dual
parametrization of GPDs at its face value. We did not take
into account such potentially important effects as next-to-
leading-order corrections and higher twist effects. Their
role in the context of the dual parametrization of GPDs is a
subject of a separate analysis.

In conclusion, the dual parametrization of GPDs
presents a new model of GPDs, which, with a small num-
ber of model-dependent inputs, allows for a uniform de-
scription of all available data on the DVCS cross section
and asymmetries.
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