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The X�3872� seems to be a weakly bound hadronic molecule whose constituents are two charm mesons.
Its binding energy is much smaller than all the other energy scales in QCD. This separation of scales can
be exploited through factorization formulas for production and decay rates of the X. In a low-energy
effective field theory for the constituents of the X, the factorization formulas can be derived using the
operator product expansion. The derivations are carried out explicitly for the simplest effective theory in
which the constituents interact through a contact interaction that produces a large scattering length. The
long-distance factors in the operator product expansions for various observables are calculated non-
perturbatively in the interaction strength of the contact interaction. After renormalization of the coupling
constant, all remaining ultraviolet divergences can be absorbed into the short-distance factors in the
operator product expansions.
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I. INTRODUCTION

The X�3872� is a narrow resonance near 3872 MeV
discovered by the Belle Collaboration in 2003 through its
decay into J= ���� [1]. Its existence was subsequently
confirmed by the CDF, BABAR, and D0 Collaborations [2–
4]. Its mass MX is extremely close to the threshold for the
charm mesons D0 and �D�0 [5]:

 MX � �MD0 �MD�0� � �0:7� 1:1 MeV: (1)

The X�3872� is narrower than most of the known charmo-
nium states [1]:

 �X < 2:3 MeV �90% C:L:�: (2)

The observation of the decay X ! J= � implies that the X
has charge conjugation quantum number C � � [6].
Analyses of the discovery decay mode X ! J= ����,
including the angular correlations between the J= and the
pions and the ���� invariant mass distribution, strongly
favor the spin and parity quantum numbers JP � 1� [7].
These properties are compatible with the identification of
X as a weakly bound molecule whose constituents are a
superposition of charm meson pairs [8–24]:

 X �
1���
2
p �D�0 �D0 �D0 �D�0�: (3)

If this identification is confirmed, the X�3872�would be the
first unambiguously identified member of a new class of
hadrons: mesonic molecules [25–29].

If the X�3872� is a weakly bound mesonic molecule, it
shares an important feature with the simplest baryonic
molecule, the deuteron. Their binding energies are both
small compared to the natural energy scale associated with
the exchange of the lightest meson, the pion. That natural
energy scale ism2

�=�2M12�, where M12 is the reduced mass
of the two constituents. The binding energy 2.2 MeVof the
deuteron is small compared to the natural scale of about
20 MeV. The measurement of the mass of the X in Eq. (1)

implies that its binding energy �MD0 �MD�0� �MX is
between �2:4 MeV and 1.2 MeV at the 90% confidence
level. The small width in Eq. (2) further suggests that the
mass of the X must be below the threshold for the charm
mesons: MX <MD0 �MD�0 . Thus the binding energy of
the X is small compared to the natural scale of about
10 MeV. The deuteron has an S-wave coupling to its
constituents, the proton and the neutron. The quantum
numbers JPC � 1�� of the X implies that it also has an
S-wave coupling to its constituents. The combination of
the small binding energy compared to the natural energy
scale and the S-wave coupling to the constituents implies
that the deuteron and the X�3872� have universal proper-
ties that are determined by the large scattering length a of
their constituents [13]. The simplest example of a universal
result is a simple formula for the binding energy of the
molecule: EX � 1=�2M12a2�. The universality of few-body
systems with a large scattering length has many applica-
tions in atomic, nuclear, and particle physics [30]. The
universal features of the X�3872� were first exploited by
Voloshin to describe its decays into D0 �D0�0 and D0 �D0�,
which can proceed through decay of the constituent D�0 or
�D�0 [11]. Universality has also been applied to the produc-

tion process ��4S� ! ���� � X [15], to the production
process B! K � X [17,20], to the line shape of the X
[21], and to decays of X into J= and pions [23].

The tiny binding energy of the X�3872� provides a new
energy scale that is much smaller than the other scales in
QCD, including the pion mass m� and the scale �QCD

associated with nonperturbative effects. In Ref. [21], this
separation of scales was exploited by using factorization
formulas to separate certain observables into long-distance
factors that involve only energy scales comparable to the
binding energy and short-distance factors that involve all
the higher energy scales of QCD. The long-distance factors
can be calculated using an effective field theory for the
constituents of the X that describes the lowest energy scale.
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In this paper, we show how the factorization formulas
can be derived using the operator product expansion for
the effective field theory that describes the constituents of
the X. The effective field theory that describes the X�3872�
is complicated by the spin 1 of the constituent D�0 and by
its charge conjugation quantum number C � �, which
implies that it is the superposition of D�0 �D0 and D0 �D�0

given in Eq. (3). Another complication is that the D0 �D0�0

threshold is only about 8 MeV below the D�0 �D0 threshold
[24]. We will therefore illustrate the operator product
expansion formalism using a simpler model in which these
complications are absent. The simplest such model is a
scalar meson model in which the constituents are spin-0
mesons with a contact interaction that gives a large positive
scattering length a. The generalization to a realistic model
with charm mesons is then straightforward.

In Sec. II, we define the minimal charm meson model
that can describe the X�3872� and the simpler scalar meson
model. In Sec. III, we explain how the operator product
expansion can be used to separate scales in short-distance
production and decay rates. In Sec. IV, we give exact
nonperturbative results for long-distance observables in
the scalar meson model. In Sec. V, we apply the operator
product expansion to short-distance production and decay
rates in the scalar meson model and we calculate the long-
distance factors in the operator product expansion. We
show that, after renormalization of the coupling constant,
all remaining dependence on the ultraviolet cutoff can be
eliminated by renormalization of Wilson coefficients in the
operator product expansion. In Sec. VI, we show how the
factorization formulas can be simplified by expanding in
inverse powers of the large scattering length. In Sec. VII,
we extend the results of Secs. IV, V, and VI to the charm
meson model. We summarize our results in Sec. VIII.

II. EFFECTIVE FIELD THEORIES

In this section, we define the scalar meson model and the
minimal charm meson model. We also introduce an inter-
polating field for the S-wave bound state in each of these
models. These models are straightforward generalizations
to heavy mesons of the leading-order approximations to
effective field theories for nucleons developed by
Weinberg [31,32] and by Kaplan, Savage, and Wise
[33,34]. At higher orders, these effective field theories
can be used to calculate systematically corrections associ-
ated with the nonzero range of the interactions. All calcu-
lations in this paper will be carried out using leading-order
effective field theories.

A. Scalar meson model

We will illustrate the derivation of factorization formu-
las using the operator product expansion in a simpler
model that we call the scalar meson model. This model
has an S-wave bound state which we will refer to as X. The
constituents of the bound state are scalar mesons D1 and

D2 with massesM1 andM2 satisfyingM1 <M2. The scalar
meson model is a nonrelativistic quantum field theory with
two complex scalar fields, D1� ~r; t� and D2� ~r; t�. The free
terms in the Lagrangian are
 

Lfree � Dy1

�
i
@
@t
�M1 �

1

2M1
r2

�
D1

�Dy2

�
i
@
@t
�M2 �

1

2M2
r2

�
D2: (4)

A superscript y on a field represents its complex conjugate.
The interaction term in the Lagrangian for the scalar meson
model is

 L int � ��0D
y
1D
y
2D1D2: (5)

The vertex for this interaction is illustrated in Fig. 1. The
coupling constant �0 has mass dimension �2. The sub-
script on �0 emphasizes that it is a bare coupling constant
that depends on the ultraviolet cutoff on the momenta of
the particles in loop diagrams. If the Dy1D

y
2D1D2 interac-

tion is treated nonperturbatively, there is an S-wave bound
state.

It is convenient to introduce concise notations for the
reduced mass of the D1 and D2 and for the sum of their
masses:
 

M12 �
M1M2

M1 �M2
; (6a)

M1�2 � M1 �M2: (6b)

If the scalar meson model is an effective field theory for a
more fundamental theory in which the mesons D1 and D2

interact by the exchange of other mesons, the natural
momentum scale for low-energy processes is the mass m
of the lightest meson that can be exchanged. If m� M12,
the natural energy and momentum scales associated with
the exchange of that meson are m2=M12 and m, respec-
tively. We assume that the binding energy of the molecule
X is small compared to the natural energy scale:

 M1�2 �MX � m2=M12: (7)

The scalar meson model describes the threshold region
where the invariant mass M of D1 and D2 is very close
to M1�2:

 jM�M1�2j � m2=M12: (8)

FIG. 1. Vertex for the D1D2 contact interaction.
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This constraint restricts the possible scattering states to
D1D2.

The bare coupling constant �0 of the scalar meson model
must depend on the ultraviolet cutoff � in such a way that
low-energy observables are independent of �. There are
many alternative renormalization prescriptions that can be
used to eliminate the explicit dependence on � and �0. One
renormalization prescription is to eliminate �0 in favor of a
renormalized coupling constant �. Another renormaliza-
tion prescription is to eliminate �0 in favor of the scattering
length a of the two heavy mesons. The scattering length
can be defined in terms of the T-matrix element for elastic
D1D2 scattering with zero relative momentum:

 T 12!12�p � 0� 	 �8�M1�2a: (9)

This is the T-matrix element for relativistically normalized
particles in the initial and final states. If either D1 or D2 is
an unstable particle, there is an inelastic scattering channel
for D1D2. This implies that the scattering length a has a
negative imaginary part. The most convenient renormal-
ization prescription for our purposes is to eliminate �0 in
favor of the energy Epole at which the Green’s function for
D1D2 ! D1D2 has a pole [21]. That energy can be ex-
pressed in the form

 Epole � M1�2 � �
2=�2M12�; (10)

where � is the complex binding momentum:

 � � �Re � i�Im: (11)

Unitarity requires �Im to be positive. We assume that �Re is
also positive, in which case the energy Epole is the complex
energy of the unstable bound state we denote byX. The real
part of Epole defines the pole mass of the molecule:

 MX � M1�2 � ��2
Re � �

2
Im�=�2M12�: (12)

The imaginary part of Epole multiplied by �2 can be
interpreted as the width of the molecule:

 �X � 2�Re�Im=M12: (13)

The magnitude of the complex parameter � is assumed to
be small compared to the natural momentum scale: j�j �
m. This implies the condition on the binding energy in
Eq. (7).

B. Minimal charm meson model

The charm mesons D0 and D�0 with nonrelativistic
energies and momenta can be described by a nonrelativistic
quantum field theory with a complex spin-0 field D� ~r; t�
and a 3-component complex spin-1 field ~D� ~r; t�. Their
antiparticles �D0 and �D�0 can be described by correspond-

ing fields �D� ~r; t� and ~�D�~r; t�. The free terms in the
Lagrangian density for these particles are

 

Lfree � Dy
�
i
@
@t
�MD0 �

1

2MD0

r2

�
D

� �Dy
�
i
@
@t
�MD0 �

1

2MD0

r2

�
�D

� ~Dy 

�
i
@
@t
�MD�0 �

1

2MD�0
r2

�
~D

� ~�D
y



�
i
@
@t
�MD�0 �

1

2MD�0
r2

�
~�D: (14)

The simplest interaction term that can produce an
S-wave bound state in the C � � channel is

 L int � ��0� �D ~D�D ~�D�y 
 � �D ~D�D ~�D�: (15)

We will refer to the effective field theory with Lagrangian
given by Eqs. (14) and (15) as the minimal charm meson
model. If the interaction in Eq. (15) is treated nonpertur-
batively, there is an S-wave bound state with spin 1 that can
be identified with the X�3872�. The effects of decays of the
X can be taken into account by allowing the coupling
constant �0 in Eq. (15) to have an imaginary part.

An ultraviolet cutoff � is required to regularize ultra-
violet divergences generated by the interaction term in
Eq. (15). The natural scale for the ultraviolet cutoff is the
pion mass m�. The bare coupling constant �0 must depend
on � in such a way that low-energy observables are inde-
pendent of the cutoff. There are many alternative renor-
malization prescriptions that can be used to eliminate the
explicit dependence on � and �0. For example, the com-
plex parameter �0 can be eliminated in favor of a renor-
malized coupling constant � or in favor of the complex
scattering length of the charm mesons. The most conve-
nient renormalization prescription for our purposes is to
eliminate �0 in favor of the mass and width of the X�3872�
or equivalently the complex binding momentum �. An
alternative statement of this renormalization prescription
is that the Green’s function for D�0 �D0D�0 �D0 has a pole at
the energy Epole given by Eq. (10).

C. Interpolating fields for X

In the scalar meson model, the local composite operator
Dy1D

y
2 �x� has a nonzero amplitude to create X from the

vacuum. Thus D1D2�x� can be used as an interpolating
field for X. The resulting propagator for X is

 i�X�E;P� �
Z
d4xeiP
xh;jD1D2�x�D

y
1D
y
2 �0�j;i; (16)

where P 
 x � P�x� and P� � �E; ~P� is the 4-momentum
of the X. The propagator is a function of E and P � j ~Pj.
The Galilean invariance of the scalar meson model implies
that it depends only on the combination E� P2=�2M12�.
Our renormalization prescription implies that this propa-
gator at ~P � 0 has a pole in E at the complex energy Epole

given in Eq. (10). The behavior of the propagator near the
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pole defines a wave-function normalization constant ZX:

 i�X�E; 0� !
iZX

E� Epole � i"
: (17)

Because the composite operator D1D2 has mass dimension
3, the propagator i�X�E;P� has mass dimension 2 and ZX
has mass dimension 3.
T-matrix elements involving X in the final state can be

obtained from connected Green’s functions involving the
operator D1D2 by using the LSZ formalism [35]. The
connected Green’s function in momentum space with an
external line associated with aD1D2 operator is amputated
by multiplying by the inverse propagator for X, evaluated
on the energy shell E � Epole, and then multiplied by Z1=2

X

to obtain the T-matrix element. T-matrix elements involv-
ing X in the initial state can be obtained in a similar way
from connected Green’s functions involving the operator
Dy1D

y
2 .

In the charm meson model, X�3872� is identified as a
bound state whose constituents are the C � � superposi-
tion of charm mesons in Eq. (3). A convenient interpolating
field for the X is the local composite operator Di �D�x� �
D �Di�x�. The resulting propagator for the X is

 

i�ij
X �E;P� �

Z
d4xeiP
xh;j�Di �D�x� �D �Di�x��

� �Dj �D�0� �D �Dj�0��yj;i: (18)

If ~P � 0, the propagator has a pole at E � Epole. Its be-
havior near the pole defines a normalization factor ZX:

 i�ij
X �E; 0� !

iZX
E� Epole � i"

�ij: (19)

III. OPERATOR PRODUCT EXPANSION

The scalar meson model defined by the Lagrangian in
Eqs. (4) and (5) can be a low-energy approximation to a
more fundamental Lorentz-invariant quantum field theory.
If the fundamental quantum field theory includes a high-
energy process that can create D1D2 with invariant mass
near M1�2, that process will involve momenta ranging
from the highest energy scale to momenta smaller than
m. If long-distance effects involving momenta much
smaller than m can be separated from short-distance ef-
fects involving momenta of order m and larger, we can use
the scalar meson model to calculate the long-distance
effects. Expressions for physical quantities in which
short-distance effects and long-distance effects are sepa-
rated into multiplicative factors are called factorization
formulas. The tool required to separate long-distance ef-
fects from short-distance effects is the operator product
expansion.

A. Short-distance production processes

The general production process for D1D2 has the form
A! B�D1D2, where A and B each represent one or
more particles. There can be analogous production pro-
cesses for X. We consider the production of D1D2 near
their threshold, so that their invariant mass M satisfies the
inequality in Eq. (8). We also assume that the relative
momentum ~p of the D1 and D2 is small compared to m.
We call A! B�D1D2 a short-distance production pro-
cess if all the particles in A and B have momenta in the
D1D2 rest frame that are of order m or larger. This condi-
tion implies that the amplitude for A! B�D1D2 can be
expanded in powers of the small energy difference M�
M1�2 divided by m2=M12 and larger energy scales, and in
powers of the small relative momentum ~p divided by m
and larger momentum scales. The operator product expan-
sion can be used to express the T-matrix elements in the
forms
 

T �A!B�D1D2
�
����������������
4M1M2

p X
n

CB;nA hD1D2jOn�x�0�j;i;

(20a)

T �A!B�X
�
����������
2MX

p X
n

CB;nA hXjOn�x�0�j;i: (20b)

The sums are over local operators On in the effective field
theory. They can be restricted to operators with a nonzero
matrix element between hD1D2j and the vacuum state j;i.
The arguments of the operator are the origin x � 0 of space
and time. The operator matrix elements are evaluated in the
rest frame of D1D2 or X. We use the standard nonrelativ-
istic normalizations for the states hD1D2j or hXj in the
operator matrix elements. We use the standard relativistic
normalizations for the initial and final states in the
T-matrix elements. The factors of

����������������
4M1M2

p
and

����������
2MX
p

account for the differences between the normalizations of
the states in the operator matrix elements and the T-matrix
elements. The Wilson coefficients CB;nA in Eq. (20) are
functions of the 4-momenta and polarization 4-vectors of
the particles in A and B and of the total 4-momentum P� of
a D1D2 pair that is produced exactly at threshold with
invariant mass M1�2. They also depend on energy scales
of order m2=M12 and higher and on momentum scales of
order m and higher. The only dependence on whether the
final state includes D1D2 or X is in the operator matrix
elements. The leading terms in the expansions of the
T-matrix elements in powers of M�M1�2 and ~p are the
terms with the lowest dimension operator Dy1D

y
2 �0�. In

Feynman diagrams, the local operatorDy1D
y
2 is represented

by an open dot from which a D1 line and a D2 line emerge,
as illustrated in Fig. 2. The Feynman rule for this vertex
is 1.

The operator product expansions in Eqs. (20) provide the
desired separation of long-distance effects and short-
distance effects only if the local operators On are chosen
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to be renormalized operators that have ultraviolet-finite
matrix elements. The simplest local composite operators,
such as D1D2, generally have matrix elements that are
ultraviolet divergent. However, the multiplicative renorma-
lizability of local composite operators implies that the
relation between the simple local operators On and their
renormalized counterparts O�R�n can be expressed as

 O n�x� �
X
m

�Z�1�nmO
�R�
m �x�; (21)

where Z is an infinite-dimensional matrix of renormaliza-
tion constants. The separation of short-distance effects and
long-distance effects in the T-matrix elements in Eqs. (20)
is accomplished by making the substitutions in Eq. (21) for
the operators On. The long-distance factors are matrix
elements of the renormalized local operators O�R�m �x � 0�.
The short-distance factors are the coefficients of these
matrix elements, which are sums of products of Wilson
coefficients CB;nA and renormalization constants �Z�1�nm.
We will find it more convenient to work with simple
composite operators rather than renormalized operators.
The combination of the operator product expansion and
the multiplicative renormalizability of these operators will
be used to separate short-distance effects from long-
distance effects.

B. Short-distance decay processes

The fundamental theory may also allow transitions
D1D2 ! C from D1D2 with invariant mass MC satisfying
jMC �M1�2j � m2=M12 to a final state C that includes
particles other than D1 and D2. If MC � MX, there can be
analogous transitions X ! C. If the sum of the masses of
the particles in C is substantially smaller than M1�2, some
of the particles in C must emerge with large momenta. We
define a short-distance transition to be one for which all
the particles in C have momenta in the center-of-
momentum frame that are of order m or larger. The
T-matrix element for such a process can be expanded in
powers of the small energy difference MC �M1�2 divided
by m2=M12 and larger energy scales, and in powers of the
small relative momentum ~p of the D1 and D2 divided bym
and larger momentum scales. The operator product expan-
sion can be used to express the T-matrix elements in the
forms

 

T �D1D2 ! C
 �
����������������
4M1M2

p X
n

CCn h;jOn�x � 0�jD1D2i;

(22a)

T �X ! C
 �
����������
2MX

p X
n

CCn h;jOn�x � 0�jXi: (22b)

The sums over local operators On of the D1D2 model can
be restricted to those with a nonzero matrix element be-
tween the vacuum h;j and jD1D2i. The only dependence
on the initial states is in the operator matrix elements. The
leading terms in the expansions of the T-matrix elements in
powers of MC �M1�2 and ~p are the terms with the lowest
dimension operator D1D2�0�. The complete separation of
short-distance and long-distance effects is accomplished
by using Eq. (21) to eliminate the operators On in favor of
renormalized operators.

C. Line shape

If the fundamental theory includes short-distance pro-
cesses that allow the production of X via A! B� X and
the decay of X via X ! C, it also allows the process A!
B� C, where C represents the same particles but with a
variable invariant massMC instead ofMX. This process has
a resonant enhancement whenMC is near the D1D2 thresh-
old as specified by Eq. (8). If each of the particles in A and
B is well separated in momentum space from each of the
particles in C, the T-matrix element for this process can be
described within the effective field theory by a double
operator product expansion:

 

T �A! B� C
 � CB;CA �
X
m;n

CB;nA CCm

�
Z
d4xeiP
xh;jOm�x�On�0�j;i: (23)

The sum over operators Om can be restricted to those with
a nonzero matrix element between hD1D2j and the vacuum
state j;i. The sum over operators On can be restricted to
those with a nonzero matrix element between the vacuum
h;j and jD1D2i. The Wilson coefficients CB;nA and CCm are
the same ones that appear in the operator product expan-
sions in Eqs. (20) and (22). In the Fourier transform of the
vacuum-to-vacuum matrix element in Eq. (23), the 4-
vector is P� � �MC; ~0�. The leading term in the expansion
of the T-matrix element in powers of MC �M1�2 divided
by m2=M12 and larger energy scales is the term with the
lowest dimension operators D1D2�x� and Dy1D

y
2 �0�. The

first term CB;CA on the right side of Eq. (23) takes into
account the direct production of C at short distances.
This term can be expanded in powers of the small energy
difference MC �M1�2 divided by m2=M12 and larger en-
ergy scales. The leading term in the expansion is a constant
independent of MC. The complete separation of short-
distance and long-distance effects is accomplished by us-

FIG. 2. Vertices for the D1D2 and Dy1D
y
2 operators.
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ing Eq. (21) to eliminate the operators On in favor of
renormalized operators.

IV. LONG-DISTANCE PROCESSES

In this section, we give the results for several quantities
in the scalar meson model that depend only on long dis-
tances: the Green’s function for D1D2 ! D1D2, the cross
section for elastic D1D2 scattering, and the propagator for
the bound state X. The results in this section are straight-
forward generalizations to heavy mesons of results for
nucleons that were calculated using the leading-order ap-
proximations to the effective field theories developed in
Refs. [31–34].

A. Green’s function for D1D2 ! D1D2

In the scalar meson model, all the observables for pro-
cesses near the D1D2 threshold are related in a simple way
to the Green’s function for D1D2 ! D1D2. We denote the
amputated connected Green’s function for D1D2 ! D1D2

by iA0�E�, because it depends only on the total energy E
in the D1D2 rest frame. It can be calculated nonperturba-
tively by summing the geometric series represented by
Fig. 3 to all orders in �0:

 iA0�E� �
�i

1=�0 � L0�E�
; (24)

where iL0�E� is the amplitude for the propagation of the
D1D2 pair between successive contact interactions. The
function L0�E� has an ultraviolet divergence that can be
isolated into an additive term that is independent of E. It
can be expressed as

 L0�E� � L0�M1�2� �
M12

2�

���������������������������������
�2M12E12 � i"

p
; (25)

where E12 is the energy relative to the D1D2 threshold:

 E12 � E�M1�2: (26)

The ultraviolet divergence is contained in the term
L0�M1�2�. If we use an ultraviolet momentum cutoff ��
jM12E12j

1=2, this term has a linear ultraviolet divergence:
L0�M1�2� � ��M12=�

2��. If we use dimensional regu-
larization, this term is L0�M1�2� � 0, because dimensional
regularization sets power ultraviolet divergences equal to 0.

One can identify the combination 1=�0 � L0�M1�2� on
the right side of Eq. (24) as a renormalized inverse cou-
pling constant 1=�. One possible renormalization prescrip-
tion is to eliminate 1=�0 in favor of 1=�. Another possible
renormalization prescription is to eliminate �0 in favor of
the scattering length a defined in Eq. (9). The most con-
venient renormalization prescription for our purposes is to
demand that the pole in the amplitude A0�E� be at the
energy Epole given in Eq. (10). Inserting the expression for
L0�E� in Eq. (25) into the amplitude in Eq. (24) and
eliminating �0 in favor of �, the amplitude reduces to

 A 0�E� �
2�=M12

���
���������������������������������
�2M12E12 � i"
p : (27)

The renormalized expression for the amplitude A0�E� in
Eq. (27) follows from the renormalization prescription in
Eq. (10) and is independent of the regularization scheme.
The expression for the bare coupling constant is

 �0 �
1

L0�M1�2� �M12��Re � i�Im�=�2��
: (28)

With dimensional regularization, L0�M1�2� � 0, so
Eq. (28) gives a finite relation between �0 and the binding
momentum �: �0 � 2�=�M12��. We will see later that the
naive use of dimensional regularization can be misleading.

B. Elastic D1D2 scattering

We can use the amplitude in Eq. (27) to determine the
T-matrix element for the elastic scattering of D1 and D2

with relative momentum p. In the D1D2 center-of-
momentum frame, the total energy of the D1 and D2 is

 Ecm�p� � M1�2 � p2=�2M12�: (29)

The energy variable E12 defined in Eq. (26) reduces to
E12 � p2=�2M12�. The T-matrix element is obtained by
evaluating the amplitude A0�E� in Eq. (27) at the energy
Ecm�p� in Eq. (29) and multiplying by the factor 4M1M2 to
account for the relativistic normalization of states:

 T 12!12�p� � �
8�M1�2

�� ip
: (30)

The complex D1D2 scattering length defined by Eq. (9) is
therefore simply

 a � 1=��Re � i�Im�: (31)

We obtain the cross section for elastic D1D2 scattering
by squaring the T-matrix element, integrating over the
phase space of the D1 and D2 in the final state, and multi-
plying by a flux factor. The energy Ecm�p� in the D1D2

rest frame is assumed to be close to M1�2, as specified by
the condition in Eq. (8). The product of the phase space
factor �1=2�Ecm�p�;M1;M2�=�8�M

2
1�2� and the flux

factor 1=�4M1�2p� can therefore be approximated by
1=�16�M2

1�2�. The cross section is

= +

+ + · · ·

FIG. 3. The amputated connected Green’s function iA0�E� for
D1D2 ! D1D2 at 0th order in g. It can be obtained by summing
a geometric series of diagrams.
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 ��D1D2� ~p� ! D1D2
 �
4�

j�Re � i��Im � p�j2
: (32)

The argument � ~p� of D1D2 in the initial state implies that
the D1 and D2 have momenta � ~p and � ~p, respectively.
The momenta of the D1 and D2 in the final state are not
specified because they have been integrated over.

C. Propagator for X

If the local composite operator D1D2�x� is used as an
interpolating field for X, the propagator for X is given in
Eq. (16). The diagrams for the propagator of X are shown
in Fig. 5. In the rest frame P � 0, these diagrams form a
geometric series whose sum is

 i�X�E; 0� �
iL0�E�

1� �0L0�E�
: (33)

This propagator has a pole in E at the same energy Epole

given in Eq. (10) as the amplitude A0�E� in Eq. (24). Near
the pole, the behavior of the propagator at P � 0 is given in
Eq. (17). Using L0�Epole� � 1=�0, we determine the wave-
function normalization factor to be

 ZX �
2��

M2
12�

2
0

: (34)

Using the expression for A0�E� in Eq. (24), the propa-
gator for X in Eq. (33) can be expressed as

 �X�E; 0� � �A0�E�
L0�E�
�0

: (35)

The alternative expression for A0�E� in Eq. (27) shows
that, after renormalization of the coupling constant, it does
not depend on the ultraviolet cutoff �. Thus the propagator
in Eq. (35) depends on � only through the factor L0�E�=�0.
That there is some dependence on � is not a surprise,
because we have used the simple composite operator
D1D2�x� as the interpolating field for X rather than a
renormalized operator. As we shall see in Sec. V,
�0D1D2�x� is a renormalized operator whose matrix ele-
ments between the vacuum h;j and jD1D2i or jXi do not
depend on the ultraviolet cutoff. The propagator for the
renormalized operator �0D1D2�x� is obtained by multi-
plying the expression in Eq. (35) by �2

0. But this propagator
depends on � through the factor �0L0�E�. To obtain a
renormalized propagator that does not depend on �, one
must add the �-dependent constant i�0 to the propagator
for the renormalized operator �0D1D2�x�:

 i�2
0�X�E; 0� � i�0 � �iA0�E�: (36)

Thus the renormalized propagator is essentially just the
amplitude A0�E� in Eq. (27). The need for adding the
constant term in Eq. (36) is related to the fact that, if an
external source coupled to a composite operator is added to
the Lagrangian, renormalization sometimes requires the
addition of terms with higher powers of the source [36].

For example, the addition of the term JyD1D2 � H:c:
creates new ultraviolet divergences that can only be can-
celed by a JyJ term. Such a term is required even in the
absence of any interactions. To implement the LSZ pre-
scription for T-matrix elements for processes with X in the
initial or final state, it is not necessary to use a renormal-
ized propagator. We will use the unrenormalized propaga-
tor for X in Eq. (35) for this purpose.

V. SHORT-DISTANCE PROCESSES

In this section, we consider processes in the scalar
meson model that involve both short-distance and long-
distance effects: short-distance production rates, short-
distance decay rates, and the line shape of the bound state
in a short-distance decay mode. We use the operator prod-
uct expansion to derive factorization formulas in which
those short-distance effects and long-distance effects are
separated. After renormalization of the coupling constant,
all remaining dependence on the ultraviolet cutoff can be
removed by renormalization of the Wilson coefficients in
the operator product expansion. To the best of our knowl-
edge, these results have not been derived previously using
effective field theories for particles with large scattering
lengths.

A. Short-distance production of X and D1D2

We consider the short-distance production processes
A! B�D1D2 and A! B� X, where A and B both
represent one or more particles whose momenta in the
D1D2 or X rest frame are all of order m or larger. The
operator product expansions of the T-matrix element for
such short-distance processes are given in Eqs. (20). The
leading terms in the expansions are the ones with the local
operatorDy1D

y
2 �0�. If we keep only these leading terms, the

Lorentz-invariant T-matrix elements reduce to
 

T �A! B�D1D2
 �
����������������
4M1M2

p
CB;12
A hD1D2jD

y
1D
y
2 �0�j;i;

(37a)

T �A! B� X
 �
����������
2MX

p
CB;12
A hXjDy1D

y
2 �0�j;i: (37b)

We first consider the T-matrix element for the produc-
tion of D2D2 via the short-distance process A!
B�D1D2. We take the D1 and D2 in Eq. (37a) to have
relative momentum ~p in the D1D2 rest frame and unspe-
cified total momentum. Their invariant mass is M �
Ecm�p�, where Ecm�p� is given in Eq. (29). This invariant
mass is assumed to be close to M1�2, as specified by the
inequality in Eq. (8). The Feynman diagrams for the
vacuum-to-D1D2 matrix element, which are shown in
Fig. 4, form a geometric series. The matrix element in
Eq. (37a) is therefore

 hD1D2� ~p�jD
y
1D
y
2 �0�j;i �

1

1� �0L0�Ecm�p��
: (38)
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The argument � ~p� of theD1D2 state implies that theD1 and
D2 have momenta � ~p and � ~p, respectively. The sum of
the diagrams in Fig. 4 differs from the geometric series of
diagrams for iA0�E� in Fig. 3 only by the multiplicative
factor 1=��i�0�. Since A0�E�, which after renormaliza-
tion of the coupling constant is given by Eq. (27), does not
depend on the ultraviolet cutoff, the operator �0D

y
1D
y
2 �x� is

a renormalized operator whose matrix elements do not
depend on the ultraviolet cutoff. The T-matrix element in
Eq. (37a) can be separated into a short-distance factor and a
long-distance factor by taking the long-distance factor to
be the matrix element of the renormalized operator:

 

T �A! B�D1D2� ~p�
 � �
����������������
4M1M2

p
�CB;12
A =�0�

�A0�Ecm�p��: (39)

After renormalization of the coupling constant,
A0�Ecm�p�� is given by the expression in Eq. (27), which
does not depend on the ultraviolet cutoff �. The T-matrix
element in Eq. (39) will not depend on � if the short-
distance factor CB;12

A =�0 does not depend on �.
Equivalently, the dependence on � can be removed by a
multiplicative renormalization of the Wilson coefficient
CB;12
A .
We next consider the T-matrix element for the produc-

tion of X via the short-distance process A! B� X. The
operator product expansion of the T-matrix element for
this process is given in Eq. (37b). The vacuum-to-X matrix
element can be obtained via the LSZ formalism from the
connected Green’s function for the operatorDy1D

y
2 that acts

on the vacuum and an operatorD1D2 associated with the X
in the final state. This connected Green’s function is iden-
tical to the propagator i�X�E; 0� given in Eq. (33). The
matrix element in Eq. (37b) is the normalized on-shell
amputated connected Green’s function. The Green’s func-
tion is amputated by multiplying by the inverse propagator
�i�X�E; 0�


�1, which simply gives 1. In the rest frame of X
where its momentum is ~P � 0, the Green’s function is put
on shell by setting the energy E equal to the energy Epole in
Eq. (10), although the absence of any dependence on E
makes this condition moot. Finally, the Green’s function is
normalized by multiplying by the factor Z1=2

X , where ZX is
given in Eq. (34). Thus the vacuum-to-X matrix element is
simply

 hXjDy1D
y
2 �0�j;i �

�2���1=2

M12�0
: (40)

The only factors in the T-matrix element in Eq. (37b) that
are sensitive to short distances are the Wilson coefficient
CB;12
A and the factor of 1=�0 from the matrix element. The
T-matrix element in Eq. (37b) can be expressed as the
product of a short-distance factor and a long-distance
factor:

 T �A! B� X
 �
����������
2MX

p
�CB;12
A =�0�

�2���1=2

M12
: (41)

The short-distance factor CB;12
A =�0 is the same one that

appears in Eq. (39).
The factored expressions for the T-matrix elements in

Eqs. (39) and (41) lead to factored expressions for the
production rates. The rates for producing X and D1D2

are obtained by squaring the amplitudes and integrating
over the appropriate phase space. If A consists of a single
particle, the decay rate into B� X can be expressed in the
factored form

 ��A! B� X
 � �BA
2�
M12
j�2

Re � �
2
Imj

1=2; (42)

where �BA is a short-distance factor with dimensions of
mass:
 

�BA �
M1�2

MAM12

Z d3P1�2

�2��32E1�2

Z Y
i2B

d3pi
�2��32Ei

� jCB;12
A =�0j

2�2��4��4�
�
P�A � P

�
1�2 �

X
i2B

p�i

�
: (43)

The 4-momentum P�1�2 is that of a D1D2 pair exactly at
threshold with invariant mass M1�2. We have chosen the
long-distance factor in Eq. (42) to be the square of the
long-distance factor in the T-matrix element in Eq. (41)
multiplied by M12 to make it dimensionless. All factors
from integrating over the phase space of the particles in the
final state are included in the short-distance factor. The
differential rate for producing D1D2 with invariant mass
M � Ecm�p� given by Eq. (29) can be expressed in the
factored form

 

d�

dM
�A! B�D1D2� ~p�
 � �BA

2p

j�Re � i��Im � p�j
2 :

(44)

The short-distance factor �BA is the same as in Eq. (42).
The long-distance factor is the product of
4M1M2jA0�Ecm�p��j2 from the T-matrix element in
Eq. (39), the phase space factor
�1=2�Ecm�p�;M1;M2�=�8�Ecm�p�

2�, the kinematic factor
Ecm�p�=� associated with the differential dM, and a factor
M12=�2M1�2� to compensate for the choice of prefactor in
Eq. (43). Using the expression for the invariant mass

+

FIG. 4. Diagrams at 0th order in g for the vacuum-to-D1D2

matrix element of the operator Dy1D
y
2 .
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Ecm�p� in Eq. (29) and replacing Ecm�p� by M1�2 in every
factor that is insensitive to p, the product of the phase space
and kinematic factors can be reduced to p=�4�2�.

B. Short-distance decay of X

The fundamental theory may have short-distance pro-
cesses through which X can decay. We consider the short-
distance decay process X ! C, where C represents two or
more particles whose momenta in the X rest frame are of
order m or larger. The operator product expansion for this
decay process is given in Eq. (22b). The leading term in the
expansion is the one with the operator D1D2�x�. If we keep
only this term, the T-matrix element reduces to

 T �X ! C
 �
����������
2MX

p
CC12h;jD1D2�0�jXi: (45)

The X-to-vacuum matrix element can be calculated in a
similar way to the vacuum-to-X matrix element in
Eq. (40)1:

 h;jD1D2�0�jXi �
�2���1=2

M12�0
: (46)

This matrix element depends on the ultraviolet cutoff only
through the factor 1=�0. In the T-matrix element in
Eq. (45), the separation of short-distance and long-distance
effects can be accomplished by taking the long-distance
factor to be the matrix element of the renormalized opera-
tor �0D1D2�0�:

 T �X ! C
 �
����������
2MX

p
�CC12=�0�

�2���1=2

M12
: (47)

This T-matrix element will not depend on the ultraviolet
cutoff � if the short-distance factor CC12=�0 does not de-
pend on �. Equivalently, the dependence on � can be
removed by a multiplicative renormalization of the
Wilson coefficient CC12.

The decay rate of X into the particles represented by C is
obtained by squaring the T-matrix element and integrating
over the phase space of those particles. It can be expressed
in the factored form

 ��X ! C
 � �C
2�
M12
j�2

Re � �
2
Imj

1=2; (48)

where �C is a short-distance factor with dimensions of
mass:

 

�C �
1

M12

Z Y
j2C

d3pj
�2��32Ej

jCC12=�0j
2�2��4��4�

�

�
P�1�2 �

X
j2C

p�j

�
: (49)

We have chosen the long-distance factor to be the square of
the long-distance factor in the T-matrix element in Eq. (47)
multiplied by M12 to make it dimensionless.

The separation of short-distance and long-distance ef-
fects for the transition D1�� ~p�D2� ~p� ! C can be accom-
plished in a similar way. The operator product expansion
for the T-matrix element is given in Eq. (22a). The
T-matrix element can be expressed as the product of the
same short-distance factor as in Eq. (47) and a long-
distance factor that includes a factor of A0�Ecm�p��,
where Ecm�p� is the energy in Eq. (29).

C. Line shape of X in a short-distance decay mode

If the fundamental theory includes short-distance pro-
cesses that allow the production of X via A! B� X and
the decay of X via X ! C, it also allows the process A!
B� C, where C represents the same particles but with a
variable invariant mass MC instead of MX. We assume that
MC is near the D1D2 threshold as specified by Eq. (8). If
every particle in A and B has momentum in the rest frame
of C of order m or larger, the T-matrix element for this
process can be expressed as the double operator product
expansion in Eq. (23). The Wilson coefficient CB;CA can be
expanded in powers of MC �M1�2 divided by m2=M12

and higher energy scales. The leading term in this expan-
sion is simply a constant independent of MC. The leading
terms in the double sum come from the operators On�0� �
Dy1D

y
2 �0� and Om�x� � D1D2�x�. According to Eq. (16),

the Fourier transform of the matrix element of these op-
erators in the C rest frame is just the X propagator, which is
given in Eq. (33) or (35), evaluated at E � MC. Thus the
T-matrix element reduces to

 T �A! B� C
 � CB;CA � CB;12
A CC12

iL0�MC�

1� �0L0�MC�
:

(50)

The Wilson coefficients and the factor L0�E�=�0 in the X
propagator depend on the ultraviolet cutoff �. All the
dependence on the energy can be isolated in a term that
does not depend on � by using the fact that the combina-
tion in Eq. (36) does not depend on �. By subtracting and
adding iCB;12

A CC12=�0 to the two terms on the right side of
Eq. (50), the T-matrix element can be expressed as
 

T �A! B� C
 � �CB;CA � iCB;12
A CC12=�0�

� i�CB;12
A =�0��C

C
12=�0�A0�MC�: (51)

After renormalization of the coupling constant, A0�E� is
given in Eq. (27). The short-distance factors CB;12

A =�0 and

1Our notation might suggest that the matrix element in
Eq. (46) is the complex conjugate of the matrix element in
Eq. (40). However, jXi in Eq. (46) is an in state, while hXj in
Eq. (40) is the Hermitian conjugate of an out state. These two
states are related by the S matrix: jX; outi � SjX; ini.
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CC12=�0 in Eq. (51) cannot depend on �, because otherwise
the T-matrix elements in Eqs. (39), (41), and (47) would
depend on �. Thus the T-matrix element in Eq. (51) will
not depend on � if the constant term CB;CA � iCB;12

A CC12=�0

does not depend on �. Equivalently, the dependence on �
can be removed by an additive renormalization of the
Wilson coefficient CB;CA . It is convenient to express the
T-matrix element in Eq. (51) in the form
 

T �A! B� C
 � �i�CB;12
A =�0��C

C
12=�0�

� �A0�MC� � �2�=M12�c
B;C
A 
; (52)

where cB;CA is a complex constant with dimension of length
that is completely determined by short-distance factors.

The natural scale for cB;CA is 1=m, where m is the mass of
the lightest meson that can be exchanged between D1 and
D2.

The factored expression for the T-matrix element in
Eq. (52) leads to a factored expression for the rate for A!
B� C. The invariant mass distribution of the particles in C
is obtained by squaring the T-matrix element and integrat-
ing over the momenta of all the particles in the final state. It
is convenient to express the phase space integral in an
iterated form corresponding to the production of the parti-
cles in B and an effective particle of mass MC followed by
the decay of that effective particle into the particles in C. If
A is a single particle, the decay rate is

 

��A! B� C
 �
1

2MA

Z dM2
C

2�

Z d3PC
�2��32EC

Z Y
i2B

d3pi
�2��32Ei

�2��4��4�
�
P�A � P

�
C �

X
i2B

p�i

�

�
Z Y

j2C

d3pj
�2��32Ej

�2��4��4�
�
P�C �

X
j2C

p�j

�
jT �A! B� C
j2: (53)

The invariant mass MC of the particles in C can be replaced by M1�2 everywhere except in the long-distance factor of the
T-matrix element. In that long-distance factor, it can be expressed as

 MC � M1�2 � p2
C=�2M12�; (54)

where p2
C can be positive or negative. The variable pC is pure imaginary if MC <M1�2 and real and positive if MC >

M1�2. The differential decay rate of the particle A for MC near M1�2 reduces to
 

d�

dMC
�A! B� C
 � ��BA�C�2�

�������� 1

��Re � jpCj� � i�Im
� cB;CA

��������
2
; MC <M1�2; (55a)

� ��BA�C�2�
�������� 1

�Re � i��Im � pC�
� cB;CA

��������
2
; MC >M1�2: (55b)

The short-distance factors �BA and �C are the same as in
Eqs. (42), (44), and (48). All other short-distance effects
are contained in the complex constant cB;CA . The invariant
mass distribution in Eq. (55) is continuous at MC � M1�2.

The separation of scales represented by the renormalized
operator product expansions for the T-matrix elements in
Eqs. (39), (41), (47), and (51) can be obscured by using
dimensional regularization. In a generic regularization
scheme with ultraviolet cutoff �, the short-distance quan-
tities �0, CB;12

A , CC12, and CB;CA are insensitive to �. They
depend on � in such a way that the combinations CB;12

A =�0,
CC12=�0, and CB;CA � iCB;12

A CC12=�0 do not depend on �.
Dimensional regularization sets power ultraviolet diver-
gences to zero. In particular, it sets L0�M1�2� � 0, so the
expression for the bare coupling constant in Eq. (28) re-
duces to �0 � 2�=�M12��. The Wilson coefficients CB;12

A ,
CC12, and CB;CA do not depend on the ultraviolet cutoff of
dimensional regularization. Compatibility with other regu-
larization schemes requires, however, that they depend on
� in such a way that the combinations CB;12

A =�0, CC12=�0,
and CB;CA � iCB;12

A CC12=�0 are insensitive to �. This requires

that CB;12
A and CC12 have multiplicative factors of ��1 and

that CB;CA have an additive term with a factor ��1. Thus the
Wilson coefficients in dimensional regularization are not
short-distance factors. Their dependence on � is similar to
the dependence of the Wilson coefficients on � in other
regularization schemes. That dependence cancels in the
combinations of Wilson coefficients and �0 that appear
in the renormalized operator product expansions for the
T-matrix elements.

VI. LARGE SCATTERING LENGTH EXPANSION

Effective field theories can exploit a large separation of
momentum scales by providing a simpler description of the
lowest momentum scale. Another important feature of
effective field theories is that they provide a systematic
framework for improving the accuracy of the description to
any desired order in the ratio of the small momentum scale
and higher momentum scales. For example, the effective
field theories for nucleons developed in Refs. [31–34] can
be used to systematically calculate corrections associated
with the nonzero range of the strong force. In this section,
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we discuss how the accuracy of the results for the scalar
meson model in Secs. IV and V can be systematically
improved using an expansion in the large scattering length.
This expansion is a straightforward generalization to heavy
mesons of the effective range expansion in the effective
field theory for nucleons in Refs. [33,34]. We also explain
how the expansion in the large scattering length can be
exploited to simplify some of the results in Sec. V.

In the scalar meson model, the smallest momentum scale
is the scale j�j associated with the large scattering length.
In a more fundamental theory, there may be many larger
momentum scales, but the most important at low energies
is the mass m of the lightest meson that can be exchanged
between D1 and D2. The model defined by the Lagrangian
in Eqs. (4) and (5) reproduces all effects that are not sup-
pressed by powers of j�j=m. The model can be systemati-
cally improved so that it reproduces all corrections to any
desired order in j�j=m. We will discuss only the improve-
ments required to reproduce corrections through first order
in j�j=m.

The only improvement in the effective theory that is
required to decrease the errors to second order in j�j=m
is to take into account the effective range rs for S-wave
scattering. This parameter can be defined by the low-
momentum expansion for the inverse of the T-matrix
element:

 

1

T �p�
� �

1

8�M1�2

�
1

a
� ip�

1

2
rsp2 � 
 
 


�
: (56)

If we impose the renormalization condition that the
Green’s function for D1D2 ! D1D2 has a pole at the
energy Epole given in Eq. (10), one expression that will
give the correct effective range is

 A �E� �
�2�=M12

��� ip��1� rs��� ip�=2

; (57)

where p � i
���������������������������������
�2M12E12 � i"
p

. The corresponding
T-matrix element for elastic D1D2 scattering is then

 T 12!12�p� �
�8�M1�2

��� ip��1� rs��� ip�=2

: (58)

In short-distance observables, there are additional terms
in the expansions in j�j=m coming from higher dimension
operators in the operator product expansion. For each addi-
tional gradient in the operator, the operator matrix element
will have an additional factor of order �. The dimensions
from these additional factors of � must be compensated by
factors of 1=m in the short-distance coefficients. Only
operators with a single gradient can give contributions
that are suppressed by one power of j�j=m. The matrix
element of the operator ri�D1D2� between jD1D2� ~p�i or
jXi and the vacuum h;j vanishes in the center-of-
momentum frame. The other independent operator with a
single gradient is riD1D2 �D1r

iD2. The matrix element
h;jriD1D2 �D1r

iD2jXi must vanish because the opera-
tor is a vector and there are no vectors associated with the
state jXi in its center-of-mass frame. The matrix element
h;jriD1D2 �D1r

iD2jD1D2� ~p�i is nonzero and propor-
tional to pi. This operator gives a term in the T-matrix
element for A! B�D1D2� ~p� in Eq. (39) that is linear in
the momentum ~p but has a suppression factor of 1=m in the
short-distance coefficient. Higher dimension operators in
the operator product expansion will contribute to the
T-matrix elements for A! B� X in Eq. (41), for X !
C in Eq. (47), and for A! B� C in Eq. (52) only at
second and higher orders in j�j=m.

The systematic expansion in powers of j�j=m can be
used to simplify the leading-order results for short-distance
observables. The T-matrix element for A! B� C in
Eq. (52) has a resonant term A0�MC� and a nonresonant
term cB;CA . The resonant term A0�MC� includes a factor
that is of order 1=j�j when pC is of order j�j. The non-
resonant term cB;CA is completely determined by short-
distance effects, so the natural scale for cB;CA is 1=m. For
pC of order j�j, this amplitude is suppressed by j�j=m
compared to the resonant term in Eq. (52). One can there-
fore set cB;CA � 0 by truncating the expansion at leading
order in j�j=m. The invariant mass distribution in Eq. (55)
then reduces to

 

d�

dMC
�A! B� C
 � ��BA�C�

2�

��Re � jpCj�
2 � �2

Im

; MC <M1�2; (59a)

� ��BA�C�
2�

�2
Re � ��Im � pC�

2 ; MC >M1�2: (59b)

This simple factorization formula was first derived in
Ref. [21]. If the nonresonant amplitude cB;CA in Eq. (55)
is included, the systematic expansion in powers of j�j=m
requires that all other terms that are first order in j�j=m
also be included. This requires that the effective field

theory be improved so that it takes into account the effec-
tive range.

The above derivation of the simple factorization formula
in Eq. (59) is much cleaner than the derivation in Ref. [21].
In Ref. [21], the authors used an ultraviolet momentum
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cutoff �. They obtained results that did not depend on � by
taking the limit �! 1. The expression for the bare cou-
pling constant �0 in Eq. (28) has a term L0�M1�2� in the
denominator. Since L0�MC� and L0�M1�2� are both linear
in �, the product �0L0�MC� approaches 1 in the limit �!
1. In this limit, the last factor in the second term on the
right side of Eq. (50) reduces to

 

iL0�MC�

1� �0L0�MC�
! �

i

�2
0

A0�MC�: (60)

The factors of 1=�0 can be combined with the Wilson
coefficients CB;12

A and CC12 to obtain short-distance factors
with finite limits as �! 1. In Ref. [21], the authors
omitted the CB;CA term in Eq. (50). This gave the simple
factorization formula in Eq. (59). In retrospect, omitting
the CB;CA term in Eq. (50) can be justified by the observation
that the natural scale for the coefficient cB;CA in Eq. (52) is
1=m�. Ifm� is identified with the ultraviolet cutoff �, then
cB;CA ! 0 in the limit �! 1. The derivation in Ref. [21]
blurred the distinction between the arbitrary, unphysical,
ultraviolet cutoff �, which can be taken to 1, and the
physical, short-distance scale m�, which is fixed. By main-
taining the distinction between � and m�, we were able to
separate the renormalization of the operator product ex-
pansion from the expansion in inverse powers of the large
scattering length and give a much cleaner derivation of the
factorization formula.

VII. MINIMAL CHARM MESON MODEL

In this section, we generalize the results of Secs. IV, V,
and VI for the scalar meson model to the minimal charm
meson model defined by the Lagrangian in Eqs. (14) and
(15). The bound state in this model is identified as the
X�3872�. For simplicity of notation, we denote the masses
of D0 and D�0 by M1 � MD0 and M2 � MD�0 . Thus M12 is
the reduced mass of D0 and D�0 and M1�2 is the sum of
their masses.

A. Long-distance processes

The amplitude L0�E� in the charm meson model for the
propagation of D�0 �D0 or D0 �D�0 between contact interac-
tions is given by the same expression in Eq. (25) as in the
scalar meson model. The Green’s function for D�0 �D0 !
D�0 �D0 is diagonal in the vector indices of the spin-1
mesons. The diagonal entries are

 iA�E� �
�i

1=�0 � 2L0�E�
: (61)

This differs from the expression for iA0�E� in Eq. (24)
only in the factor of 2 multiplying L0�E�, which accounts
for the fact that the particles in each of the loops in Fig. 3
can be either D�0 �D0 or D0 �D�0. The Green’s functions for
D�0 �D0 ! D0 �D�0, D0 �D�0 ! D�0 �D0, and D0 �D�0 ! D0 �D�0

are also given by this same expression. If we use the

renormalization prescription that the Green’s function in
Eq. (61) has a pole in E at the energy Epole given in
Eq. (10), the expression for the diagonal entries of the
Green’s function can be reduced to

 A �E� �
�=M12

���
���������������������������������
�2M12E12 � i"
p : (62)

The complex parameter � determines the mass and width
of a bound state with spin 1 that we identify as the X�3872�.

The Green’s function A�E� in Eq. (62) differs from
A0�E� in Eq. (27) by a factor of 1=2. The T-matrix
element for D�0 �D0 ! D�0 �D0 therefore differs from the
expression in Eq. (30) by a factor of 1=2. The resulting
expression for the cross section for elastic D�0 �D0 scatter-
ing therefore differs by a factor of 1=4 from the cross
section in Eq. (32) for the charm meson model:

 ��D�0 �D0� ~p� ! D�0 �D0
 �
�

j�Re � i��Im � p�j
2 : (63)

The argument � ~p� of D�0 �D0 in the initial state implies that
theD�0 and �D0 have momenta� ~p and� ~p, respectively. In
the final state, the relative momentum of the D�0 and �D0

have been integrated over. The cross section for elastic
D0 �D�0 scattering and the cross sections for D�0 �D0 !
D0 �D�0 and D0 �D�0 ! D�0 �D0 are also given by the expres-
sion on the right side of Eq. (63).

If the local composite operatorDi �D�x� �D �Di�x� is used
as the interpolating field for the X, the propagator for X is
given in Eq. (18). The Feynman diagrams for the propa-
gator i�ij

X �E; 0� in the charm meson model differ from
those in Fig. 5 for the scalar meson model only in that
each loop receives contributions from two pairs of parti-
cles, D�0 �D0 and D0 �D�0. Thus the diagonal entries of the X
propagator can be obtained from the propagator in Eq. (33)
by replacing L0�E� by 2L0�E�:

 i�ij
X �E; 0� �

i2L0�E�
1� 2�0L0�E�

�ij: (64)

The normalization factor defined by Eq. (19) is

 ZX �
��

M2
12�

2
0

: (65)

This differs by a factor of 2 from the normalization factor
ZX in Eq. (34) for the scalar meson model.

The minimal charm meson model is an effective field
theory that exploits the small ratio between the scale j�j

+

FIG. 5. Feynman diagrams for the X propagator at 0th order in
g. The interpolating field for the X is D1D2�x�.
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associated with a large scattering length and all the larger
momentum scales of QCD. At very low energy, the most
important of these larger momentum scales is the mass m�
of the pion. The minimal charm meson model takes into
account all effects that are not suppressed by powers of
j�j=m�. The model can be systematically improved so that
it incorporates corrections to any desired order in j�j=m�.
We will discuss only the improvements required to take
into account corrections that are first order in j�j=m�.

At first order j�j=m�, it is necessary to take into account
not only the large scattering length a� in the C � �
channel but also the effective range r�. It is also necessary
to take into account the scattering length a� in the C � �
channel. These parameters can be defined by low-
momentum expansions of the T-matrix elements analo-
gous to Eq. (56). Since r� and a� both have dimensions
of length, the natural scales for these parameters are of
order 1=m�. If we impose the renormalization condition
that the C � � channel amplitude has a pole in the energy
at Epole given in Eq. (10), the Green’s functions in the two
channels can be written as
 

A��E� �
�2�=M12

��� ip��1� r���� ip�=2

; (66a)

A��E� � ��2�=M12�a�; (66b)

where p � i
���������������������������������
�2M12E12 � i"
p

in Eq. (66a). The expres-

sion for the cross section for elastic D�0 �D0 scattering that
replaces Eq. (63) is

 ��D�0 �D0� ~p� ! D�0 �D0


� �
�������� 1

��� ip��1� r���� ip�=2

� a�

��������
2
:

(67)

The cross section for elastic D0 �D�0 scattering is given by
the same expression. The cross sections for D�0 �D0 !
D0 �D�0 andD0 �D�0 ! D�0 �D0 are given by the same expres-
sion except that a� is replaced by �a�.

B. Short-distance production of X, D�0 �D0, and D0 �D�0

The operator product expansion for the charm meson
model can be used to separate the rates for short-distance
production and decay processes into short-distance factors
and long-distance factors. We first consider the short-
distance production process A! B� X and the corre-
sponding production processes for D�0 �D0 and D0 �D�0. A
specific example of such a process is the discovery pro-
duction process B� ! K� � X. The leading terms in the
operator product expansions for these processes are those
with the operators Diy �Dy�0� and Dy �Diy�0�. The expres-
sions for the T-matrix elements analogous to Eqs. (37) are

 

T �A! B�D�0 �D0
 �
����������������
4M1M2

p
�CB;iA hD

�0 �D0jDiy �Dy�0�j;i � �CB;iA hD
�0 �D0jDy �Diy�0�j;i�; (68a)

T �A! B�D0 �D�0
 �
����������������
4M1M2

p
�CB;iA hD

0 �D�0jDiy �Dy�0�j;i � �CB;iA hD
0 �D�0jDy �Diy�0�j;i�; (68b)

T �A! B� X
 �
����������
2MX

p
�CB;iA hXjD

iy �Dy�0�j;i � �CB;iA hXjD
y �Diy�0�j;i�: (68c)

The matrix elements between the vacuum and the charm meson states are
 

hD�0 �D0� ~p;m�jDiy �Dy�0�j;i �
�

1�
�0L0�Ecm�p��

1� 2�0L0�Ecm�p��

�
"�i�m�; (69a)

hD�0 �D0� ~p;m�jDy �Diy�0�j;i �
�0L0�Ecm�p��

1� 2�0L0�Ecm�p��
"�i�m�; (69b)

hD0 �D�0� ~p;m�jDiy �Dy�0�j;i �
�0L0�Ecm�p��

1� 2�0L0�Ecm�p��
"�i�m�; (69c)

hD0 �D�0� ~p;m�jDy �Diy�0�j;i �
�

1�
�0L0�Ecm�p��

1� 2�0L0�Ecm�p��

�
"�i�m�; (69d)

where "i�m� is the polarization vector for the spin-1 meson. The arguments � ~p;m� of the D�0 �D0 and D0 �D�0 states imply
that the spin-1 and spin-0 mesons have momenta � ~p and � ~p, respectively, and that the spin-1 meson has spin quantum
number m. The matrix elements between the vacuum and the X are
 

hX�m�jDiy �Dy�0�j;i � 1
2Z

1=2
X "�i�m�; (70a)

hX�m�jDy �Diy�0�j;i � 1
2Z

1=2
X "�i�m�; (70b)

where "i�m� is the polarization vector for the X and the normalization constant ZX is given in Eq. (65). The factors of 1=2 in
Eqs. (70) come from the fact that the Green’s function for the operators Di �D�x� �D �Di�x� and Diy �Dy�0� or Dy �Diy�0� are
equal to the propagator for the X given in Eq. (64) multiplied by 1=2. The T-matrix elements in Eqs. (69) can be expressed
in a form in which short-distance and long-distance effects are separated:
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T �A! B�D�0 �D0� ~p;m�
 �
����������������
4M1M2

p �
�
CB;iA �

�CB;iA
2�0

A�Ecm�p�� �
CB;iA �

�CB;iA
2

�
"�i�m�; (71a)

T �A! B�D0 �D�0� ~p;m�
 �
����������������
4M1M2

p �
�
CB;iA �

�CB;iA
2�0

A�Ecm�p�� �
CB;iA �

�CB;iA
2

�
"�i�m�; (71b)

T �A! B� X�m�
 �
����������
2MX

p �
CB;iA �

�CB;iA
2�0

����1=2

M12

�
"�i�m�: (71c)

These T-matrix elements do not depend on the ultraviolet
cutoff if �CB;iA � �CB;iA �=�0 and CB;iA �

�CB;iA do not depend on
�. Equivalently, their dependence on � can be eliminated
by renormalizations of the Wilson coefficients CB;iA and
�CB;iA .

Since the T-matrix element for A! B� X in Eq. (71c)
is the product of a short-distance factor and a long-distance
factor proportional to �1=2, the rate can be expressed as the
product of a short-distance factor and a long-distance
factor proportional to j�j. If A consists of a single particle,
the decay rate is

 ��A! B� X
 � �BA
2�
M12
j�2

Re � �
2
Imj

1=2: (72)

We have chosen the long-distance factor to be the same as
in Eq. (42).

The expressions for the invariant mass distributions for
D�0 �D0 and D0 �D�0 that follow from the T-matrix elements
in Eqs. (71a) and (71b) are much more complicated and
depend on the types of particles in B. However, these
expressions simplify if we keep only the leading terms in
the expansions in j�j=m. For p of order j�j, the resonant
amplitude A�Ecm�p�� in Eqs. (71a) and (71b) has a factor
of order 1=j�j. The nonresonant terms in Eqs. (71a) and
(71b) involve only short-distance factors and are insensi-
tive to the scale j�j. They are therefore suppressed relative
to the resonant terms by j�j=m. If we take p to be of order
j�j and keep only the leading terms in j�j=m, the invariant
mass distributions reduce to

 

d�

dM
�A! B�D�0 �D0� ~p�
 � �BA

p

�2
Re � ��Im � p�2

; (73a)

d�

dM
�A! B�D0 �D�0� ~p�
 � �BA

p

�2
Re � ��Im � p�

2 : (73b)

We have replaced Ecm�p� by M1�2 everywhere except in
the long-distance factor. The short-distance factors �BA are
the same as in Eq. (72). They cancel out of the ratio
between Eq. (73a) or Eqs. (72) and (73b). This ratio differs
from the ratio between Eq. (42) and Eq. (44) in the scalar
meson model by the probability 1

2 for theD�0 �D0 andD0 �D�0

to be in the C � � channel.
The factorization formulas in Eqs. (72) and (73) were

first derived in Refs. [17,20] for the case �im � 0. They
were applied to the decays of B mesons to K � X, K �

D�0 �D0, and K �D0 �D�0. The factorization formulas were
generalized to the case �im > 0 in Ref. [21]. The short-
distance coefficient �BA in Eq. (72) can be eliminated in
favor of the decay rate ��A! B� X
 using Eqs. (73):

 

d�

dM
�A!B�D�0 �D0� ~p�
 � ��A!B�X


M12p

2�j�jj�� ipj2
:

(74)

The coefficient of ��A! B� X
 agrees with Ref. [21].
The corresponding coefficient in Refs. [17,20] is larger by
a factor of 2. The origin of this discrepancy is an error by a
factor of

���
2
p

in the coalescence amplitude A�D�0 �D0 ! X

in Refs. [17,20]. They used the universal prediction for this
amplitude that was derived in Ref. [15]. The coalescence
amplitude is determined by the residue of the pole in the
energy for the amplitude for D�0 �D0 ! D�0 �D0:

 A �D�0 �D0 ! D�0 �D0
 �
�jA�D�0 �D0 ! X
j2

2MX�E12 � 1=�2M12a2�


as E12 ! �1=�2M12a2�:

(75)

The universal prediction for this amplitude was first de-
rived in Ref. [15] and that result was used in Refs. [17,20].
The error in A�D�0 �D0 ! X
 in Ref. [15] came from an
error in the amplitude A�D�0 �D0 ! D�0 �D0
, which was
larger by a factor of 2 than the correct expression in
Eq. (62). The same error in the amplitude A�D�0 �D0 !
D�0 �D0
 appears in Ref. [17].

We can exploit the fact that the minimal charm meson
model is an effective field theory for a more fundamental
Lorentz-invariant field theory, namely, the standard model.
This implies that CB;iA "

�i�m� and �CB;iA "
�i�m� must have

Lorentz-invariant expressions in terms of the 4-momenta
and polarization 4-vectors of the particles in A andB, the 4-
vector P�1�2, and the polarization 4-vector "� whose 3-
vector part reduces to "i�m� in the frame where P�1�2 �

�M1�2; ~0�.
We proceed to deduce the constraints of Lorentz invari-

ance on the discovery production process B� ! K� � X
and the corresponding production processes forD�0 �D0 and
D0 �D�0. The Lorentz invariance of the fundamental theory
is a particularly powerful constraint in this case. The only
4-vectors that the short-distance factors can depend on are
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the 4-momenta P�B , P�K , and P�1�2, which satisfy P�B �
P�K � P

�
1�2, and the polarization 4-vector "�, which sat-

isfies P1�2 
 " � 0. The only independent Lorentz scalar
that is linear in "� is PB 
 "�. Inner products of the 4-
momenta can be expressed in terms of the masses MB,
MK, and M1�2. Thus Lorentz invariance implies that the
T-matrix elements in (71) are determined by two complex
constants C� and C� defined by

 

CK
�;i

B� �
�CK

�;i
B�

2�0
"�i�m� � C�PB 
 "��m�; (76a)

CK
�;i

B� �
�CK

�;i
B�

2
"�i�m� � C�PB 
 "

��m�: (76b)

The T-matrix elements in Eqs. (71) reduce to

 

T �B� ! K� �D�0 �D0� ~p; m�
 �
����������������
4M1M2

p
��C�A�Ecm�p�� � C�
PB 
 "��m�; (77a)

T �B� ! K� �D0 �D�0� ~p; m�
 �
����������������
4M1M2

p
��C�A�Ecm�p�� � C�
PB 
 "

��m�; (77b)

T �B� ! K� � X�m�
 �
����������
2MX

p
C�
����1=2

M12
PB 
 "��m�: (77c)

The decay rate for B� ! K� � X can be expressed in the factored form in Eq. (72) with the short-distance factor

 �K
�

B� �
�3=2�MB;MK;M1�2�

64�M3
BM1M2

jC�j
2: (78)

The invariant mass distributions for the charm mesons in the decays of B� into K� �D�0 �D0 and K� �D0 �D�0 can be
expressed in factored forms analogous to Eq. (44):
 

d�

dM
�B� ! K� �D�0 �D0� ~p�
 � �K

�

B�p
�������� 1

�Re � i��Im � p�
� cK

�

B�

��������
2
; (79a)

d�

dM
�B� ! K� �D0 �D�0� ~p�
 � �K

�

B�p
�������� 1

�Re � i��Im � p�
� cK

�

B�

��������
2
; (79b)

where cK
�

B� � �M12=2��C�=C� is a complex constant. The
nonresonant amplitude cK

�

B� is required by the renormaliza-
tion of the operator product expansion. It is completely
determined by the short-distance coefficients C� and C�
which are insensitive to the small momentum scale j�j.
The smallest momentum scale to which they are sensitive
is the pion mass m�. Since cK

�

B� has dimensions of length,
the natural order of magnitude of cK

�

B� is 1=m�. Thus, if p is
of order j�j, the nonresonant terms �cK

�

B� in Eqs. (79) are
suppressed by a factor of j�j=m� compared to the resonant
terms. If we keep only the leading terms in the expansion in
j�j=m, we can set cK

�

B� � 0. Thus, Eqs. (79) reduce to
Eqs. (73). In a systematic expansion in powers of
j�j=m�, the nonresonant amplitudes �cK

�

B� in Eqs. (79)
would be retained only if all other effects of the same order
in j�j=m� were also included. The effective field theory
should be improved to take into account the effective range
r� in the C � � channel and the scattering length a� in
the C � � channel. One should also include terms in the
operator product expansion with the operators riDj �D�
Djri �D and riD �Dj �Dri �Dj. These terms will have op-
erator matrix elements with factors of pi�j and Wilson
coefficients suppressed by 1=m�.

We now apply the factorization formulas to the produc-
tion process B� ! K�� � X and the corresponding pro-
duction processes for D�0 �D0 and D0 �D�0. The only 4-
vectors that the short-distance factors can depend on are

the 4-momenta P�B , P�K� , and P�1�2 and the polarization
4-vector "�K� of the K�. Inner products of the 4-momenta
can be expressed in terms of the masses MB, MK� ,
and M1�2. The independent Lorentz scalars that are linear
in "��K "

� are �PB 
 "�K��PB 
 "
��, M2

B�"
�
K� 
 "

��, and
���	
P

	
BP



1�2"

��
K "

�. Thus the constraint of Lorentz invari-
ance reduces the T-matrix elements in Eq. (71) to six
complex constants D�, E�, and F� defined by

 

CK
��;i

B� � �CK
��;i

B�

2�0
"�i�m� � �D�M

2
Bg�� � E�PB�PB�

� F����	
P	BP


1�2�"

��
K "

���m�;

(80a)

CK
��;i

B� � �CK
��;i

B�

2
"�i�m� � �D�M

2
Bg�� � E�PB�PB�

� F����	
P	BP


1�2�"

��
K "

���m�:

(80b)

The decay rate for B� ! K�� � X can be expressed in the
factored form in Eq. (72) with the short-distance factor
�K

��

B� . The invariant mass distributions for the charm me-
sons in the decays of B� into K�� �D�0 �D0 and K�� �
D0 �D�0 can be expressed in factored forms analogous to
Eqs. (79) but considerably more complicated. If we keep
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only the leading terms in the expansions in j�j=m, these
expressions reduce to Eqs. (73).

C. Short-distance decay of X

We now consider the decay of X into a short-distance
decay mode C. Examples of such decay modes are the
discovery mode J= ���� and J= �. The expression for
the T-matrix element analogous to Eq. (45) is
 

T �X ! C
 �
����������
2MX

p
�CC;ih;jDi �D�0�jXi

� �CC;ih;jD �Di�0�jXi�: (81)

The operator matrix elements are given by expressions
analogous to those on the right sides of Eqs. (70) except
that "�i�m� is replaced by "i�m�. The factored expression
for the T-matrix element is

 T �X�m� ! C
 �
����������
2MX

p CC;i � �CC;i

2�0

����1=2

M12
"i�m�:

(82)

The T-matrix element does not depend on the ultraviolet
cutoff if �CC;i � �CC;i�=�0 does not depend on �. If we were
to consider the process D�0 �D0 ! C, we would find that
CC;i � �CC;i must also be independent of �. Thus the ultra-
violet divergences can be removed by renormalizations of
the Wilson coefficients CC;i and �CC;i. The decay rate for
X ! C can be expressed in a factored form analogous to
Eq. (48):

 ��X ! C
 � �C
2�
M12
j�2

Re � �
2
Imj

1=2; (83)

where �C is a short-distance factor with dimension of
mass. We have chosen the long-distance factor to be the
same as in Eq. (48). The factorization formula in Eq. (83)
was first derived in Ref. [21].

In Ref. [23], the decay rates of X�3872� into J= ����,
J= �����0, J= �, and J= �0� were calculated under
the assumption that the decays are dominated by a direct
coupling of X to J= and the vector mesons � and !
followed by the decay of the virtual vector mesons into
pions and photons. The decay rates were calculated in
terms of coupling constants GX � and GX ! and other

parameters that were determined by vector-meson decays.
The long-distance scale j�j enters the decay rates only
through a factor of �1=2 in the coupling constants GX �

and GX !. Thus the decay rates in Ref. [23] satisfy the
factorization formula in Eq. (83).

The Lorentz invariance of the more fundamental theory
provides constraints on the T-matrix elements for specific
short-distance decay processes. For the decay X ! J= �,
the only 4-vectors the short-distance factors can depend on
are the 4-momenta P�1�2 and P� or P�� and the polarization
4-vectors "� and "�� of the J= and the photon. The

coefficient of "�� "
��
� "� must be a 3-index Lorentz tensor.

There are six independent tensors that can be constructed
from the 4-momenta, the metric, and the Levi-Civita ten-
sor. Thus Lorentz invariance constrains the T-matrix ele-
ment to be a linear combination of these six terms with
constant coefficients. In the model of Ref. [23], the as-
sumptions of the direct coupling of X to J= � and J= !
and the vector-meson dominance of the coupling of the
photon to hadrons were used to reduce the T-matrix to a
single term proportional to �	���P	��

��
 �

��
� ��. For the

process X ! J= ����, the only 4-vectors the short-
distance factors can depend on are the 4-momenta P�1�2,
P� , and Q�

� � P��� � P
�
�� and the polarization 4-vector

"� of the J= . The coefficient of "�� "
� must be a 2-index

Lorentz tensor. There are eight independent tensors that
can be constructed from the 4-momenta, the metric, and
the Levi-Civita tensor. Thus Lorentz invariance constrains
the T-matrix element to be a linear combination of these
eight terms with coefficients that are functions of the two
independent Lorentz scalars Q� 
 P and P1�2 
 P . In the
model of Ref. [23], the assumption of a direct coupling of
the X to J= �was used to reduce the T-matrix element to a
single term proportional to �	
���P1�2 � P �

	Q

�"
��
 "

�.

D. Line shape of X in a short-distance decay mode

We now consider the line shape of X in the process A!
B� C, where C is a short-distance decay mode of X. An
example of such a process is the discovery process for the
X: B� ! K� � J= ����. The expression for the
T-matrix element analogous to Eq. (50) is

 T �A! B� C
 � CB;CA � �CB;iA CC;i � �CB;iA
�CC;i�iL0�MC� � �C

B;i
A �

�CB;iA ��C
C;i � �CC;i�

i�0L0�MC�
2

1� 2�0L0�MC�
: (84)

The factorized expression for the T-matrix element analogous to Eq. (51) is
 

T �A! B� C
 � �i
CB;iA �

�CB;iA
2�0

CC;i � �CC;i

2�0
A�MC� � �C

B;C
A � �CB;CA �

�
i
2
�CB;iA �

�CB;iA ��C
C;i � �CC;i��L0�MC� � L0�M1�2�
; (85)

where �CB;CA is
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 �CB;CA � �i�0
CB;iA �

�CB;iA
2�0

CC;i � �CC;i

2�0
�
i
2
�CB;iA �

�CB;iA ��C
C;i � �CC;i�L0�M1�2�: (86)

After renormalization of the coupling constant, A�MC� is
given by the expression in (62), which does not depend on
the ultraviolet cutoff �. The term L0�MC� � L0�M1�2�,
which is given in Eq. (25), also does not depend on �.
The combinations �CB;iA � �CB;iA ��0, �CC;i � �CC;i�=�0, CB;iA �
�CB;iA , and CC;i � �CC;i cannot depend on �, because they
appear as short-distance factors in other T-matrix elements
such as those in Eqs. (71) and (82). Thus the T-matrix
element in Eq. (85) will not depend on � if CB;CA � �CB;CA
does not depend on �. Equivalently, the dependence on �
can be removed by an additive renormalization of the
Wilson coefficient CB;CA .

The expression for the rate that follows from the
T-matrix element in Eq. (85) is very complicated and

depends on the types of particles in B. The expression
simplifies if we keep only the leading term in the expansion
in j�j=m�. If jpCj is of order j�j, the resonant amplitude
A�MC� has a factor of order 1=j�j while the term
L0�MC� � L0�M1�2� has a factor of order j�j. Additional
factors of j�jmust be accompanied by additional factors of
m� in the short-distance factors. Thus the second and third
terms on the right side of Eq. (85) are suppressed by one
and two powers of j�j=m�, respectively. If we keep only
the leading term in j�j=m�, the invariant mass distribution
for C in the decay of a single particle A into B� C can be
expressed in the simple factored form

 

d�

dMC
�A! B� C
 � �B;CA

2�

��Re � jpCj�2 � �2
Im

; MC <M1�2; (87a)

� �B;CA
2�

�2
Re � ��Im � pC�2

; MC >M1�2: (87b)

The invariant mass distribution is continuous at MC �
M1�2 � MD0 �MD�0 . The factorization formula in
Eq. (87) was first derived in Ref. [21]. In contrast to the
corresponding factorization formula in the scalar meson
model which is given in Eq. (59), the short-distance factor
�B;CA is not simply the product of the short-distance factors
�BA and �C in Eqs. (73) and (83), respectively. The reason
for this is that the short-distance factors associated with the
initial and final states in the T-matrix element in (85) are
connected by the vector index i.

VIII. SUMMARY

The X�3872� seems to be a hadronic molecule consisting
of a C � � superposition of D�0 �D0 and D0 �D�0 that are
weakly bound in the S-wave channel. The binding energy
and the width of the X can be conveniently expressed in
terms of the complex binding momentum � defined in
Eq. (10). The smallness of � compared to the natural scale
m� together with the S-wave nature of the bound state
imply that the X has universal properties that are com-
pletely determined by �. The separation of scales between
j�j andm� can be exploited through factorization formulas
for the production and short-distance decay rates of X. The
factorization formulas express these rates as the sum of
products of short-distance factors that are insensitive to �
and long-distance factors that are completely determined
by �.

We have shown how the factorization formulas can be
derived using the operator product expansion for a low-

energy effective field theory for the charm mesons, such as
the minimal charm meson model. Using the operator prod-
uct expansion, the rates are expressed as sums of products
of Wilson coefficients and matrix elements of operators in
the effective field theory. In the minimal charm meson
model, the matrix elements can be calculated nonperturba-
tively and they depend on the ultraviolet cutoff �. Some of
the dependence on � can be removed by the renormaliza-
tion of the coupling constant. This can be accomplished
conveniently by eliminating the bare coupling constant in
favor of �. The remaining dependence on � can be re-
moved by renormalization of the Wilson coefficients in the
operator product expansion. After eliminating all depen-
dence on �, the rate can be expanded in powers of j�j=m�.
The leading terms in the expansions are very simple. The
leading terms in the rates for the production processes A!
B� X, A! B�D�0 �D0, and A! B�D0 �D�0 are given
in Eqs. (72) and (73). The leading term in the rate for the
short-distance decay process X ! C is given in Eq. (83).
The leading term for the line shape of X in the short-
distance decay mode C is given in Eq. (87).

Our derivation of the factorization formulas using the
operator product expansion makes it clear how these
leading-order results can be extended systematically to
higher orders in j�j=m�. This requires improving the
effective field theory and including higher dimension op-
erators in the operator product expansion. If accuracy to
nth order in j�j=m� is desired, the effective field theory
must describe the scattering of charm mesons to that
accuracy and the operator product expansion must include
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operators with up to n gradients. As the order in j�j=m�
increases, there are an increasing number of parameters in
the effective field theory and an increasing number of
Wilson coefficients in the relevant terms of the operator
product expansion. The difficulty of determining all these
parameters phenomenologically may limit the utility of the
expansion to low orders in �=m�.

Our derivation of the simple factorization formulas in
Eqs. (72), (73), (83), and (87) is conceptually cleaner than
the previous derivations in Refs. [17,20,21]. Those pre-
vious derivations were awkward in that they required tak-
ing the limit �! 1 while also exploiting the fact that the
natural scale of the ultraviolet cutoff is m�. In the present

derivation, all dependence on � is removed analytically
through renormalization of the coupling constants and
through renormalization of the Wilson coefficients in the
operator product expansion without taking the limit �!
1. In a subsequent conceptually independent step, the rates
are expanded in powers of j�j=m�. The leading terms in
this expansion give the simple factorization formulas.
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