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The gauge-invariant three-gluon vertex obtained from the pinch technique is characterized by 13
nonzero form factors, which are given in complete generality for unbroken gauge theory at one loop. The
results are given in d dimensions using both dimensional regularization and dimensional reduction,
including the effects of massless gluons and arbitrary representations of massive gauge bosons, fermions,
and scalars. We find interesting relations between the functional forms of the contributions from gauge
bosons, fermions, and scalars. These relations hold only for the gauge-invariant pinch-technique vertex
and are d-dimensional incarnations of supersymmetric nonrenormalization theorems which include finite
terms. The form factors are shown to simplify for N � 1, 2, and 4 supersymmetry in various dimensions.
In four-dimensional nonsupersymmetric theories, eight of the form factors have the same functional form
for massless gluons, quarks, and scalars, when written in a physically motivated tensor basis. For QCD,
these include the tree-level tensor structure which has prefactor �0 � �11Nc � 2Nf�=3, another tensor
with prefactor 4Nc � Nf, and six tensors with Nc � Nf. In perturbative calculations our results lead
naturally to an effective coupling for the three-gluon vertex, ~��k2
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2
2; k

2
3�, which depends on three

momenta and gives rise to an effective scale Q2
eff�k

2
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2
3� which governs the behavior of the vertex.

The effects of nonzero internal masses M are important and have a complicated threshold and
pseudothreshold structure. A three-scale effective number of flavorsNF�k2

1=M
2; k2

2=M
2; k2

3=M
2� is defined.

The results of this paper are an important part of a gauge-invariant dressed skeleton expansion and a
related multiscale analytic renormalization scheme. In this approach the scale ambiguity problem is
resolved since physical kinematic invariants determine the arguments of the couplings.
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I. INTRODUCTION: GAUGE-INVARIANT
GREEN’S FUNCTIONS

The main purpose of this paper is to analyze the struc-
ture of the gauge-invariant three-gluon vertex [1], calculate
the 14 form factors at one loop, and outline some of the
phenomenological applications. Before proceeding, it is
worthwhile to review the motivation and current status of
gauge-invariant Green’s functions.

In the conventional formulation of gauge field theories,
the manifest gauge-invariance of the original action is lost
upon quantization, simply because one has to fix a gauge
in order to perform calculations. Generically, Greens’s
functions are gauge dependent and thus not physical by
themselves. Only the particular combinations of Green’s
functions which form physical observables must be gauge-
invariant. In many theoretical studies, however, one would
like to consider individual Green’s functions and extract
physical meaning from them [2]. For example, studies of
the infrared behavior of gauge theory using Dyson-
Schwinger equations [3] often rely on gauge-dependent
truncation schemes which one hopes are not too brutal.
The existence of gauge-invariant two-point functions is
crucial for defining meaningful resummed propagators
[4], particularly near threshold, for the construction of
effective charges [5], for a postulated dressed-skeleton

expansion of QCD [6], and for justifying renormalon
analyses [7].

Thus there is strong motivation for gauge-invariant
Green’s functions with physical content. We will now
briefly discuss the relationship between three different
approaches to gauge-invariant Green’s functions: (1) the
pinch technique (PT), (2) the background field method
(BFM), and (3) the ? effective Lagrangian scheme of
Kennedy and Lynn. All three approaches will lead to the
same Green’s functions.

The pinch technique (PT) was first constructed by
Cornwall [2] in order to study gauge-invariant Dyson-
Schwinger equations and dynamical gluon mass genera-
tion, but the approach is much more generally applicable.
In the PT approach, unique gauge-invariant Green’s func-
tions are constructed by explicitly rearranging Feynman
diagrams using elementary Ward identities (WI) as the
guiding principle. Longitudinal momenta from triple-
gauge-boson vertices and gauge propagators inside of
loops hit other vertices and thus generate inverse propa-
gators (via WI’s), which, in turn, cancel (or pinch) some
internal propagators. In this way, certain parts of Green’s
functions are reduced to parts of lower n-point functions,
and should properly be included in the latter.

As an example of the PT, consider the gluon (or massive
gauge boson) self-energy. The conventional self-energy is
gauge-dependent and physically meaningless by itself.
However, when embedded in any physical process, there
will be associated parts of vertex and box graphs which
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undergo the reduction described above and thus have the
same tensor and kinematic structure as the gluon propaga-
tor. These pinched parts are then added to the conventional
gauge-dependent self-energy, yielding a gauge-invariant
self-energy and gluon propagator that has the correct
asymptotic UV behavior dictated by the renormalization
group equation. The resulting two-point function has nu-
merous positive attributes [4,5,8–10], including unique-
ness, resummability, analyticity, unitarity, and a natural
relation to optical theorem, from which it can also be
derived [4,11].

Resumming these two-point functions leads to physical
effective charges, à la Grunberg [12], which can be ex-
tended to the supersymmetric case and leads to an analytic
improvement of gauge coupling unification with smooth
threshold behavior [13].

This method has been applied to a variety of Green’s
functions [1,14–17], with applications to electroweak phe-
nomenology [18,19]. In particular, the gauge-invariant
three-gluon vertex was first constructed in [1] to one-loop
order, where the authors showed that the vertex satisfies a
relatively simple Abelian-like Ward identity. However, the
integrals were not evaluated, so that little could be said
about the individual form factors except that the UV di-
vergent term in the tree-level tensor structure is correct.
The main motivation of this paper is to extend this work by
evaluating the integrals for the 14 form factors, and ex-
pressing the results in a convenient tensor basis for phe-
nomenological applications. In doing so, an interesting
structure emerges, in which the contributions of gluons
(G), quarks (Q), and scalars (S) are intimately related.
These relations are closely linked to supersymmetry and
conformal symmetry, and, in particular, the N � 4 non-
renormalization theorems. For all form factors F in dimen-
sions d, we find that

 FG � 4FQ � �10� d�FS � 0; (1)

which encodes the vanishing contribution of the N � 4
supermultiplet in four dimensions. Similar relations have
been found in the context of supersymmetric scattering
amplitudes [20,21]. In Appendix E, the effects of internal
masses are discussed, and the above sum rule becomes
modified

 FMG � 4FMQ � �9� d�FMS � 0; (2)

for internal massive gauge bosons (MG), fermions (MQ),
and scalar (MS). The external gluons remain massless and
unbroken, so the internal gauge bosons might be the heavy
X�, Y� bosons of SU�5�, for example. In [22], supersym-
metric relations were found for electroweak gauge boson
four-point scattering amplitudes.

The PT method has been explicitly extended beyond
one-loop [23–25], has recently been proven to exist to all
orders in perturbation theory [26–29], and interestingly,

each Green’s function is equal to the corresponding
Green’s function of the background field method (BFM)
in quantum Feynman gauge �Q � 1, a result suggested in
[30,31]. Heuristically, this is due to the fact that there are
no longitudinal (pinching) momenta in the gauge propa-
gator or the elementary vertices in this special gauge.

The background field method (BFM) [32] constructs
manifestly gauge-invariant Green’s functions in the follow-
ing way. First, the field variable (A) in the path integral is
separated into a background (B) and quantum (Q) field,
A � B�Q. Only the quantum fieldQ propagates in loops,
since it is a variable of functional integration. In contrast,
the background field B appears only in external legs. By
judiciously choosing the gauge-fixing function, one arrives
at an effective action which remains manifestly invariant
under background field gauge-transformations �Ba� �

�fabc!bBc� �
1
g @�!

a. Furthermore, derivatives of the
BFM effective action with respect to the background field
B yield the same 1PI Green’s functions as the conventional
effective action with a nonstandard gauge-fixing. Thus, it
can be shown [32] that the correct S-matrix is obtained by
sewing together trees composed of 1PI Green’s functions
of B fields. In doing so, one can fix the gauge of B, which
propagates only at tree level, independently of the gauge
fixing of Q. For example, convenient noncovariant gauges
might be used for the trees while BFM Feynman gauge
�Q � 1 (BFMFG) can be used for the loops.

The correspondence between the PT and BFM is not
surprising, since the BFM is a formulation of gauge theory
where Green’s functions of the gauge field are manifestly
(background) gauge-invariant. Although this is true for all
values of the quantum gauge-fixing parameter �Q, it is only
for the special value �Q � 1 that the BFM Green’s func-
tions also have the correct kinematic structure of the irre-
ducible PT Green’s functions. Alternatively, it has been
shown [31] that applying the PT algorithm to the BFM for
�Q � 1 leads back to the canonical (�Q � 1) PT Green’s
functions.

Finally, in the ? scheme of Kennedy and Lynn [33], a
gauge-invariant effective Lagrangian was constructed for
electroweak four-fermion processes by explicitly rearrang-
ing the one-loop corrections. As in the pinch technique,
vertex parts must be added to would-be two-point func-
tions to yield genuine two-point functions. One particular
motivation is that fact that the photon acquires a spurious
mass from its mixing with the Z0, ��Z�q2 � 0� � 0, un-
less the correct vertex parts are added. The resulting effec-
tive charges, �?�q2� and s2

?�q
2� are in fact precisely equal

to the corresponding pinch-technique effective charges at
one loop, including all finite terms and threshold depen-
dence [8].

Thus, all three methods for constructing physical gauge-
invariant Green’s functions lead to the same results, which
in this paper will be referred to as either PT or PT/BFMFG
Green’s functions.
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The organization of this paper is as follows. In Sec. II,
we will discuss the general structure of the gauge-invariant
three-gluon vertex, which is constrained by the Ward iden-
tity and Bose symmetry. Two convenient tensor bases and
their relation are discussed. In Sec. III, the main results of
this paper are given. First, the nontrivial supersymmetric
relations between the gluon, quark, and scalar contribu-
tions to each form factor are discussed. The explicit results
for the form factors are given in two different bases for
massless internal particles, with the full mass effects rele-
gated to Appendix E. In Sec. IV, we briefly discuss the
phenomenological application to physical scattering
processes, where we derive an effective coupling for the
three-gluon vertex, ~��k2

1; k
2
2; k

2
3�, and an effective scale,

Q2
eff�k

2
1; k

2
2; k

2
3�, both of which depend on three distinct

gluon virtualities. In Sec. V, the phenomenological effects
of internal masses are discussed. A complicated threshold
and pseudothreshold structure emerges. Furthermore, a
three-scale effective number of flavors NF�k2

1=M
2; k2

2=M
2;

k2
3=M

2� is defined. Conclusions and future directions are
given in Sec. VI. In Appendix A, a brief outline of the
calculational method is given, and some basic one- and
two-point integrals are given. Appendix B is devoted to a
thorough discussion of the massive triangle integral, and
analytic continuations are given for each kinematic region.
Appendix C collects some useful results for special func-
tions. Appendix D explains the corrections to the form
factors when a supersymmetric regularization is used.
Finally Appendix E gives explicitly the corrections to the
form factors arising from internal massive gauge bosons,
fermions, and scalars.

II. GENERAL STRUCTURE OF THE
THREE-GLUON VERTEX

A. Symmetries

One of the most important aspects of the gauge-invariant
three-gluon vertex discussed in this paper is the relatively
simple Ward identity it satisfies, which has the same form
as the Ward ID satisfied by the tree-level vertex. This was
proven at one-loop in the original paper by Cornwall and
Papavassiliou [1] using the explicit one-loop result, which
is the gluon part of Eqs. (17) and (18) below. It is straight-
forward to show that the fermion and scalar parts also
satisfy the same Ward identity (just as in QED).
Furthermore, the equivalence of the BFMFG and PT to
all orders [26] allows one to write the Ward identity
satisfied by the three-gluon vertex to all orders as
 

p�3
3 �abc�1�2�3

�p1; p2; p3�

� fadc�t�1�2
�p2��db ��db

�1�2
�p2�� � fdbc�t�1�2

�p1��da

��da
�1�2
�p1��; (3)

plus two other equations which are cyclic permutations.
The transverse tensor t���p� � p2g�� � p�p� comes

from the tree-level term. Here all momenta are defined to
be incoming and all labels are defined in counterclockwise
fashion, as shown in Fig. 1. This Ward identity represents a
great simplification compared to the usual Slavnov-Taylor
identities satisfied by the conventional gauge-dependent
three-gluon vertex, which involves the gluon propagator,
the ghost propagator, and the ghost-ghost-gluon vertex
function. The self-energy function in the above equation
is not the usual gauge-dependent self-energy, but rather the
gauge-invariant pinch-technique self-energy, which is the
only self-energy discussed in this paper. An immediate
consequence is that the longitudinal (L) part of the vertex,
defined as the part which contributes to the above Ward ID,
must have only the antisymmetric color factor fabc so
long as gluons conserve the color charge, �ab

���q� �
�ab����q�. As far as we know, the transverse (T) part of

the vertex (defined by p�3
3 �abc�T��1�2�3�p1; p2; p3� � 0) is not

required to be proportional to fabc, but may in principle
contain dabc terms. Nevertheless, no such terms appear at
one or two-loop order, and so in the subsequent discussion
we take

 �abc�1�2�3
�p1; p2; p3� � fabc��1�2�3

�p1; p2; p3�; (4)

in terms of which the Ward identity becomes

 p�3
3 ��1�2�3

�p1; p2; p3� � t�1�2
�p2��1���p2

2��

� t�1�2
�p1��1���p2

1��: (5)

Bose symmetry, the fact that 3 identical particles are
entering the vertex, and the properties of fabc imply defi-
nite properties of ��1�2�3

�p1; p2; p3� under the inter-
change of labels. In particular, defining the five elements
of the permutation group S3 to act by

cb

aµ

3

3
2

2

1

1

µµ

1

23 ll

l
p

p

p

FIG. 1 (color online). The notation and loop momentum rout-
ing used throughout this paper. The internal particle could be a
gauge boson, ghost, quark, or scalar.
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g123 �

��1; p1� ! ��2; p2�

��2; p2� ! ��3; p3�

��3; p3� ! ��1; p1�

0BB@
1CCA;

g12 �
��1; p1� ! ��2; p2�

��2; p2� ! ��1; p1�

 !
;

g23 �
��2; p2� ! ��3; p3�

��3; p3� ! ��2; p2�

 !
;

g31 �
��3; p3� ! ��1; p1�

��1; p1� ! ��3; p3�

 !
(6)

and g321 � g�1
123 one finds that �g123; g321; g12;

g23; g31� yields ��;�;�;�;�� when acting on
��1�2�3

�p1; p2; p3�.
The non-Abelian nature of the permutation group S3

prevents one from finding a basis in which all of the tensors
are eigenstates of all of these operators. Thus, aesthetic and
physical principles must guide us in choosing convenient
bases.

B. Two convenient bases

Here we will discuss two convenient tensor bases. The�
basis is useful in realistic perturbative calculations, since it
is constructed so that most of the basis tensors vanish when
dotted into conserved vertices. In contrast, the LT basis is
more useful for theoretical work such as solving the Ward
ID in Eq. (3). As will be discussed further in this section,
these two bases are complementary in their relation to
current conservation.

To motivate and explicitly construct these bases, let us
consider the most general tensor structure. The three index
Lorentz covariant tensor must be constructed out of the
metric g�� and the momenta (p�i ). Since the momenta are
not independent, p1 � p2 � p3 � 0, simple combinatorics
implies that there are in general 14 independent tensor
components, 6 of which have one power of momenta and
also the metric, and 8 of which have 3 powers of momenta.
Many different basis choices can be made, although we
will use essentially two.

In the subsequent discussion, some efficient notation
will prove useful. This is summarized in Table I.

Thus, each tensor is rewritten as a 3 slot object, where
slots correspond to �1, �2, �3 in that order, and the
content of each slot is either ‘‘1,’’ ‘‘2,’’ or ‘‘3’’ to represent
momentum p1, p2, p3, or a ‘‘0,’’ which must occur in pairs
and represents that those two indices are connected by the
metric tensor.

The most naive thing to do would be to just eliminate
one momenta, say p3 � �p1 � p2 and use the following
14 basis tensors: 100, 200, 010, 020, 001, 002, 111, 112,
121, 211, 122, 212, 221, 222. This is not very useful since
the explicit Bose symmetry between the three gluons has
been broken, and thus delicate relations between the form
factors will have to enforce it.

1. The � basis

A more natural choice is obtained by starting from a
manifestly symmetric, but redundant basis, which has 36
possible basis tensors, 9 with one power of momenta, and
27 with three powers of momenta. As a step towards our
final basis, we find it convenient to eliminate all such
tensors with momenta p�1

1 , p�2
2 , or p�3

3 , i.e. anything
with 1 in the first slot, 2 in second slot or 3 in the third
slot. This yields the 14 basis tensors 001, 002, 200, 300,
030, 010, 211, 212, 232, 332, 331, 311, 231, 312, which are
shown in Table I. Note that under the action of g123 we
have 200! 030, 300! 010, 211! 232, 311! 212 etc.
Also, notice that 200 and 300 are interchanged by the
action of g23, while 211 and 212 are interchanged by the
action of g12, etc. Thus, it is convenient to take appropriate
linear combinations such that one of these interchange
operators is diagonal for each tensor. Such basis tensors
are

 

â12 � �00�� � 001� 002; â23 � ��00� � 200� 300; â31 � �0� 0� � 030� 010

b̂12 � �00�� � 001� 002; b̂23 � ��00� � 200� 300; b̂31 � �0� 0� � 030� 010

ĉ12 � �����; ĉ23 � �����; ĉ31 � �����

d̂12 � �����; d̂23 � �����; d̂31 � �����

ĥ � �����; ŝ � �����;

(7)

where the notation means �� ��� � �2� 3; 3� 1; 1� 2�, so that �� ��� � 231� 232� 211� 212� 331� 332�
311� 312, etc. The subscripts are chosen because, for example, â12 is an eigenstate of g12, etc.

Suppressing indices and momentum dependence, the three-gluon vertex is then written as

TABLE I. Definition of tensor abbreviations.

001 � g�1�2
p1�3

002 � g�1�2
p2�3

200 � g�2�3
p2�1

300 � g�2�3
p3�1

030 � g�3�1
p3�2

010 � g�3�1
p1�2

211 � p2�1
p1�2

p1�3
212 � p2�1

p1�2
p2�3

232 � p2�1
p3�2

p2�3
332 � p3�1

p3�2
p2�3

331 � p3�1
p3�2

p1�3
311 � p3�1

p1�2
p1�3

312 � p3�1
p1�2

p2�3
231 � p2�1

p3�2
p1�3
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� � �A12â12 � B12b̂12 � C12ĉ12 �D12d̂12 � perms�

� Sŝ�Hĥ; (8)

where the lower case letters represent the basis tensors,
while the upper case letters are the form factors, which
depend on p2

1, p2
2, and p2

3. In addition to indicating which
basis tensors they are associated with, the subscripts on
form factors also indicate the ordering of momenta in
the arguments. For example, A12 � A�p2

1; p
2
2jp

2
3�, A23 �

A�p2
2; p

2
3jp

2
1�, A31 � A�p2

3; p
2
1jp

2
2�, and the first two argu-

ments are either symmetric or antisymmetric. The behavior
of these form factors under S3 can be inferred from the
behavior of the basis tensors under S3 (which will be
discussed momentarily), along with the overall require-
ment for the vertex given below Eq. (6). One finds that
A�x; yjz� � �A�y; xjz�, and thus A12 � A21, etc. Similarly,
B12 � �B21, C12 � C21, and D12 � �D21. H is totally
invariant under the interchange or permutation of any
momenta, while S goes to �S under any interchange of
momenta, but is invariant under a cyclic permutation g123.

It is straightforward to see that under the action of the
permutation operator (g123) these 14 basis tensors are
organized into four triplets, fâ12; â23; â31g, fb̂12; b̂23; b̂31g,
fĉ12; ĉ23; ĉ31g, fd̂12; d̂23; d̂31g, as well as ĥ and ŝ. The latter
two are eigenstates of all five operators.

Consider the properties of fâ12; â23; â31g under the per-
mutation group. It is easy to see that under the action of any
element gi, we have

 

â12

â23

â31

0@ 1A! gi

â12

â23

â31

0@ 1A; (9)

with the matrices given by

 g123 �

0 1 0
0 0 1
1 0 0

0@ 1A; g321 �

0 0 1
1 0 0
0 1 0

0@ 1A;
g12 � �

1 0 0
0 0 1
0 1 0

0@ 1A; g23 � �

0 0 1
0 1 0
1 0 0

0@ 1A;
g31 � �

0 1 0
1 0 0
0 0 1

0@ 1A;
(10)

The transformation rules are identical for fcijg, and
similar for fbijg and fdijg with the only change being that
there is no minus sign in the three interchange operators
g12, g23, and g31.

The basis constructed above [Eq. (7)] will be called the
� basis. As discussed later, this basis is the most conve-
nient for phenomenology and furthermore the form factors
exhibit particularly simple relations between the gluon,
quark, and scalar contributions [Eqs. (45) and (55)].

However, the � basis as it stands does not contain the
tree-level tensor structure. Thus, one is naturally led to
diagonalizing the permutation operator g123.1 Clearly, this
is the most symmetric choice and, more importantly, one of
the resulting eigenvectors is the tree-level tensor structure.

In the triplet representation of S3, g123 is diagonalized
by the similarity transformation

 

S �
1���
3
p

1 1 1

1 � ��

1 �� �

0BB@
1CCA;

S�1g123S � ~g123 �

1 0 0

0 � 0

0 0 ��

0BB@
1CCA;

(11)

where � � exp�2i	3 � � �
1
2� i

��
3
p

2 , �� � �� are cube roots
of unity. This results in new basis tensors and form factors

 

â0

â�
â�

0@ 1A � ���
3
p
S�1

â12

â23

â31

0@ 1A � 1 1 1
1 �� �
1 � ��

0@ 1A â12

â23

â31

0@ 1A;
A0

A�
A�

0@ 1A � 1���
3
p S

A12

A23

A31

0@ 1A � 1

3

1 1 1
1 � ��
1 �� �

0@ 1A A12

A23

A31

0@ 1A:
(12)

This procedure is repeated identically for the �b; B�, �c; C�,
and �d;D� basis tensors and form factors.

Notice that â0 � g�1�2
�p1 � p2��3

� g�2�3
�p2 �

p3��1
� g�3�1

�p3 � p1��2
is the tree-level tensor, which

is why the extra factors of
���
3
p

were included above.
The transformation properties for the basis tensors âi

and ĉi are deduced from ~g123 given above, ~g321 �
diag�1; ��; ��, and
 

~g12 � �

1 0 0

0 0 1

0 1 0

0BB@
1CCA; ~g23 � �

1 0 0

0 0 �

0 �� 0

0BB@
1CCA;

~g31 � �

1 0 0

0 0 ��

0 � 0

0BB@
1CCA; (13)

while the transformation properties of the form factors are
deduced by demanding that behavior given below Eq. (6) is
respected. For example, since â� ! � ��â� under ~g23, we
find A� ! �A� so that A�â� ! �A�â�. For �b; B� and
�d;D�, the only change in the above is that there is not a
minus sign in ~g12, ~g23, and ~g31.

1One can readily check that the only two operators in S3 which
commute are g123 and its inverse g321. Thus one can diagonalize
these two, OR one of the interchange operators g12, g23, g31.
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We have not touched ĥ and ŝ, as these are already
eigenstates of all five operators �g123; g321; g12; g23; g31�,
with eigenvalues (����� ) and (����� ),
respectively.

We will call the above constructed basis the symmetric
� basis. Note that any basis can be symmetrized in the
same manner by diagonalizing the permutation operator
g123. The basis we started with in Eq. (7) is motivated by

(a) its simple and symmetric construction from only
metrics and �pi�1 � pi�1��i

,
(b) it is the most convenient basis for perturbative cal-

culations, as will be discussed in Sec. IV, and
(c) The individual form factors have a relatively simple

form, as will be discussed in Sec. III.

2. The LT basis

For some theoretical studies, another convenient basis is
determined by the distinction between transverse (T) and
longitudinal (L) tensors [34,35]. The L tensors contribute
to the Ward ID (or the more complicated Slavnov-Taylor
ID for the gauge-dependent vertex) while the T tensors
satisfy homogeneous equations p�3

3 ��T��1�2�3 � 0. This is a
very convenient basis for evaluating the loop corrections to

the vertex, since the L and T parts separate, as described in
Appendix A.

The � basis and the LT basis are complementary in the
following sense. The � basis is constructed out of combi-
nations of longitudinal (� ) and transverse (� ) momenta,
so that for example �00�� � g�1�2

�p1�3
� p2�3

� �

�g�1�2
p3�3

vanishes if the �3 index is contracted into a
conserved current. Meanwhile, the LT basis distinguishes
between parts of the vertex that do (T) and do not (L)
vanish when dotted with longitudinal momenta. These
straightforward relations to current conservation and
Ward identities are essentially the reason these two bases
are the most convenient to work with.

In our notation, the vertex can be written in the LT basis
as � � �L � �T , where

 �L � � �A12 �a12 � �B12
�b12 � �C12 �c12 � perms� � �S �s;

�T � � �F12
�f12 � perms� � �H �h;

(14)

and the bar distinguishes this LT basis from the � basis
defined above in Eq. (7). The relation between basis ten-
sors is given by

 

�a12 � 001� 002 � â12;

�b12 � 001� 002 � b̂12;

�c12 � 211� 212� �p1 	 p2��001� 002� �
1

4
�ĉ12 � d̂23 � d̂31 � ĥ� � �p1 	 p2�â12;

�f12 � �p1 	 p2�
�p2 	 p3�001� �p3 	 p1�002� � 
�p2 	 p3�211� �p3 	 p1�212�

�
�p1 	 p2�

2

�p2

3â12 � �p2
1 � p

2
2�b̂12� �

1

8

p2

3�ĉ12 � d̂23 � d̂31 � ĥ� � �p2
1 � p

2
2��d̂12 � ĉ23 � ĉ31 � ŝ��;

�h � 231� 312� 
�p1 	 p2��030� 300� � �p2 	 p3��001� 010� � �p3 	 p1��200� 002��

�
1

4
�ĥ� ĉ12 � ĉ23 � ĉ31� �

1

2

p2

3â12 � �p2
1 � p

2
2�b̂12 � p2

1â23 � �p2
2 � p

2
3�b̂23 � p2

2â31 � �p2
3 � p

2
1�b̂31�;

�s � 231� 312 �
1

4
�ŝ� d̂12 � d̂23 � d̂31�;

(15)

and we used �p1 	 p2� � �p
2
3 � p

2
1 � p

2
2�=2. This implies the relation between form factors

 

A12 � �A12 � �p1 	 p2� �C12 �
p2

3

2

�p1 	 p2� �F12 � �H�; B12 � �B12 �

p2
1 � p

2
2

2

�p1 	 p2� �F12 � �H�;

C12 �
1

4

�
�H � �C12 �

p2
3

2
�F12 �

p2
1 � p

2
3

2
�F31 �

p2
2 � p

2
3

2
�F23

�
;

D12 �
1

4

�
�S� �C23 � �C31 �

p2
1

2
�F23 �

p2
2

2
�F31 �

p2
1 � p

2
2

2
�F12

�
;

H �
1

4

�
�H � �C12 �

p2
3

2
�F12 � �C23 �

p2
1

2
�F23 � �C31 �

p2
2

2
�F31

�
;

S �
1

4

�
�S�

p2
2 � p

2
1

2
�F12 �

p2
3 � p

2
2

2
�F23 �

p2
1 � p

2
3

2
�F31

�
;

(16)
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The unwritten form factors (A23, etc.) and basis tensors can
be obtained trivially from the above equations by cyclic
permutation (g123). In doing so it is useful to keep in mind
the properties described under Eq. (8), along with �Fij �
�Fji, �Aij � �Aji, �Bij � � �Bji, �Cij � �Cji, while �H and �S

have the same transformation properties as H and S,
respectively.

III. RESULTS FOR THE FORM FACTORS

In this section, we will present the results for the form
factors in arbitrary dimension d using dimensional regu-
larization (DREG), for gluons in the adjoint representation,
and massless quarks and scalars in arbitrary representa-
tions. The corrections due to supersymmetric regulariza-
tion and massive fermions, scalars, and gauge bosons are
given in detail in Appendices D and E, respectively.

The gauge-invariant vertex at one loop can be written as

 g�abc�1�2�3
�p1; p2; p3� � gfabc

�
��0��1�2�3�p1; p2; p3� �

ig2

2

�
CAG�1�2�3

� 2
X
f

TfNfQ�1�2�3
� 2

X
s

TsNsS�1�2�3

��
; (17)

where the gluon (G), quark (Q), and scalar (S) integrals are
 

G�1�2�3
�
Z ddl

�2	�d
1

l21l
2
2l

2
3


�F��1�
�l2; p1;�l3��

F
��2��l3; p2;�l1��

F
��3�
�l1; p3;�l2� � 2�l2 � l3��1

�l3 � l1��2
�l1 � l2��3

� 8l21�g�1�2
p1�3

� g�1�3
p1�2
� � 8l22�g�2�3

p2�1
� g�2�1

p2�3
� � 8l23�g�3�1

p3�2
� g�3�2

p3�1
��;

Q�1�2�3
�
Z ddl

�2	�d
1

l21l
2
2l

2
3

Tr
��1
6 l3��2

6 l1��3
6 l2�;

S�1�2�3
� �

Z ddl

�2	�d
1

l21l
2
2l

2
3

�l2 � l3��1
�l3 � l1��2

�l1 � l2��3
:

(18)

The gluon contribution was first derived in [1] using the pinch technique (PT), and is equivalent to the vertex obtained in
the Background Field Method in quantum Feynman gauge (BFMFG). The quark and scalar integrals come straightfor-
wardly from the one-loop triangle diagrams. The notation and routing of the integral are defined in Fig. 1 such that l1 �
p2 � l3, l2 � p3 � l1, l3 � p1 � l2 and the tree-level vertex ��0� and �F are defined as
 

��0��1�2�3�p1; p2; p3� � g�1�2
�p1 � p2��3

� g�2�3
�p2 � p3��1

� g�3�1
�p3 � p1��2

;

�F��1�
�l2; p1;�l3� � 2p1�g�1� � 2p1�g�1� � �l2 � l3��1

g��:
(19)

All massless integrals can be reduced to two basic scalar
integrals:
 

J � J�p2
1; p

2
2; p

2
3� �

Z ddl

�2	�d
1

l21l
2
2l

2
3

;

J1 � J1�p2
1� �

Z ddl

�2	�d
1

l22l
2
3

�
Z ddl

�2	�d
1

l2�l� p1�
2 ;

(20)

These functions, and the massive integrals which are
considered later, are summarized in Appendices A and B,
where J is written in terms of Clausen functions. In the
following we will suppress the momentum arguments and
write our results in terms of J, J1, J2, J3.

A. (Supersymmetric) relations between gluons, quarks,
and scalars

Before presenting the results for individual form factors,
which are somewhat lengthy, we will discuss the relation-
ship between the gluon (G), quark (Q), and scalar (S)
contributions. We will end up finding relations similar to
those found in the context of supersymmetric scattering

amplitudes [20,21,36]. For a generic form factor F, let us
write the one-loop contribution as

 F � ig2

�
CAFG � 2

X
f

TfNfFQ � 2
X
s

TsNsFS

�
; (21)

where the coupling constant ig2 and group theory factors
have been pulled out. The standard notation is used, so that
CA � C2�G� � Nc for SU�Nc�, and Tr
taft

b
f� � Tf�

ab.
Thus, FQ stands for the contribution of one Dirac fermion
in the fundamental representation of SU�Nc�, or, due to a
symmetry factor of 1

2 for Weyl fermions, the contribution of
adjoint gluinos divided by Nc. Similarly, FS stands for the
contribution of one complex scalar in the fundamental
representation, or the contribution of a real scalar in the
adjoint, divided by Nc. These identifications will be used
shortly.

After explicitly calculating the integrals in Eq. (18), we
noticed that the gluon, quark, and scalar contributions have
a similar structure for each form factor. To make this
explicit, define the following sums for form factor F:
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 �QG�F� �
�d� 2�

2
FQ � FG;

�SG�F� � �d� 2�FS � FG:
(22)

Although the results for each form factor are often long,
these sums are particularly simple, as can be seen in
Eqs. (42), (45), and (55). For all form factors in any basis,
it also turns out that

 �d� 10��SG � 8�QG (23)

and �QG is always proportional to d� 10. The above two
equations and the results of Eqs. (42), (45), and (55) can be
used to determine the Q and S contributions to any form
factor, given the gluon contributions written explicitly
below. Furthermore, Eqs. (22) and (23) can be combined
leading to

 FG � 4FQ � �10� d�FS � 0: (24)

Considering the very different origins of each form factor
[Eqs. (17) and (18)], it is remarkable that they are related in
such a simple manner. Note that no such analogous relation
holds for the gauge-dependent vertex [35].

This type of relation hints at supersymmetry. To further
understand the content of these relations, we will consider
various supersymmetries in d � 4.

(i) N � 1 From the above definitions, it is clear that a
vector superplet V1 (gluons plus gluinos) contributes
ig2Nc�FG � FQ� � ig2NcFV1

to a generic form fac-
tor F, while N� chiral superplets contributes
ig2N��

1
2FQ � FS� � ig2N�F�. By the sum rule

Eq. (24) in d � 4, we have FV1
� 6F� � 0. Thus

any form factor can be written

 F � ig2�NcFV1
� N�F�� �

ig2

3
��N�1�

0 FV1
; (25)

where ��N�1�
0 � 3Nc �

1
2N� is the first � function

coefficient. Hence the contributions of vector and
chiral superplets have precisely the same functional
form for each form factor. Furthermore, every form
factor is proportional to �0 even though all but one
of them are UV finite.

(ii) N � 2 Here the vector superplet gives
ig2Nc�FG � 2FQ � 2FS� � ig2NcFV2

, while Nh
hyperplets (a Weyl fermion of each helicity plus a
doublet of complex scalars) yield ig2Nh�FQ �
2FS� � ig2NhFh. The sum rule Eq. (24) can be
written as FV2

� 2Fh � 0, and thus

 F � ig2�NcFV2
� NhFh� �

ig2

2
��N�2�

0 FV2
; (26)

where ��N�2�
0 � 2Nc � Nh.

(iii) N � 4 Here the vector superplet (the only multi-
plet allowed) contributes 2ig2Nc�FG � 4FQ �
6FS� � NcFV4

, which is identically zero by the

sum rule, which of course is a consequence of
��N�4�

0 � 0.
Thus, the similarities between form factors in d � 4 are

related to supersymmetric nonrenormalization theorems.
In particular, the exact conformal invariance of N � 4
implies that the gauge-invariant three-gluon Green’s func-
tion is not renormalized at any order in perturbation theory.
Furthermore, at one-loop order there are not even finite
corrections, as reflected in Eq. (24).

Analogous results hold for supersymmetry in d � 4.
Here we must be careful, because in the sum rules and
form factors presented in this paper we worked in d di-
mensions everywhere except in the traces over gamma
matrices, where we used the conventional rule of dimen-
sional regularization tr
����� � 4g��, and similarly for
other traces. Properly working in integer valued d dimen-
sions, we should use tr
����� � ds�d�g��, where the
spinor dimension of the gamma matrices is

 ds�d� �
2d=2

2�d�1�=2

 !
for

d even
d odd

� �
: (27)

Thus FQd
� ds�d�

4 FQ is the contribution of a Dirac fermion
in d dimensions, and we have

 FG �
16

ds�d�
FQd
� �10� d�FS � 0: (28)

Rather than using Eq. (28), one can alternatively use
Eq. (24) and be sure to count fermion degrees of freedom
in terms of d � 4 spinors. Thus the Weyl fermions of d �
6 and the Weyl-Majorana fermions of d � 10 are com-
posed of 2 and 4 Weyl fermions of four dimensions,
respectively. From this, it is straightforward to show that
d � 6, N � 2 and d � 10, N � 1 gauge theory give
vanishing contribution to every form factor. For the d � 6,
N � 1 case, one finds

 F �
ig2

2
�0FV1

; �0 � 2Nc � N�; (29)

where �0 is determined from Eq. (37) in d � 6.
Note that it is not straightforward to analytically con-

tinue ds�d� into arbitrary noninteger d, which is the reason
for the simple dimensional regularization rule. However,
the sum rule expressed in Eq. (24) is an analytic function of
d and thus represents an analytic continuation of super-
symmetric nonrenormalization theorems to arbitrary d.
This is intimately related to the existence of a supersym-
metry preserving regulator, dimensional reduction
(DRED), where vector degrees of freedom are kept in
four dimensions while the integrals are still performed in
d dimensions. Around four dimensions, d � 4� 2
, we
have FG � 4FQ � �6� 2
�FS � 0 in dimensional regu-
larization, and we see that the 
 term plays the role of
the so-called 
-ghosts of DRED. We have calculated the
form factors in DRED (see Appendix D) and verified that
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 FG � 4FQ � 6FS � 0 �DRED�: (30)

In the preceding discussion of supersymmetries in various
dimensions we implicitly used DRED.

The extension of these relations to the massive case is
outlined in Appendix E, where the full effects of internal
massive fermions (MQ), massive scalars (MS), and mas-
sive gauge bosons (MG) are included, and the sum rule
becomes

 FMG � 4FMQ � �9� d�FMS � 0 (31)

in DREG while in DRED the only change is 9� d is
replaced by 5. Note that the external gluons remain mass-
less and unbroken, so the internal massive gauge bosons
might be the colored heavy gauge bosons arising in GUT
models. The change of 10� d in the massless case to 9�
d in the massive case reflects the fact that massive gauge
bosons ‘‘eat’’ one scalar degree of freedom.

It should be emphasized that relations such as Eq. (24)
do not exist for the gauge-dependent three-gluon vertex
[35], since the gluon contributions depend on the gauge-
parameter, while the quarks and scalars do not. Indeed, it is
uniquely the pinch technique (or equivalently BFM in
quantum Feynman gauge) Green’s function which satisfies
this homogeneous sum rule. For example, calculating in
the BFM with �Q � 1, leads to a nonzero RHS of Eq. (24).

Since the sum rule applies to all form factors, one finds

 G�1�2�3
� 4Q�1�2�3

� �10� d�S�1�2�3
� 0; (32)

which is remarkable given the expressions in Eq. (18). One
can explicitly show this by performing the trace in Eq. (18)
and some tedious algebra to rearrange the �F�F�F term.
This can also be seen in the second order formalism of the
BFM [20,21,36].

A similar relation holds for the one-loop gauge-invariant
(pinch-technique) gluon two-point function in d dimen-
sions,

 �ab
�1�2
�p� � �ab�p2g�1�2

� p�1
p�2
���p2�

� ig2�ab
�
NcG�1�2

� 2
X
f

TfNfQ�1�2

� 2
X
s

TsNsS�1�2

�
; (33)

where from Eqs. (36) and (37) below we find

 G�1�2
� 4Q�1�2

� �10� d�S�1�2
� 0: (34)

Unfortunately, analogous relations do not hold for
higher gauge-invariant gluon n-point functions. This is
essentially because the color and spacetime indices mix
nontrivially. However, inhomogeneous relations of the
form

 G� 4Q� �10� d�S � simple (35)

still hold [20,21,36], where ‘‘simple’’ means an integral

with fewer powers of loop momenta in the numerator. In
the four-gluon case, this is just a simple scalar integral with
no powers of loop momentum in the numerator. These loop
momentum counting rules have been derived in the second
order formalism, which is reviewed in [36]. Note that the
Ward ID for the four-gluon vertex [17] relates it to the
three-gluon vertex, and thus the longitudinal parts of the
four-gluon vertex must satisfy the homogeneous sum rules
FG � 4FQ � �10� d�FS � 0.

It is interesting to see if extensions of these sum rules
apply to two-loop calculations, where the supersymmetric
Yukawa vertices must be taken into account. As a first
application, the two-loop pinch-technique gluon self-
energy has been calculated including finite terms.
Interestingly, the finite terms do not vanish for N � 4
SUSY, so it appears that the homogeneous sum rule in
Eq. (24) does not have a counterpart at two loops. In any
case, the finite parts of the two-loop result allow for an
improved extraction of the PT couplings from data as well
as giving the three-loop beta function. This calculation will
be reported elsewhere [37].

Now explicit expressions for the form factors will be
given, first in the LT basis, and then in the � basis.

B. The longitudinal form factors

It is straightforward to solve the Ward identity [Eq. (5)]
for the ten longitudinal form factors, defined in Eq. (14), in
terms of the gluon self-energy function � defined by
�ab
���p� � �ab�p2g�� � p�p����p

2�. Note that this is
not the usual gauge-dependent self-energy, but rather the
gauge-invariant pinch-technique self-energy. At one loop
in d dimensions this is given by

 ��p2� � ig2�0�d�
Z ddl

�2	�d
1

l2�l� p�2
; (36)

where �0�d� is given by

 �0�d� �
7d� 6

2�d� 1�
C2�G� �

2�d� 2�

�d� 1�

X
f

TfNf

�
1

�d� 1�

X
s

TsNs (37)

for massless gluons, quarks, and complex scalars. The
mass-dependent results are given in section V and
Appendix E. This result holds for dimensional regulariza-
tion (DREG), whereas for dimensional reduction (DRED)
the gluon coefficient changes from (7d� 6) to (8d� 10).

The longitudinal form factors are given by
 

�A12 �
��p2

1� ���p2
2�

2
; �B12 �

��p2
1� ���p2

2�

2
;

�C12 �
��p2

1� ���p2
2�

p2
1 � p

2
2

; �S � 0; (38)

and of course cyclic permutations yield results for �A23, etc.
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Note that one of the 14 form factors vanishes to all orders
and only the �A form factors contain UV divergences.

In the notation of Eqs. (20) and (21) we have

 

�A12�G� �
7d� 6

2�d� 1�

1

2
�J1 � J2�;

�A12�Q� �
2� d
�d� 1�

1

2
�J1 � J2�;

�A12�S� � �
1

2�d� 1�

1

2
�J1 � J2�;

(39)

and similarly for the �B and �C form factors.

C. The transverse form factors

These form factors cannot be determined from the Ward
ID, and must be calculated explicitly. The algorithm used is
briefly described in Appendix A.

Because of the lengthy expressions, the following short-
hand notation will be used for the kinematic invariants:

 

a � p2
1; b � p2

2; c � p2
3; � � p1 	 p2;

� � p2 	 p3; � � p3 	 p1: (40)

We also define the symmetric invariants

 Q � �� �� �; K � ��� ��� ��;

P � ���:
(41)

Note that the dot products can be written in terms of the
virtualities � � �c� a� b�=2, � � �a� b� c�=2, � �
�b� c� a�=2, or vice versa a � ��� �, b � ��� �,
c � ��� �, but the formulae are simpler and more
transparent when selectively written in terms of both �,
�, � and a, b, c.

We will only write the full gluon contribution explicitly,
since the quark and scalar parts can be determined from the
results of Sec. III B [see Eqs. (22)–(24)] and the quark-
gluon sum rules for the transverse form factors, which are

 �QG� �F12� � �
�d� 10�

2K

�
�J �

2��J1 � J2� � ��J2 � J3� � ��J3 � J1�

�� �

�
; �QG� �H� �

�d� 10�

2
J: (42)

The gluon contributions to the transverse form factors in the LT basis are

 

�F12�G� �
1

2K2

�
J�10P � c�K� 7�2 � 3���� �

�
1�
�d� 1���

K

�
�

�
PJ� ��J1 � ��J2 � ��J3 �

K

d� 1
�J1 � J2 � J3�

�
�

7d� 6

2�d� 1��d� 2�

8P � �d� 4��c2 � �d� 2��4K�� c����

J1 � J2

a� b

�
1

d� 1

�
2�2�d� 2� �

5d� 2

2
K�

7d� 6

d� 2
���

2d2 � 15d� 14

d� 2
��

�
�J2 � J3�

�
1

d� 1

�
2�2�d� 2� �

5d� 2

2
K�

7d� 6

d� 2
���

2d2 � 15d� 14

d� 2
��

�
�J3 � J1�

�
(43)

and
 

�H�G� � �
1

2K2

�
J
�

8K2 � �d� 2�PQ� �d� 1�
abcP
K

�
�
d� 2

d� 1

��K� 2����J1 � J2�

� ��K� 2����J2 � J3� � ��K� 2����J3 � J1��

� P
d� 1

d� 1

�
��J1 � J2 � J3� �

d� 1

K
���J1 � ��J2 � ��J3�

��
: (44)

D. The form factors in the physical basis

Now we will present the results in the physical� basis [Eq. (7)], before symmetrization, Eq. (12), since this is the most
convenient way to present the results. Of course, these results can be obtained from the relation between the � basis and
the LT basis given in Eq. (16), but we write them explicitly for future convenience and phenomenological applications.

The quark-gluon sums are given by
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�QG�A12� �
�d� 10�

4K
�abcJ� a�J1 � b�J2 � c�J3�;

�QG�B12� �
�d� 10�

4K
���� ��abJ � �2�� ��aJ1 � �2�� ��bJ2 � ���� ��J3�;

�QG�C12� � �
�d� 10�

4K
��cJ� �J1 � �J2 � cJ3�; �QG�D12� � 0; �QG�H� � 0; �QG�S� � 0;

(45)

and the remaining sums (for A23, etc.) are related trivially by permutations �! �! �! �, a! b! c! a, J1 !
J2 ! J3 ! J1.

The gluon form factors in d dimensions are

 

�4K2A12�G� � abcJ�7K� ��� � aJ1

�
7K�� �2��K�

d� 2

d� 1

�
� bJ2

�
7K�� ��2 �K�

d� 2

d� 1

�
� cJ3

�
7K�� P �Kc

d� 2

d� 1

�
�4K2B12�G� � abJ�7K� ������ �� � aJ1

�
7K�� b���� �� �K

2��7d� 6� � �
d� 1

�
� bJ2

�
7K�� a���� �� �K

2��7d� 6� � �
d� 1

�
� ��� ��J3

�
7K�� P �Kc

d� 2

d� 1

�
;

(46)

 

16K3C12�G� � cJ
3K2�10�� c� �K��3 � 6c��� � PK�d� 4� � P �d� 1���2 � 2����

� J1

�
K2

�
�3� 2d�
d� 1

�� �
�d2 � 30d� 24�

d� 1
� 3�

�
� P �d� 1�

�
K

d� 1
� ��2Q� 3��

�
� �K

�
�d2 � 3�

d� 1
�2 � 6�2 �

�d2 � 8d� 9�

d� 1
��� 4�2 �d� 2�

d� 1

��
� J2

�
K2

�
�3� 2d�
d� 1

�� �
�d2 � 30d� 24�

d� 1
� 3�

�
� P �d� 1�

�
K

d� 1
� ��2Q� 3��

�
� �K

�
�d2 � 3�

d� 1
�2 � 6�2 �

�d2 � 8d� 9�

d� 1
��� 4�2 �d� 2�

d� 1

��
� cJ3

�
�30d� 31�

d� 1
K2 �K

�
�2 � 4c2 �d� 2�

d� 1
�
�d2 � 4d� 1�

d� 1
��

�
� �d� 1�P �2Q� 3��

�
; (47)

 

16K3D12�G� � ab�a� b�J�K�Q� 2�� � �d� 1�P � � aJ1

�
d2 � 4

d� 1
K2 �K

�
�2 � ��

�d2 � 3�

d� 1
� ��

�d2 � 4d� 1�

d� 1

� 4�2 �d� 2�

d� 1

�
� �2�� ��P �d� 1�

�
� bJ2

�
�d2 � 4�

d� 1
K2 �K

�
�2 � ��

�d2 � 3�

d� 1

� ��
�d2 � 4d� 1�

d� 1
� 4�2 �d� 2�

d� 1

�
� �2�� ��P �d� 1�

�
� �a� b�J3

�
�4d� 7�

d� 1
K2 �K

�
3�2 � ��

�d2 � 3�

d� 1

�
� �P �d� 1�

�
; (48)

 

16K3H�G� � abcJ�P �d� 1� �KQ� � aJ1

�
3� 2d
d� 1

K2 �

�
d2 � 3

d� 1
��� �2

�
K� �d� 1��P

�
� bJ2

�
3� 2d
d� 1

K2 �

�
d2 � 3

d� 1
��� �2

�
K� �d� 1��P

�
� cJ3

�
3� 2d
d� 1

K2

�

�
d2 � 3

d� 1
��� �2

�
K� �d� 1��P

�
; (49)
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16K3S�G� � �a� b��b� c��c� a�J�3KQ� �d� 1�P � � �b� c�J1

�
3K2

d� 1
�K

�
4a2 d� 2

d� 1
���

d2� 4d� 1

d� 1
� 3�2

�
� �d� 1�P �2Q� 3��

�
� �c� a�J2

�
3K2

d� 1
�K

�
4b2 d� 2

d� 1
���

d2� 4d� 1

d� 1
� 3�2

�
� �d� 1�P �2Q� 3��

�
� �a� b�J3

�
3K2

d� 1
�K

�
4c2 d� 2

d� 1
���

d2� 4d� 1

d� 1
� 3�2

�
� �d� 1�P �2Q� 3��

�
: (50)

Now we turn to the physical symmetrized basis. From
Eq. (12), we see that for any triplet of form factors, say Aij,
we have
 

A0 �
1
3�A12 � A23 � A31�;

A� �
1
3�A12 � �A23 � ��A31� � A1 � iA2;

A� �
1
3�A12 � ��A23 � �A31� � A1 � iA2;

(51)

where we have defined

 A1 �
1

3

�
A12 �

1

2
�A23 � A31�

�
; A2 �

���
3
p

6
�A23 � A31�:

(52)

A1 and A2 correspond to the real and imaginary parts of
A� only when J, J1, J2, J3 are real. This occurs (in the
massless case) when K> 0, which can only happen if all
three-gluon virtualities are of the same sign, either all
spacelike or all timelike. This is often not the case for
real problems. In general, however, it can be shown that
 

A���a; b; c� � A��a;�b;�c�;

B�0�a; b; c� � B0��a;�b;�c�;

B���a; b; c� � B��a;�b;�c�;

C�0�a; b; c� � �C0��a;�b;�c�;

C���a; b; c� � �C��a;�b;�c�;

D�0�a; b; c� � �D0��a;�b;�c�;

D���a; b; c� � �D��a;�b;�c�;

H��a; b; c� � �H��a;�b;�c�;

S��a; b; c� � �S��a;�b;�c�:

(53)

Furthermore, all of the above form factors except for A0

are scale invariant,

 F��a; �b; �c� � F�a; b; c� � F�a=c; b=c; 1� for

� > 0:
(54)

Only A0 is not scale invariant and does not satisfy a
simple reality condition.

The quark-gluon sums are given by
 

�QG�A0� �
�d� 10�

4K
�0;

�QG�A�� � 0;

�QG�B0� � �
�d� 10�

8K
B0�G�;

�QG�B�� �
�d� 10�

36K
��3�Q�2 �KJ��� ���

� i
���
3
p
�Q�1 �KJ�Q� 3����;

�QG�C0� �
�d� 10�

6
J;

�QG�C�� �
�d� 10�

24K
��1 � i

���
3
p

�2�;

�QG�D0� � �QG�D�� � 0;

�QG�H� � �QG�S� � 0;

(55)

where we have defined the commonly occuring functions

 

�0 � abcJ� a�J1 � b�J2 � c�J3;

�1 � �K� 3���J� 3�J1 � 3�J2 � 3��� ��J3;

�2 � ���� ��J� �2�� ��J1 � �2�� ��J2

� ��� ��J3:

(56)

From the definition of �QG in Eq. (22) we see that the
quark and gluon [and thus scalar, by Eq. (23)] contributions
have the same functional form for the seven form factors
which have a zero in the above. Letting F stand for A�,D0,
D�, H or S, we find that

 F � ig2

�
Nc �

4

d� 2

X
f

TfNf �
2

d� 2

X
s

TsNs

�
F�G�;

(57)

which, in d � 4 QCD, reduces to F � ig2�Nc � Nf�F�G�.
In addition, both A0 and B0 are governed by one func-

tion, since they satisfy different sum rules. In particular, the
tree-level tensor structure has coefficient
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 A0 � �
ig2

2K

�
11

3
CA �

2�3d� 8�

3�d� 2�

X
f

TfNf

�
2

3�d� 2�

X
s

TsNs

�
�0: (58)

This form factor will be discussed in more detail in the next
section.

Also, one finds from explicit calculation that the scalar
contribution to B0 vanishes,

 B0�S� � 0; B0�G� � 4B0�Q� � 0; (59)

and thus

 

B0 � ig2

�
Nc �

1

2

X
f

TfNf

�
B0�G�; where

B0�G� � �
2

3K

�a� b��b� c��c� a�J

� �b� c��2Q� 3��J1 � �c� a��2Q� 3��J2

� �a� b��2Q� 3��J3�: (60)

Finally, since �S � 0 exactly, we know that our 14 di-
mensional basis is degenerate, which is reflected in the fact
that S� 3D0 � 0. Hence we define a new basis tensor
d̂00 � d̂0 � 3ŝ so that D0d̂0 � Sŝ � D0�d̂0 � 3ŝ� � D0d̂

0
0.

Thus, we find that eight of the 13 nonzero form factors
have the same functional form for gluons, quarks, and
scalars. Only the five form factors B�, C0, and C� do
not. These statements are basis dependent. One can always
find bases where none of the form factors have a vanishing
QG sum rule. In the course of our calculations, we found
that the� basis gives the maximum number of such zeroes
among bases which are reasonable and contain the tree-
level tensor structure. In this sense the (symmetric)� basis
is the simplest and most compelling. We will see in the next
section that this is also the most convenient basis for
perturbative calculations. Of course, as discussed in a
previous section, with supersymmetry every form factor
is proportional to �0, and so supermultiplets are governed
by the same function in any basis.

IV. THREE-GLUON VERTEX IN PERTURBATION
THEORY

In this section we will outline the application of our
results to physical processes. Along the way, we will
introduce a three-scale effective charge ~��k2

1; k
2
2; k

2
3� and

derive the effective scale of the three-gluon vertex
Q2

eff�k
2
1; k

2
2; k

2
3�.

Applying the pinch-technique (PT) construction to the
three-gluon vertex occurring in a physical process involv-
ing three external on-shell legs, one arrives at a tree-level

skeleton graph dressed with pinch-technique vertices and
self-energies as shown in Fig. 2. The PT gluon self-energy
and three-gluon vertex are the only universal and gauge-
invariant one-loop corrections which contribute to cou-
pling constant renormalization. These will be called non-
conformal terms. The remaining box and vertex diagrams
(including the entire PT vertex coupling the gluon to the
external lines) are process-dependent and contribute noth-
ing to coupling renormalization. These are referred to as
conformal terms. In the following, we will resum and
absorb the nonconformal terms into the running couplings,
thus achieving an ‘‘optimal’’ renormalization improvement
of the tree-level diagram. There will be no ambiguity in the
renormalization scale or scheme.

Generically the amplitude of the three-gluon graph can
be written as

 

M � Cg4
0V

�1
1 V

�2
2 V

�3
3 D�1�1

�k1�D�2�2
�k2�D�3�3

�k3�

� ��1�2�3
�k1; k2; k3�; (61)

where C is the overall color factor and g0 is the bare
coupling. The PT vertices Vi are for gluons coupled to
external particles, whose indices are suppressed; this is
shown in Fig. 2 for external quarks. � �

P13
i�1 Fif̂i is the

gauge-invariant three-gluon vertex, whose 13 form factors
(Fi) are given in the preceding section. Finally the ‘‘gauge
invariant’’ PT gluon propagator is

 

D���k� �
1

k2

� t���k�

1���k2�
� �l���k�

�
;

t���k� �

8<: g�� �
k�k�
k2

g�� �
n�k��k�n�

n	k

9=; in
� covariant

axial

�
gauges;

l���k� �

8><>:
k�k�
k2

k�k�
�n	k�2

9>=>; in
� covariant

axial

�
gauges; (62)

(A)
+ perms

(B)

FIG. 2 (color online). The tree-level skeleton graphs dressed
with pinch-technique vertices and self-energies, which are used
to define effective charges both for the quark-quark-gluon vertex
(depending on a single gluon virtuality) and for the three-gluon
vertex, which depends on three different momenta.
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where � is the gauge-fixing parameter. This is ‘‘gauge
invariant’’ in the maximal sense, i.e. the gauge dependence
comes only from the tree-level terms, and in particular
��k2� is totally gauge invariant.

Regardless of whether the external particles are quarks,
gluons, or scalars, the vertices satisfy k�1 V1;� � 0 when
these particles are on shell (OS). One can then show that
the gauge-dependent terms coming from Eq. (62) vanish in
the full amplitude consisting of all of the graphs in Fig. 2.
This can be seen trivially in the covariant gauges where the
gauge cancelations occur graph by graph, and with some
work in axial gauges, where the cancelation occurs be-
tween all of the graphs. In the latter case, one must use the
fact that the three-gluon vertex satisfies the Ward ID in
Eq. (3). Therefore we can take

 D���k� !
g��

k2�1���k2��
: (63)

Also, in the� basis (Eq. (7)) any tensor with a ‘‘�’’ in any
slot gives vanishing contribution to M. For example,
��00� � �k2 � k3��1

g�2�3
� �k1;�1

g�2�3
, and k1;�1

dots
into V1;�1

yielding zero. Hence only (00� ), (� 00), (0�
0), and (��� ) contribute, and we find

 M �
Cg3

0

�1���k2
1���1���k2

2���1���k2
3��

�
V�1

1 V�2
2 V�3

3

k2
1k

2
2k

2
3

g0�OS
�1�2�3

�k1; k2; k3�; (64)

where the three-gluon vertex connected to on-shell (OS)
external particles is
 

�OS
�1�2�3

�k1; k2; k3� � �1� A0�â0 � A�â� � A�â� �Hĥ;

(65)

in the notation of Sec. II where hatted objects are three
index basis tensors.

Now one naturally defines PT effective charges by2

 g2�k2
i � �

g2
0

1���k2
i �
; i � 1; 2; 3: (66)

Since we only have a single power of g0 for each 1=�1�

��k2
i ��, this leaves

Q3
i�1 1=

����������������������
1���k2

i �
q

� 1� 1
2 ���k

2
1� �

��k2
2� ���k2

3�� to be absorbed into the three-gluon vertex.
Thus we have

 Y3

i�1

1����������������������
1���k2

i �
q �OS

�1�2�3
�k1; k2; k3� � �1� ~A0�â0 � A�â� � A�â� �Hĥ;

~A0�k
2
1; k

2
2; k

2
3� � A0�k

2
1; k

2
2; k

2
3� �

1

2
���k2

1� ���k2
2� ���k2

3��;
(67)

and

 M � Cg�k2
1�g�k

2
2�g�k

2
3�
V�1

1 V�2
2 V�3

3

k2
1k

2
2k

2
3

g0
�1� ~A0�â0

� A�â� � A�â� �Hĥ�: (68)

This naturally leads to the effective coupling of the three-
gluon vertex
 

~g�k2
1; k

2
2; k

2
3� � g0�1� ~A0�k2

1; k
2
2; k

2
3��;

~��a; b; c� �
~g2�a; b; c�

4	
�

�0

1� 2 ~A0�a; b; c�
;

(69)

first obtained by Lu in [38]. Our amplitude then takes the
final form
 

M � Cg�k2
1�g�k

2
2�g�k

2
3�~g�k

2
1; k

2
2; k

2
3�
V�1

1 V�2
2 V�3

3

k2
1k

2
2k

2
3

� 
â0 � A�â� � A�â� �Hĥ�: (70)

Recall from the previous section that A�, H / Nc � Nf in
QCD.

The three-gluon effective coupling evolves according to

 ~��a; b; c� �
~��a0; b0; c0�

1� 2� ~A0�a; b; c� � ~A0�a0; b0; c0��
: (71)

In four dimensions with regularization scheme R �
DRED or DREG and for the case of massless internal
particles (the complicating effects of internal masses are
discussed in the next section), we have
 

~A0�a; b; c� � �
�s
8	

�0
L�a; b; c� � log�2 � CUV � �3�;

where �0 �
11

3
Nc �

2

3
Nf �

1

6
Ns;

CUV �
1



� �E � log4	;

�3 � �2��� �
Nc
3�0

�R;DREG;

� �
16

3
���
3
p Cl2�	=3� � 3:125:

(72)

The scheme dependence �R;DREG is explained in more
detail in Appendix D. Here we have defined

2Equation (66) holds for external fermions or scalars, but for
gluons one would instead have three additional three-gluon
effective couplings, as is clear from the derivation of Eq. (69).
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 L�a; b; c� �
1

K
��� loga� �� logb� �� logc

� abc �J�a; b; c�� ��; (73)

and the (massless) triangle integral function �J �
�J�a; b; c� � �16i	2J�a; b; c� is given in Appendix B in
terms of Clausen functions, Eqs. (B13) and (B14). This
result [Eqs. (69) and (72)] differs from Lu [38] by only the
finite constants which (slightly) affects the numerical ex-
traction from data. The discrepancy can be traced to the
inconsistent application of dimensional regularization in
[38].

The logarithmlike function L satisfies

 L�a; a; a� � loga (74)

since

 

�J�a; a; a� �
4

a
���
3
p Cl2�	=3�: (75)

One can use the real part of this function to define an
effective scale of the three-gluon vertex:
 

L�a; b; c� � log�Q2
eff�a; b; c�� � i ImL�a; b; c�;

Q2
eff�a; b; c� � jaj

��=Kjbj��=Kjcj��=K

� exp
�
��

abc
K

Re �J�a; b; c�
�
:

(76)

This is sensible since the dimensions of Q2
eff�a; b; c� are

indeed mass squared.
The three-gluon effective charge ~��a; b; c� is related to

the usual MS coupling ���q2� by

 

1

~��a; b; c�
�

1

����2�
�
�0

4	

�
log
Q2

eff�a; b; c�

�2

� i ImL�a; b; c� � �3

�
�

1

���e��3Q2
eff�a; b; c��

� i
�0

4	
ImL�a; b; c�:

(77)

Since exp��3

2 � � 14, we see that when using MS, the scale
should be fourteen times lower than the typical virtualities
of the gluons, given by Qeff�a; b; c�. Of course, this is true
only if the three-gluon vertex diagram dominates the physi-
cal process. In general there will be different scales at the
various quark-gluon vertices when using the PT scheme [as
seen in Eq. (70)]. In contrast, in MS the same scale is used
at every vertex. The following approximate values of the
three-gluon coupling are derived from Eq. (77) (including
the effects of quark masses which discussed in the next
section) for various symmetric timelike (T) and spacelike
(S) configurations:

 SSS : ~���M2
Z;�M

2
Z;�M

2
Z� � 0:192;

SST: ~���M2
Z;�M

2
Z;�M

2
Z� � 0:157� 0:023I;

STT: ~���M2
Z;�M

2
Z;�M

2
Z� � 0:156� 0:025I;

TTT: ~���M2
Z;�M

2
Z;�M

2
Z� � 0:170� 0:062I:

It is clear that the three-gluon coupling is stronger than
naively expected from �MS�MZ� � 0:118.

The effective scale Q2
eff�a; b; c� satisfies the following

relations:

 

Q2
eff�a; b; c� � Q2

eff��a;�b;�c�;

Q2
eff��a; �b; �c� � j�jQ

2
eff�a; b; c�;

Q2
eff�a; a; a� � jaj;

Q2
eff�a;�a;�a� � 5:54jaj;

Q2
eff�a; a; c� � jcje

��2 for jaj � jcj;

Q2
eff�a;�a; c� � jcje

� for jaj � jcj;

Q2
eff�a; b; c� �

jbjjcj
jaj

e� for jaj � jbj; jcj:

(78)

Lu [38] has previously found the last of these limits in the
case where all momenta are spacelike, giving an effective
scale QminQmed=Qmax. It should be noted that the rate of
convergence to the above limits strongly depends on the
signatures (S � spacelike $ p2 < 0, T � timelike $
p2 > 0) of the virtualities a, b, c. If the signatures are
mixed (TTS) or (TSS) then the convergence is very slow,
and the effective scale tends to stay larger compared to the
cases (SSS) or (TTT).

Some plots demonstrating the novel behavior of Q2
eff are

given in Figs. 3–6).

100

75

20 508106

50

2

p^2(GeV^2)

4002004

25

1

FIG. 3 (color online). The effective scale Q2
eff�10 GeV2;

10 GeV2; p2� is the lower blue curve, while Q2
eff��10 GeV2;

�10 GeV2; p2� � Q2
eff�10 GeV2; 10 GeV2;�p2� is the upper

red curve. These both asymptote to zero, although very slowly
for the upper curve.
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The effective scale Q2
eff�k

2
1; k

2
2; k

2
3� represents a general-

ization of the BLM scale [39] to the three-gluon-vertex.
The full application of the ideas in this section to specific

processes will be presented in the future, although one
particularly interesting case in briefly discussed in the
conclusion (Sec. VI).

V. PHENOMENOLOGICAL EFFECTS OF
INTERNAL MASSES

So far, all fields propagating in the triangle graphs have
been treated as massless. This was useful for simplifying
the discussion and elucidating the general structure of the
radiative corrections and the supersymmetric sum rules.
However, in real world applications one usually does not
have all three-gluon virtualities in the same desert region
M2
i � a; b; c� M2

i�1. Thus, mass corrections should be
taken into account. We have calculated the effects of
massive fermions (MQ), massive scalars (MS), and mas-
sive gauge bosons (MG) for all of the form factors; the
complete results are given in Appendix E. The corrections
for the case of massive fermions were first obtained in
Ref. [40] and we are in agreement. Here we will focus on
the massive quark (MQ) contribution to the form factor
multiplying the tree-level tensor structure, which from
Appendix E and Sec. III is
 

A0�MQ� �
4M2

3�d� 2�
JM �

3d� 8

6K�d� 2�

� 
abcJM � a�J1M � b�J2M � c�J3M�: (79)

Here JM, J1M, J2M, and J3M are the massive analogs of J,
J1, J2 and J3, respectively. The two-point function J1M and
tadpole TM are reviewed in Appendix A, while Appendix B
is devoted to a discussion of the massive triangle integral,
JM, and its analytic continuations and various limits.

As in the previous section, when considering a physical
matrix element we always have the combination ~A0 �

A0 �
1
2 ��1 ��2 ��3� multiplying the tree-level

tensor structure. This leads us to consider the massive
quark contribution ~A0�MQ��A0�MQ�� 1

2��1�MQ��
�2�MQ���3�MQ��, which upon using Eq. (E1), insert-
ing the prefactor ig2, and expanding around d � 4 be-
comes
 

~A0�MQ� � �
�s
4	

�
1

3

�
CUV � log

M2

�2

�
�

2

3

�
1

3K
�abcJM � ��L�a� � ��L�b�

� ��L�c�� �
2M2

3

�
JM �

2�L�a�
a

�
2�L�b�

b
�

2�L�c�
c

��
: (80)

Here JM � �16i	2JM and
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 L �a� � v�a� log
v�a� � 1

v�a� � 1
; where v�a� �

���������������������������������
1�

4�M2 � i
�
a

s
; (81)

comes from J1M and has the analytic continuations given in Eq. (A12). The three-scale logarithmlike function for massive
quarks (MQ) is thus given by
 

LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
�

1

K
���L�a� � ��L�b� � ��L�c� � abcJM�a; b; c�� ��

� 2M2

�
L�a� � 2

a
�

L�b� � 2

b
�

L�c� � 2

c
� JM

�
~A0�MQ� �

�
�s

12	

��
LM

�
a

M2 ;
b

M2 ;
c

M2

�
� log

M2

�2 � CUV � �2���
�
:

(82)

This massive logarithmlike function has the following limits:
 

LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
� 2��; M2 � jaj; jbj; jcj;

LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
� L�a; b; c� � logM2; M2 � jaj; jbj; jcj;

(83)

with the number � � 3:125 defined in Eq. (72). The
convergence to the massless limit is very slow, indicating
that threshold effects must be included for most
applications.

In Figs. 7 and 8 we have plotted LMQ for the symmetric
case a � b � c for timelike and spacelike momenta. For
the timelike case, the threshold at a � 4M2 and the pseu-
dothreshold at a � 3M2 are evident. In Fig. 9 the mixed
case LMQ�a=M2; a=M2;�a=M2� is plotted, where the
thresholds at a � �4M2 and the pseudothreshold at a �
5M2 are evident. For the purely timelike (TTT) case in
Fig. 7, there is a discontinuity in the imaginary part and the
real part diverges at the pseudothreshold. In contrast, for
the mixed signature case (TTS) the imaginary part diverges

while the real part is discontinuous. This pseudothreshold
phenomena is explained in more detail in Appendix B.

From the above results, one can define the effective
number of active quarks which characterizes the effects
of quark mass:

 NF

�
a

M2 ;
b

M2 ;
c

M2

�
� �M2 d

dM2 LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
:

(84)

This clearly goes to zero and one in the limits M2 �
jaj; jbj; jcj and M2 � jaj; jbj; jcj, respectively.

To motivate this definition, let us look at the single-scale
pinch-technique effective charge (using the notation of
[13]) as a function of spacelike momenta a � �Q2
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FIG. 8 (color online). LMQ��Q2=M2;�Q2=M2;�Q2=M2� vs
Q=M for spacelike �Q2 < 0.
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FIG. 7 (color online). LMQ�a=M
2; a=M2; a=M2� vs a=M2 for

timelike a > 0. The solid line is the real part and the dashed line
is the imaginary part.
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1

~��Q2�
�

1

�0
�

1

4	

X
p

�p

�
Lp�Q2=m2

p� � log
�2

m2
p

� CUV � �p

�
; (85)

where�p is the contribution of each particle p to the first�
function coefficient, and to a very good numerical approxi-
mation (for spacelike momenta)

 Lp�Q
2=m2

p� � log
�
e�p �

Q2

m2
p

�
; (86)

where the constants �p are 5=3, 8=3, and 40=21 for mas-
sive fermions, scalars, and gauge bosons, respectively. The
exact one-loop formula are given in Eq. (23–26) of
Ref. [13], although the analytic continuation in Eq. (26)
of that paper should have opposite imaginary part. This
effective charge satisfies the RGE

 

d~��Q2�

d logQ2
� �

~�2

4	

X
p

�p
dLp�Q2=m2

p�

d logQ2

� �
~�2

4	

X
p

�pNp

�
Q2

m2
p

�
;

Np

�
Q2

m2
p

�
�
dLp�Q

2=m2
p�

d logQ2 � �
dLp�Q

2=m2
p�

d logm2
p

�
1

1�
m2
p

Q2 e�p
:

(87)

The function Np goes to one when Q2 � m2
p and zero

when Q2 � m2
p and unambiguously measures what frac-

tion of particle p is ‘‘turned on’’ at scale Q2.
Moving back to the three-scale case, we now have the

complication that our effective charge is a solution of a
multiscale RGE

 

d~��a; b; c�
d loga

� �
~�2

4	

X
p

�p
d

d loga
LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
;

(88)

and two other permutations with a! b or a! c. This
leads to three different Nf’s:

 Nf

�
a

M2

�������� b

M2 ;
c

M2

�
�

d
d loga

LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
; (89)

and two cyclic permutations, each of which goes to 1=3 in
the symmetric desert a � b � c� M2. This suggests
adding all three together to define a symmetric
 

NF

�
a

M2 ;
b

M2 ;
c

M2

�
�

�
d

d loga
�

d
d logb

�
d

d logc

�
� LMQ

�
a

M2 ;
b

M2 ;
c

M2

�
; (90)

which is in fact the same as given in Eq. (84).
The results for NF can be obtained with the help of the

results in Appendix B. Instead of presenting these lengthy
results, let us focus on the symmetric case a � b � c,
where we find for spacelike a < 0
 

NF

�
a

M2

�
�

d
d loga

LMQ

�
a

M2 ;
a

M2 ;
a

M2

�
� �

d

d logM2 LMQ

�
a

M2 ;
a

M2 ;
a

M2

�
� 1� 18

M2

a
� 2M2JM�a; a; a�

� 54M2L�a�
a� 2M2

�a� 3M2��a� 4M2�
:

(91)

In this example, spacelike a is chosen to avoid the pseudo-
threshold a � 3M2 and the threshold a � 4M2. Figure 10
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FIG. 9 (color online). LMQ�a=M2; a=M2;�a=M2� vs a=M2.
The solid line is the real part and the dashed line is the imaginary
part. The real thresholds are at a � �4M2 while the pseudo-
threshold is at a � 5M2.
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FIG. 10 (color online). The effective number of quark flavors.
The lower blue solid curve is NF�Q2=M2� for the symmetric
spacelike (a � b � c � �Q2) three-gluon vertex, while the
upper dashed red curve is the fermion number of flavors
N1=2�Q2=M2� for the single-scale effective charge.
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shows a plot of this along with single-scale quark number
of flavors function Ns�1=2 from Eq. (87).

The negative value of NF at 0 & Q & 4M is not entirely
novel, as a similar behavior was also found in the context
of two-loop quark mass corrections to V-scheme effective
charge [41]. It is essentially due to the antiscreening of
color charge, this case in the triangle interaction, and does

not arise in the one-loop single-scale effective charge, as
seen in Fig. 9.

Using the results of Appendix E, the above analysis can
be easily extended to the case of massive scalars (MS) or
massive gauge bosons (MG), which have the following
logarithmlike functions

 

LMS

�
a

M2 ;
b

M2 ;
c

M2

�
�

1

K
���L�a� � ��L�b� � ��L�c� � abcJM�a; b; c�� ��

� 4M2

�
L�a� � 2

a
�

L�b� � 2

b
�

L�c� � 2

c
� JM

�
; (92)

 

LMG

�
a

M2 ;
b

M2 ;
c

M2

�
�

1

K
���L�a� � ��L�b� � ��L�c� � abcJM�a; b; c�� ��

�
4

7
M2

�
L�a� � 2

a
�

L�b� � 2

b
�

L�c� � 2

c
� JM

�
: (93)

The qualitative behavior is the same as the quark case.
Finally, we should consider the limitations of the effective scale Q2

eff�a; b; c� introduced in the last section and effective
number of flavors NF�a=M2; b=M2; c=M2� discussed in this section. Given the complicated structure of the full mass-
dependent form factors, such tools for characterizing and understanding the behavior of the vertex are helpful. However, in
a real calculation such methods may be of limited use and the full mass-dependent results should be used. For example, the
effective scale Q2

eff has been defined only in the massless case so far because the definition becomes complicated and
somewhat arbitrary in the massive case. In particular, consider the possible definition (for QCD):

 Re
�

11

3
CAL�a; b; c� �

2

3

X
q

�
LMQ

�
a

M2
q
;
b

M2
q
;
c

M2
q

�
� logM2

q

��
�

�
11CA

3
�

2

3

X
q

~Nq

�
a

M2
q
;
b

M2
q
;
c

M2
q

��
log ~Q2

eff�a; b; c�;

(94)

where ~Nq is some suitably defined number of flavors,
possibly a step function such as ��a� b� c� 3M2

q�,
possibly the NF defined in Eq. (84), or some other defini-
tion. It should be clear that any choice of ~Nq determines
~Q2

eff , and vice versa, and there seems to be no compelling
choice for these quantities. Furthermore, in the approach
advocated here, the couplings at each vertex depend on
physical momentum scales which will typically be inte-
grated over in the phase space. Thus, matching onto a
conventional MS type approach can only be done at the
end of the calculation, so that trying to define a Q2

eff at an
intermediate stage is not very useful.

Thus, in real world applications, one should generally
use the full results for the mass-dependent form factors.
This constitutes a multiscale analytic renormalization
scheme that contains information which cannot be ob-
tained in the simple single-scale leading-log renormaliza-
tion methods. In other words, every three-gluon vertex (at
tree level) can be dressed, or ‘‘RG improved,’’ with this
gauge-invariant effective coupling and the associated form
factors, which are process independent and contain more
information than the MS procedure.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The results of this paper represent only a fraction of
what is needed for a reorganization of perturbation theory
into fully gauge-invariant pieces with physical content,
each of which can be renormalized independently, leading
naturally to a physical multiscale analytic renormalization
scheme. This is possible due to the remarkable properties
of the pinch technique (PT)/background field method
quantum Feynman gauge (BFMFG) Green’s functions.
There is still much progress that can be made in calculating
these Green’s functions in perturbation theory.

The present paper gives a complete and general charac-
terization of the off-shell three-gluon vertex at one-loop. A
similar study of the gauge-invariant triple-gauge boson
vertices of the Standard Model [14] would be very useful.
It may also be possible to quantitatively look at the uni-
fication of triple-gauge boson vertices and couplings, in
analogy with the work on the unification of single-scale PT
couplings [13]. Some progress has been made on the
conventional gauge-dependent three-gluon vertex at two
loops [42,43], which gives hope for eventually treating the
gauge-invariant three-gluon vertex at two-loops.
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The gauge boson two-point functions and the associated
effective charges for QCD [2,5], electroweak theory
[8,11,15], and supersymmetric grand unified models [13]
have been calculated in the past to one-loop. We know
from general principles the divergent parts at two-loops,
but no complete two-loop PT calculation as yet exists. To
fill this gap, the two-loop gluon PT self-energy will be
presented in the near future [37]. This will allow for a more
precise determination of coupling from data, as well as
giving the three-loop � function coefficient. Furthermore,
by the Ward identity in Eq. (3), this also yields the longi-
tudinal form factors of ��ggg��1�2�3 through two loops.

The gauge-invariant PT/BFMFG quark self-energy turns
out to be equal to the conventional self-energy in the
Feynman gauge [25], and so is known through two-loops
[44]. Because of the Ward identity [24] satisfied by the PT/
BFMFG quark-gluon vertex, this also yields the longitudi-
nal form factors of ��qqg�� through two loops.

In QCD, another logical step is the four-gluon vertex at
one-loop. In the general off-shell case, there are hundreds
of independent tensors structures and form factors.

Beyond perturbation theory, the study of Dyson-
Schwinger equations [3] and renormalons [7] in the PT/
BFMFG approach may yield new insight.

The methods outlined in this paper may have a particu-
larly important application to processes involving the
three-gluon vertex for which the one-loop corrections are
unknown, since often the difference between the tree-level
and one-loop predictions is large. The gauge-invariant
dressed-skeleton-expansion (see Fig. 2) should capture
the bulk of the one-loop corrections without explicitly
having to perform the full one-loop calculation. As a
specific example, consider the production of two heavy
quarks plus two associated transverse jets in proton-proton
collisions:

 pp) Q �Q� 2 jets �pT � 0�; (95)

which is illustrated in Fig. 11. The transverse momenta of
the jets controls two of the gluon virtualities, while the
invariant mass of the heavy quark pair is the third gluon
virtuality (for the diagram involving the three-gluon-
vertex). Thus, in principle, one could measure the running
of the three-gluon effective charge by measuring the cross
section for different values of these physical kinematic
invariants. We have performed a preliminary analysis of
this process using the methods outlined in section IV. We
find that both the differential and total cross sections are
considerably larger compared to MS scheme predictions
when the scale is chosen as the heavy quark pair invariant
mass. This means that the true effective scale is much
lower than would be guessed in MS. In general, the novel
functional form of Q2

eff�a; b; c� cannot be guessed. A de-
tailed analysis of this process and other applications will
appear in the future.

It should be emphasized that our approach represents an
optimal renormalization improvement of the tree-level
result, in the sense that we resum the universal (process
independent) and gauge-invariant higher order corrections,
which are associated with the running of the coupling. The
remaining one-loop corrections are both (1) process de-
pendent and thus need to be calculated explicitly, and
(2) not associated with the running of the coupling, and
thus called conformal terms. For most observables the
nonconformal terms dominate over the conformal terms.3

Of course, to rigorously prove that we have captured the
majority of the one-loop corrections one must fully calcu-
late the 2! 4 process at one-loop, a challenging task.

One can also apply these techniques to processes which
do not involve the three-gluon vertex, such as e�e� ! 4
heavy quarks. A preliminary analysis using the PT single-
scale couplings [Eq. (66)] also shows an enhancement of
the rate compared to MS.

To summarize, in this paper we have analyzed the be-
havior of the gauge-invariant three-gluon vertex at one-
loop. Starting from the symmetry principles governing the
vertex, a convenient tensor basis decomposition was given
in Eqs. (7) and (12). As seen in Eq. (65) and the subsequent
discussion, this basis is the most convenient for phenome-
nological studies, since it is built out of ‘‘transverse’’ (� )
and ‘‘longitudinal’’ (� ) momenta, the latter of which
vanish when dotted into external on-shell vertices, thus
leading to relatively simple matrix elements. In the case
considered in Sec. IV, only four form factors remain, rather

FIG. 11. The hadro-production of heavy quarks and two asso-
ciated transverse jets, as a direct probe of the three-gluon vertex.

3Indeed, this is why BLM methods prove so useful. The
underlying philosophy is to respect the correct analytic structure
of heavy particle thresholds.

MICHAEL BINGER AND STANLEY J. BRODSKY PHYSICAL REVIEW D 74, 054016 (2006)

054016-20



than the 13 which would be present in a generic basis.
Nonetheless, the choice of basis is only a matter of conve-
nience, and the real physics lies in the 13 nonvanishing
form factors given explicitly in Sec. III.

The supersymmetric relations between the scalar, quark,
and gluon contributions leads to a simple presentation of
the results for a generic (unbroken) gauge theory. Only the
gluon contributions to the form factors are given explicitly
in Sec. III, while the quark and scalar contributions are
inferred from the homogeneous relation FG � 4FQ �
�10� d�FS � 0 and the results for the relatively simple
sums �QG�F� �

�d�2�
2 FQ � FG which are given in

section III for each form factor F. The extension to the
case of internal masses is outlined in Appendix E and leads
to the modified sum rule FMG � 4FMQ � �9� d�FMS � 0.

The phenomenology is largely determined by the form
factor of the tree-level tensor structure, which in section IV
is used to define a three-scale effective charge ~��a; b; c�. In
addition, the characteristic scale Q2

eff�a; b; c� governing the
behavior of the vertex and the effective charge was ana-
lyzed, thus providing a natural extension of BLM scale
setting [39] to the three-gluon vertex. Physical momentum
scales always set the scale of the coupling. The phenome-
nological effects of quark masses are discussed in Sec. V
and are found to be important for generic physical appli-
cations, since decoupling is slow and a complicated thresh-
old and pseudothreshold behavior is observed. The
interpretation of the pseudothreshold phenomena deserves
further study.
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APPENDIX A: REDUCTION TO SCALAR
INTEGRALS

First, we will describe the evaluation of the massless
integrals, and then briefly mention the modifications due to
internal masses. As before, we will use the shorthand
notation

 

a � p2
1; b � p2

2; c � p2
3;

� � p1 	 p2; � � p2 	 p3; � � p3 	 p1:
(A1)

In order to evaluate the integrals in an efficient manner,
it is very convenient to choose a manifestly symmetric
routing of the loop momenta, as shown in Fig. 1, where
clearly

 l1 � p2 � l3; l2 � p3 � l1; l3 � p1 � l2: (A2)

Of course there is only one integration momenta l, which
can be chosen to be l1, l2, or l3, thus breaking the cyclic
symmetry. However, using the symmetric labeling greatly
simplifies the analysis.

First we decompose the full vertex � into longitudinal
(L) and transverse (T) parts, � � �L � �T , as in Eq. (14).
The tensor integrals in Eq. (18) are then converted into
scalar integrals by applying projection operators. In doing
so, the longitudinal (L) and transverse (T) parts essentially
decouple, and the ten independent L form factors are easily
found either directly, or by solving the Ward ID, resulting
in Eq. (38). The remaining four T parts are found by
applying the following four projection operators to
Eq. (18): 200, 030, 001, and 231, where as in Table I we
have defined 030 � p3�2

g�1�3
, etc. Thus, for the gluon

contribution G we have four scalar integrals: G�200� �
p2�1

g�2�3
G�1�2�3

, G�030�, G�001�, and G�231�. Simi-
larly, there are four integrals for the quarks and scalars as
well. In the numerator of each of these integrals there will
be various dot products of momenta, which can always be
reduced to momentum squares using Eq. (A2). For ex-
ample, p1 	 l2 � �l23 � l

2
2 � p

2
1�=2 and l1 	 l3 � �l21 � l

2
3 �

p2
2�=2. Thus we are left with integrals of the form

 Iijk �
Z �l21�i�l22�j�l23�k

l21l
2
2l

2
3

; (A3)

where
R
�
R ddl
�2	�d

and i, j, k 2 f0; 1; 2g. Using the standard

rules of dimensional regularization, it is easy to see that
any integral with any two of i, j, k nonzero must vanish.
Furthermore, it is straightforward to show that

 I200 � ��I100; I020 � ��I010; I002 � ��I001:

(A4)

Thus we are left with only two types of integrals: (1) the
trivial two-point integrals J1, J2, and J3, where

 J1 � I100 �
Z 1

l22l
2
3

�
Z 1

l2�l� p1�
2 ; (A5)

and (2) the master triangle integral

 J � J�p2
1; p

2
2; p

2
3� �

Z 1

l21l
2
2l

2
3

: (A6)

For the gluon contribution, for example, one then has a
system of four equations with four unknowns, the trans-
verse form factors. Denoting the gluon contribution to the
longitudinal projections by LG�200� � 200 	 �L�G�, etc.
we solve for the transverse form factors
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�F12�G�
�F23�G�
�F31�G�
�H�G�

0BBB@
1CCCA � M�1

T

G�200� � LG�200�
G�030� � LG�030�
G�001� � LG�001�
G�231� � LG�231�

0BBB@
1CCCA; where MT � �K

� �d� 1�� � 2� d
� � �d� 1�� 2� d

�d� 1�� � � 2� d
K K K 0

0BBB@
1CCCA; (A7)

and similarly for the quark and scalar contributions.
The above procedure can also be followed for the mas-

sive case, with only a few modifications. First, the tadpole

M2TM �
R

1
l2i�M

2 does not vanish. Thus, instead of
R l21
l22l

2
3
�

��J1 we now have

 

Z l21 �M
2

�l22 �M
2��l23 �M

2�
� ��J1M �M

2TM; (A8)

where J1M �
R

1
�l22�M

2��l23�M
2�
�
R

1
�l2�M2���l�p1�

2�M2�
. We

also need the following result and permutations:

 

Z l22 �M
2

l23 �M
2 �

Z l23 �M
2

l22 �M
2 � aM2TM: (A9)

Finally, we have the master triangle integral with nonzero
masses

 JM � JM�p
2
1; p

2
2; p

2
3� �

Z 1

�l21 �M
2��l22 �M

2��l23 �M
2�
:

(A10)

To summarize, in the massive case we need JM, J1M,
J2M, J3M, and TM. In the massless case we need J, J1, J2,
and J3. For each of these we pull out the factor i

16	2 and
define JM �

i
16	2 JM, etc.

Some formula for these integrals in d dimensions can be
found in [35]. Here we will give only the expansions in four
dimensions and define CUV �

1

� �E � log4	 where d �

4� 2
.
The tadpole integral is

 TM � CUV � 1� log
M2

�2 : (A11)

The two-point integral is

 J1M � CUV � 2� log
M2

�2 �L�a�; L�a� �

8><>:
2vtanh�1�v�1� � v logv�1

v�1
2 �vtan�1� �v�1�

2vtanh�1�v� � i	v � v log1�v
1�v� i	v

9>=>; for

8><>:
a < 0

0< a< 4M2

a > 4M2

9>=>;
(A12)

and the generalized velocities are

 v �

�������������������
1�

4M2

a

s
; �v �

�������������������
4M2

a
� 1

s
: (A13)

In the massless limit this becomes

 J1 � CUV � 2� log
jaj

�2 � i	��a�: (A14)

APPENDIX B: RESULTS FOR THE TRIANGLE
INTEGRAL

The massive triangle integral

 JM � JM�p
2
1; p

2
2; p

2
3�

�
Z d4l

�2	�4

�
1

�l21 �M
2 � i
��l22 �M

2 � i
��l23 �M
2 � i
�

(B1)

is finite in four dimensions. We will give the results for
JM � �i16	2JM. This integral has been discussed previ-
ously in the literature [40,45– 47]. In particular, ’tHooft

and Veltman [45] derived a formula which is valid for all
values of the kinematic variables a, b, c and mass M,
although careful analytic continuation is required. We
will first write the results of [45] in our notation and then
discuss the analytic continuations. The various functions
involved and some reference formula are summarized
below in Appendix C.

Defining  �
����������
�K
p

, where as before

 K � ��� ��� ��

� �1
4�a

2 � b2 � c2 � 2�ab� bc� ca��; (B2)

we have

 JM � �
1

2
�I3�ajb; c� � I3�bjc; a� � I3�cja; b��: (B3)

The results for I3�ajb; c� can be expressed in terms of the

velocity v �
������������������������
1� 4�M2�i
�

a

q
and the variable x � �=:
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I3�ajb;c� � Li2�z1��Li2�z1��Li2�z2��Li2�z2�

���x�v;x�v� log
z2

z1
��

�
�1�v;

1

x�v

�
� logz1��

�
1�v;

1

x�v

�
logz2

��
�
�1�v;

1

x�v

�
logz2

��
�
1�v;

1

x�v

�
logz1; (B4)

where we have defined
 

z1 �
x� 1

x� v
; z2 �

x� 1

x� v
;

z1 �
x� 1

x� v
; z2 �

x� 1

x� v
;

(B5)

and the function ��x; y� compensates for the branch cut in
the logarithms:
 

logxy � logx� logy� ��x; y�;

��x; y� � 2i	����Imx����Imy���Imx Imy�

� ��Imx���Imy����Imx Imy��:
(B6)

The other two integrals I3�bjc; a� and I3�cja; b� are
easily obtained by permutation of the above results, so

that x � �=, v �
����������������
1� 4M2

b

q
and x � �=, v �����������������

1� 4M2

c

q
, respectively. Although these results entirely

characterize the massive triangle function, it is a rather
tedious exercise to analytically continue the results to the
six different physical kinematical regions. To our knowl-
edge, such complete analytic continuations have not ap-
peared in the literature thus far.
JM takes different forms for K> 0 and K< 0 since

then the variable x is imaginary and real, respectively. The
case K> 0 can occur only if all momenta are spacelike
�a; b; c < 0� or timelike �a; b; c > 0�. The case K< 0 can
occur for momenta of any signature. Thus, if all momenta
are spacelike or all timelike, the ratios of momenta will
determine if K> 0 or K< 0. For each of these two cases,
we must also distinguish when a is spacelike, timelike
below threshold, and timelike above threshold. For time-
like above threshold and spacelike, the generalized veloc-

ity v �
����������������
1� 4M2

a

q
is real, except for the i
 term which is

used in the analytic continuation and hence not included

below. Below threshold v � i �v � i
����������������
4M2

a � 1
q

.

1. Case K > 0

For K> 0 we have
 

 �
����������
�K
p

� i
������
K
p

� i �;

x � �= � �i�= � � �iw;
(B7)

(i) K> 0 and v real , �a < 0 or a > 4M2�,

 

I3�ajb; c� � i�2Cl2�2�1� � Cl2�2�1 � 2�2�

� Cl2�2�1 � 2�2�

� 2i	��1 ��2���a� 4M2��;

�1 � tan�1�w�; �2 � tan�1�w=v�;

(B8)

(ii) K> 0 and v � i �v()�0< a< 4M2�,
 

I3�ajb;c� � i
�
2Cl2�2 ��1��Cl2�2 ��1� 2 ��2�

�Cl2�2 ��1� 2 ��2�� 2 ��1 log

��������w� �v
w� �v

��������
� 2i	 ��1��jwj� �v�

�
;

��1 � tan�1�1=w�; ��2 � tan�1�1= �v�:

(B9)

Note that the prefactor of i in the above equations cancels
against the i from � i � in the prefactor of Eq. (B3), so
that the terms involving the Clausen function Cl2�x� (dis-
cussed in Appendix C) contribute to the real part of JM.

2. Case K < 0

Here x is real.
(i) K< 0 and v real , �a < 0 ora > 4M2�,

 

I3�ajb;c� �Re�Li2�z1��Li2�z1��Li2�z2��Li2�z2��

�2i	�’1��a���jxj�v�

�’2��a�4M2��;

’1�
1

2
log

��������x�1

x�1

��������;
’2�

1

2
log

���������x�v��x�1�

�x�v��x�1�

��������; (B10)

(ii) K< 0 and v � i �v, �0< a< 4M2�,
 

I3�ajb; c� � 2 Re�Li2�z1� � Li2�z1��;

z1 �
x� 1

x� i �v
; z1 �

x� 1

x� i �v
:

(B11)

Several features of these results deserve comment.
First, in the K> 0, v � i �v case, there are anomalous

thresholds which give rise to a nonzero imaginary part and
a diverging real part. As seen in Eq. (B9), these anomalous
thresholds occur in I3�ajb; c� (and similarly for I3�bjc; a�
and I3�cja; b� by permutation) when

 jwj � �v, abc � 4M2K: (B12)

There will be a nonzero imaginary part for jwj> �v,
abc > 4M2K. Note that since here 4M2 > a> 0 and
K> 0, we must have b, c > 0. Let us now look at some
special cases:
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(i) a � b � c Here the condition for an anomalous
threshold reduces to a > 3M2, which was found in
[40].

(ii) b � c This leads to �a=M2� � �b=M2��
�4� �b=M2��, which is possible only if b < 4M2.

There are also anomalous thresholds for the case of K< 0
and a > 4M2. For example, for the mixed signature sym-
metric case a � b � �c > 0, there is a discontinuity in
the real part of JM�a; a;�a� and a divergence in the
imaginary part at a � 5M2, as seen in Fig. 9. Anomalous
thresholds were analyzed long ago [48,49].

In the case K> 0, v real, there is an imaginary part
above threshold, a > 4M2, which vanishes in the massless
limit a

M2 ! 1.
In [47], the authors find an interesting geometrical in-

terpretation and derivation of the triangle integral (and
higher n-point integrals).

In the symmetric limit a � b � c, the above results
reduce to those given in Eqs. (55–62) of [40].

In the massless limit, we obtain
(i) K> 0

 

�J�a;b;c� ��
1


�Cl2�2����Cl2�2����Cl2�2����;

�� � arctan
�

�

�
; etc: (B13)

(ii) K< 0
 

�J�a;b;c� ��
1


�gClh2�2���� gClh2�2���

� gClh2�2���� i	����a�� i	����b�

� i	����c��

�� �
1

2
log

������������

��������; etc: (B14)

where

 

gClh2�2��� �
Clh2�2��� for ab > 0

AClh2�2��� for ab < 0

� �
;

(B15)

and similarly for gClh2�2��� when �bc > 0; bc < 0�

and gClh2�2��� when �ca > 0; ca < 0�.
The results for the massless case are well known
[34,35,38,45], although the notation is nonstandard. Here
we have adopted the notation of [38] by using the hyper-
bolic Clausen function Clh2�x�, and alternating hyperbolic
Clausen function AClh2�x�, which are discussed below.

APPENDIX C: SPECIAL FUNCTIONS

Here we collect some useful results, mainly taken from
[50]. The dilogarithm function is defined for complex z by

 Li 2�z� � �
Z z

0
dx log

�1� x�
x

: (C1)

In order to find the real and imaginary parts of this func-
tion, one should first ensure that the modulus is less than
unity by judiciously using

 Li 2�z� � �Li2�1=z� �
	2

6
�

1

2
log2��z�: (C2)

The notation Li2�r; ��, with two arguments, is used for the
real part of Li2�re

i��. For modulus less than unity, r < 1,
we have the integral representation

 Li 2�r; �� � �
1

2

Z r

0

log�1� 2x cos�� x2�

x
dx: (C3)

The imaginary part for r < 1 is
 

Im�Li2�rei��� � T logr�
1

2
�Cl2�2�� � Cl2�2T�

� Cl2�2�� 2T��;

T � tan�1

�
r sin�

1� r cos�

�
:

(C4)

In particular,
 

Im�Li2�e
i��� � Cl2��� and

Cl2��� �
1

2i
�Li2�ei�� � Li2�e�i���:

(C5)

The Clausen function frequently appears in the triangle
integral and has the following representations:

 Cl 2�x� � �
Z x

0
dy log

��������2 sin
y
2

��������� X1
n�1

sinnx

n2 :

Furthermore, Cl2�x� is odd, Cl2��x� � �Cl2�x�, satisfies
periodicity, Cl2�x� 2n	� � Cl2�x�, and a duplication for-
mula Cl2�2x� � 2Cl2�x� � 2Cl2�x� 	�. Many other prop-
erties can be found in [50] and the some are conveniently
summarized in the appendix of [38].

We have used the notation of Lu [38], who used the
hyperbolic Clausen function, Clh2�x�, and alternating hy-
perbolic Clausen function, AClh2�a�, defined by the inte-
gral representations
 

Clh2�x� � �
Z x

0
dy log

��������2 sinh
y
2

��������;
AClh2�x� � �

Z x

0
dy log

��������2 cosh
y
2

��������: (C6)

These can also be written as
 

Clh2�x� �
1
2 Re�Li2�e

x� � Li2�e
�x��;

AClh2�x� �
1
2 Re�Li2��e

x� � Li2��e
�x��

(C7)

in analogy with Eq. (C5).
Finally, some elementary relations which are used often

include (for x; y real)
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arg�x� iy� � tan�1

�
y
x

�
� 	���x���y�;

tan�1�x� � tan�1�y� � tan�1

�
x� y
1� xy

�
� 	��x���xy� 1�;

tan�1�x� � tan�1�1=x� � ��x�
	
2
:

(C8)

where ��x� � x=jxj is the sign function and the step func-
tion ��x� � ���x� � 1�=2 should not be confused with the
angle �.

APPENDIX D: FORM FACTORS WITH
DIMENSIONAL REDUCTION (DRED)

REGULARIZATION

Here we discuss the form factors regularized using
dimensional reduction (DRED) in integer number of di-
mensions dR, defined analogously to the usual dR � 4
DRED scheme. This could be used for dR � 6 or dR �
10 theories, but of course we mainly have in mind the four-
dimensional case.

It is easy to see that the quark and scalar contributions
are unchanged from DREG, and only the gluon contribu-
tion is different. This is most easily expressed in terms of
the modified sum rule

 FG�DRED� � 4FQ � �10� dR�FS � 0; (D1)

which implies FG�DRED� � FG�DREG� � �dR � d�FS.
Expanding d � dR � 2
 around the real number of dimen-
sions dR leads to FG�DRED� � FG�DREG� � 2
FS,
which makes manifest the role of the 2
 adjoint DRED
‘‘ghosts’’ which preserve supersymmetry.

In four dimensions we have

 FG�DRED� � 4FQ � 6FS � 0: (D2)

Since only the A form factors have a UV divergence in
four dimensions, only these form factors will be changed
when using DRED:

 �DRED�A12�G�� � �DRED� �A12�G�� � �
1

3

i

16	2 : (D3)

In the symmetrized physical � basis we have

�DRED�A0�G�� � �
1
3

i
16	2 , and all other form factors are

unchanged.

APPENDIX E: QUARK AND SQUARK MASS
CORRECTIONS

Here the corrections to the form factors due to fermion
and scalar masses will be given. The massive quark (MQ)
contributions were first obtained in [40], and we obtain
exactly the same results. To our knowledge, the squark
contributions, either massless or massive (MS), have not
yet appeared in the literature.

First, the well known formulas for the scalar and fermion
self-energies are reproduced in our notation:
 

�1�MQ� �
d� 2

1� d
J1M � 2M2

�
2J1M � �d� 2�TM

a�1� d�

�
;

�1�MS� �
1

2�1� d�
J1M �M

2

�
2J1M � �d� 2�TM

a�1� d�

�
;

(E1)

with the integrals J1M, TM given in Appendix A. These
yield the massive fermion and scalar contributions to the
longitudinal form factors through Eq. (38).

Notice that the terms proportional to M2 in the above
two equations are equal up to a factor of�2. After explicit
calculation, it was discovered that the scalar mass correc-
tion terms (�MS) are just minus one-half of the quark mass
correction terms (�MQ) for all form factors. Thus, for
generic form factor F
 

F�MS� � F�S�jM � �MS�F�;

F�MQ� � F�Q�jM � �MQ�F�;

�MQ � �2�MS:

(E2)

The notation F�S�jM simply means to take the appropriate
massless result for the form factor F, as given in section III,
and replace J ! JM, J1 ! J1M, J2 ! J2M, J3 ! J3M
everywhere.

Because of the relation �MQ � �2�MS, we need only
write either the fermion or scalar mass correction terms
explicitly. Here we choose the scalar contributions, which
for the transverse form factors are

 

�MS� �F12� � �
2M2

K2

��
K� 3��
d� 2

�
JM �

P � 2�K� �2�3�� 2�� ��
a��� ���d� 1�

J1M

�
P � 2�K� �2�3�� 2�� ��

b��� ���d� 1�
J2M �

2c
d� 1

J3M �
�2� d�K�
2�d� 1�ab

TM

�
(E3)

and

 �MS� �H� �
2M2

K2

�
3P

d� 2
JM �

K� 2��
d� 1

J1M �
K� 2��
d� 1

J2M �
K� 2��
d� 1

J3M �
K�d� 2�

2�d� 1�
TM

�
: (E4)
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The results in the physical � basis can be obtained from those of the LT basis through the use of Eq. (16), and are
included here for completeness.

 �MS�A12� �
M2

K

�
c�
d� 2

JM �
�J1M � �J2M � cJ3M

d� 1

�
; (E5)

 �MS�B12� � �
M2

K

�
�a� b��
d� 2

JM �
�2�� ��J1M � �2�� ��J2M � ��� ��J3M

d� 1

�
; (E6)

 �MS�C12� �
M2

4K2

�
8P � �2c� 3�2��� �� � 3�2��� ��

d� 2
JM �

8P � �2��� �� � �2�5�� 7�� 4��
a�d� 1�

J1M

�
8P � �2��� �� � �2�5�� 7�� 4��

b�d� 1�
J2M �

4c2 � 2���K

d� 1
J3M

�
�d� 2�K��2 � 2��� 3K�

�d� 1�2ab
TM

�
; (E7)

 

�MS�D12� �
M2

4K2

�
�K� 3�2��a� b�

d� 2
JM �

K� 4�2 � 2��
d� 1

J1M �
K� 4�2 � 2��

d� 1
J2M

�
�2��� 3K��a� b�

c�d� 1�
J3M �

�d� 2�K�a� b�
2�d� 1�c

TM

�
; (E8)

 �MS�H� �
M2

4K2

�
2P � abc

2� d
JM �

K� 2��
d� 1

J1M �
K� 2��
d� 1

J2M �
K� 2��
d� 1

J3M �
�d� 2�K

2�d� 1�
TM

�
; (E9)

 

�MS�S� � �
M2

4K2

�
3�a� b��b� c��c� a�

2� d
JM �

�4a2 � 2��� 3K��b� c�
a�d� 1�

J1M �
�4b2 � 2��� 3K��c� a�

b�d� 1�
J2M

�
�4c2 � 2��� 3K��a� b�

c�d� 1�
J3M �

�d� 2��a� b��b� c��c� a�K
2�d� 1�abc

TM

�
: (E10)

It is straightforward to see that all of the correction terms
are ultraviolet finite.

The relation �2�MS � �MQ is necessary for the preser-
vation of the form of a quark/scalar sum �SQ � 2FS � FQ,
which is equal to 2

d�10 �QG using the results of section III.
In other words 2FMS � FMQ � 2FSjM � FQjM, so that this
quantity has no correction terms proportional to M2.

However, the relations between massive gauge bosons
and massive fermions and/or scalars will be different, since
the gauge bosons eat a degree of freedom to acquire mass.
Consider the contribution of a massive gauge boson to the
gauge-invariant gluon self-energy4:
 

�1�MG� � J1M

�
8d� dR � 7

2�d� 1�

�
�

2M2

a
�dR � 1�

�d� 1�

�

�
J1M �

1

2
�2� d�TM

�
; (E11)

where as before dR � d in dimensional regularization
(DREG) and dR � 4 (or the real integer number of dimen-
sions) in dimensional reduction (DRED). From this and
Eq. (E1) we deduce

 �1�MG� � 4�1�MQ� � �9� dR��1�MS� � 0 (E12)

and thus the massive N � 4 sum rule becomes

 FMG � 4FMQ � �9� dR�FMS � 0 (E13)

for the longitudinal form factors. It can also be shown that
this holds for the transverse form factors and so the results
of this paper also give the contributions of massive internal
gauge bosons. Proving this involves detailed analysis of the
vertices and diagrams that contribute to the triple gluon
vertex when the PT/BFMFG is applied to a spontaneously
broken gauge theory that leaves a non-Abelian subgroup
(of gluons) intact. This can be done following a pinch-
technique route similar to [15,19]. Because of the equiva-
lence of the PT and BFMFG, it is more convenient to4This is also the contribution of W� to the photon self-energy.
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follow the BFMFG route similar to [51]. For example, in
SU�5�GUTs the colored superheavyX and Y gauge bosons
give a contribution which satisfies the above massive sum
rule. We should emphasize that these sum rules are simply
a convenient way of relating the contributions of various

spin particles, all with hypothetical mass M, but no as-
sumption is made about the actual masses for a given
theory under consideration; the sum rules are entirely
stripped of color factors.
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