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With a special intention of clarifying the underlying spin contents of the nucleon, we investigate the
generalized form factors of the nucleon, which are defined as the nth x moments of the generalized parton
distribution functions, within the framework of the chiral quark soliton model. A particular emphasis is
put on the pion mass dependence of final predictions, which we shall compare with the predictions of
lattice QCD simulations carried out in the so-called heavy pion region around m� ’ �700–900� MeV. We
find that some observables are very sensitive to the variation of the pion mass. It will be argued that the
negligible importance of the quark orbital angular momentum indicated by the LHPC and QCDSF lattice
collaborations might be true in the unrealistic heavy pion world, but it is not necessarily the case in our
real world close to the chiral limit.
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I. INTRODUCTION

The so-called ‘‘nucleon spin crisis’’ raised by the
European Muon Collaboration (EMC) measurement in
1988 is one of the most outstanding findings in the field
of hadron physics [1,2]. The renaissance of the physics of
high energy deep-inelastic scatterings is greatly indebted to
this epoch-making finding. One of the most outstanding
progresses achieved recently in this field of physics is
probably the discovery and the subsequent research of
completely new observables called generalized parton dis-
tribution functions (GPDs). It has been revealed that the
GPDs, which can be measured through the so-called
deeply virtual Compton scatterings (DVCS) or the deeply
virtual meson productions (DVMP), contain surprisingly
richer information than the standard parton distribution
functions [3–14].

Roughly speaking, the GPDs are a generalization of
ordinary parton distributions and the elastic form factors
of the nucleon. The GPDs in the most general form are
functions of three kinematical variables: the average
longitudinal-momentum fraction x of the struck parton in
the initial and final states, a skewdness parameter � which
measures the difference between two momentum fractions,
and the four-momentum-transfer square t of the initial and
final nucleons. In the forward limit t! 0, some of the
GPDs reduce to the usual quark, antiquark, and gluon
distributions. On the other hand, taking the nth moment
of the GPDs with respect to the variable x, one obtains the
generalizations of the electromagnetic form factors of the
nucleon, which are called the generalized form factors of
the nucleon. The complex nature of the GPDs, i.e. the fact
that they are functions of three variables, makes it quite
difficult to grasp their full characteristics both experimen-
tally and theoretically. From the theoretical viewpoint, it
may be practical to begin studies with the two limiting
cases. One is the forward limit of zero-momentum transfer.
We have mentioned that, in this limit, some of the GPDs
reduce to the ordinary parton distribution function depend-

ing on one variable, x. However, it turns out that, even in
this limit, there appear some completely new distribution
functions, which cannot be accessed by the ordinary in-
clusive deep-inelastic scattering measurements. Very inter-
estingly, it was shown by Ji that one of such distributions
contains valuable information on the total angular momen-
tum carried by the quark fields in the nucleon [9–11]. This
information, combined with the available information on
the longitudinal quark polarization, makes it possible to
determine the quark orbital angular-momentum contribu-
tion to the total nucleon spin purely experimentally.

Other relatively easy-to-handle quantities are the gener-
alized form factors of the nucleon [15,16], which are given
as the nonforward nucleon matrix elements of the spin-n,
twist-two quark and gluon operators. Since these latter
quantities are given as the nucleon matrix elements of local
operators, they can be objects of lattice QCD simulations.
(It should be compared with parton distributions. The
direct calculation of parton distributions is beyond the
scope of lattice QCD simulations, since it needs to treat
the nucleon matrix elements of quark bilinears, which are
nonlocal in time.) In fact, two groups, the LHPC
Collaboration and the QCDSF Collaboration indepen-
dently investigated the generalized form factors of the
nucleon, and gave several interesting predictions, which
can, in principle, be tested by the measurement of GPDs in
the near future [17–20]. Although interesting, there is no a
priori reason to believe that the predictions of these lattice
simulations are realistic enough. The reason is mainly that
the above-mentioned lattice simulations were carried out in
the heavy pion regime around m� ’ �700–900� MeV with
neglect of the so-called disconnected diagrams. Our real
world is rather close to the chiral limit with vanishing pion
mass, and we know that, in this limit, the Goldstone pion
plays very important roles in some intrinsic properties of
the nucleon. The lattice simulation carried out in the heavy
pion region is in danger of missing some important role of
chiral dynamics.
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On the other hand, the chiral quark soliton model
(CQSM) is an effective model of baryons, which maxi-
mally incorporates the chiral symmetry of QCD and its
spontaneous breakdown [23,24]. (See [25–27] for early
reviews.) It has already been applied to the physics of
ordinary parton distribution functions with remarkable
success [28–34]. For instance, an indispensable role of
pionlike quark-antiquark correlation was shown to be es-
sential to understand the famous NMC measurement,
which revealed the dominance of the �d quark over the �u
quark inside the proton [31,35,36]. Then, it would be
interesting to see what predictions the CQSM would give
for the quantities mentioned above. Now, the main purpose
of the present work is to study the generalized form factors
of the nucleon within the framework of the CQSM and
compare their predictions with those of the lattice QCD
simulations. Our particular interest here is to see the
change of final theoretical predictions against the variation
of the pion mass. Such an analysis is expected to give some
hints for judging the reliability of the lattice QCD predic-
tions at the present level for the observables in question.

The plan of the paper is as follows. In Sec. II, we shall
briefly explain how to introduce the nonzero pion mass into
the scheme of the CQSM with Pauli-Villars regularization.
In Sec. III, we derive the theoretical expressions for the
generalized form factors of the nucleon. Section IV is
devoted to the discussion of the results of the numerical
calculations. Some concluding remarks are then given in
Sec. V.

II. MODEL LAGRANGIAN WITH A PION MASS
TERM

We start with the basic effective Lagrangian of the chiral
quark soliton model in the chiral limit given as

 L 0 � � �x��i@6 �MU�5�x�� �x�; (1)

with

 U�5�x� � ei�5����x�=f� �
1� �5

2
U�x� �

1� �5

2
Uy�x�;

(2)

which describes the effective quark fields, with a dynami-
cally generated mass M, strongly interacting with pions
[23,24]. Since one of the main purposes of the present
study is to see how the relevant observables depend on
pion mass, we add to L0 an explicit chiral-symmetry-
breaking term L0 given by [37]

 L 0 � 1
4f

2
�m

2
� trf�U�x� �U

y�x� � 2�: (3)

Here the trace in (3) is to be taken with respect to flavor
indices. The total model Lagrangian is therefore given by

 L CQM � L0 �L0: (4)

Naturally, one could have taken an alternative choice in

which the explicit chiral-symmetry-breaking effect is in-
troduced in the form of the current quark mass term as
L0 � �m0

�  . We did not do so, because we do not know
any consistent regularization of such an effective
Lagrangian with finite current quark mass within the
framework of the Pauli-Villars subtraction scheme, as ex-
plained in the Appendix of [37]. The effective action
corresponding to the above Lagrangian is given as

 Seff�U� � SF�U� � SM�U�; (5)

with

 SF�U� � �iNcSp ln�i@6 �MU�5�; (6)

and

 SM�U� �
Z 1

4
f2
�m2

� trf�U�x� �Uy�x� � 2�d4x: (7)

Here SpÔ �
R
d4x tr� trfhxjÔjxi, with tr� and trf repre-

senting the trace of the Dirac gamma matrices and the
flavors (isospins), respectively. The fermion (quark) part
of the above action contains ultraviolet divergences. To
remove these divergences, we must introduce physical
cutoffs. For the purpose of regularization, here we use
the Pauli-Villars subtraction scheme. As explained in
[37], we must eliminate not only the logarithmic diver-
gence contained in Sf�U� but also the quadratic and loga-
rithmic divergences contained in the equation of motion
shown below. To get rid of all these troublesome divergen-
ces, we need at least two subtraction terms. The regularized
action is thus defined as

 Sreg
eff �U� � Sreg

F �U� � SM�U�; (8)

where

 Sreg
F �U� � SF�U� �

X2

i�1

ciS
�i
F �U�: (9)

Here S�i
F is obtained from SF�U� with M replaced by the

Pauli-Villars regulator mass �i. These parameters are fixed
as follows. First, the quadratic and logarithmic divergences
contained in the equation of motion (or in the expression of
the vacuum quark condensate) can, respectively, be re-
moved if the subtraction constants satisfy the following
two conditions:

 M2 �
X2

i�1

ci�
2
i � 0; (10)

 M4 �
X2

i�1

ci�
4
i � 0: (11)

(We recall that the condition which removes the logarith-
mic divergence in Sf�U� just coincides with the first of the
above conditions.) By solving the above equations for c1

and c2, we obtain
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 c1 �

�
M
�1

�
2 �2

2 �M
2

�2
2 ��2

1

; (12)

 c2 � �

�
M
�2

�
2 �2

1 �M
2

�2
2 ��2

1

; (13)

which constrains the values of c1 and c2, once �1 and �2

are given. For determining �1 and �2, we use two con-
ditions:

 

NcM
2

4�2

X2

i�1

ci

�
�i

M

�
2

ln
�
�i

M

�
2
� f2

�; (14)

and

 h �  ivac �
NcM3

2�2

X2

i�1

ci

�
�i

M

�
4

ln
�
�i

M

�
4
; (15)

which amounts to reproducing the correct normalization of
the pion kinetic term in the effective meson Lagrangian
and also the empirical value of the vacuum quark conden-
sate. To derive the soliton equation of motion, we must first
write down a regularized expression for the static soliton
energy. Under the hedgehog ansatz��x� � f�r̂F�r� for the
background pion fields, it is obtained in the form

 Ereg
static�F�r�� � Ereg

F �F�r�� � EM�F�r��; (16)

where the meson (pion) part is given by

 EM�F�r�� � �f2
�m2

�

Z
d3x�cosF�r� � 1�; (17)

while the fermion (quark) part is given as

 Ereg
F �F�r�� � Eval � E

reg
vp ; (18)

with

 Eval � NcE0; (19)

 Ereg
vp � Nc

X
n<0

�En � E
�0�
n � �

XN
i�1

ciNc
X
n<0

�E�i
n � E

�0��i
n �:

(20)

Here En are the quark single-particle energies, given as the
eigenvalues of the static Dirac Hamiltonian in the back-
ground pion fields:

 Hjni � Enjni; (21)

with

 H �
� � r

i
� �M�cosF�r� � i�5� � r̂ sinF�r��; (22)

while E�0�n denote energy eigenvalues of the vacuum
Hamiltonian given by (22) with F�r� � 0 (or U � 1).
The particular state jn � 0i, which is a discrete bound-
state orbital coming from the upper Dirac continuum under
the influence of the hedgehog mean field, is called the

valence level. The symbol
P
n<0 in (20) denotes the sum-

mation over all the negative-energy eigenstates of H, i.e.
the negative-energy Dirac continuum. The soliton equation
of motion is obtained from the stationary condition of
Ereg

static�F�r�� with respect to the variation of the profile
function F�r�:

 0 �
�

�F�r�
Estatic�F�r��

� 4�r2f�M�S�r� sinF�r� � P�r� cosF�r��

� f2
�m

2
� sinF�r�g; (23)

which gives

 F�r� � arctan
�

P�r�

S�r� � f2
�m2

�=M

�
: (24)

Here S�r� and P�r� are regularized scalar and pseudoscalar
quark densities given as

 S�r� � Sval�r� �
X
n<0

Sn�r� �
X2

i�1

ci
�i

M

X
n<0

S�i
n �r�; (25)

 P�r� � Pval�r� �
X
n<0

Pn�r� �
X2

i�1

ci
�i

M

X
n<0

P�i
n �r�; (26)

with

 Sn�r� �
Nc
4�

Z
d3xhnjxi�0 ��jxj � r�

r2 hxjni; (27)

 Pn�r� �
Nc
4�

Z
d3xhnjxii�0�5� � r̂

��jxj � r�

r2 hxjni; (28)

while S�i
n �r� and P�i

n �r� are the corresponding densities
evaluated with the regulator mass �i instead of the dy-
namical quark massM. We also note that Sval�r� 	 Sn�0�r�
and Pval�r� 	 Pn�0�r�. As usual, a self-consistent soliton
solution is obtained as follows with the use of Kahana and
Ripka’s discretized momentum basis [38,39]. First, by
assuming an appropriate (though arbitrary) soliton profile
F�r�, the eigenvalue problem of the Dirac Hamiltonian is
solved. Using the resultant eigenfunctions and their asso-
ciated eigenenergies, one can calculate the regularized
scalar and pseudoscalar densities S�r� and P�r�. With the
use of these S�r� and P�r�, Eq. (24) can then be used to
obtain a new soliton profile F�r�. The whole procedure
above is repeated with this new profile F�r� until the self-
consistency is attained.

III. GENERALIZED FORM FACTORS IN THE
CQSM

Since the generalized form factors of the nucleon are
given as moments of GPDs, it is convenient to start with the
theoretical expressions of the unpolarized GPDs H�x; �; t�
and E�x; �; t� within the CQSM. Following the notation in
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[40,41], we introduce the quantities

 M �I�0�
s0s 	

Z d�
2�

ei�xhp0; s0j � 
�
�
�n
2

�
n6  

�
�n
2

�
jp; si;

(29)

and

 M �I�1�
s0s 	

Z d�
2�

ei�xhp 0; s0j � 
�
�
�n
2

�
�3n6  

�
�n
2

�
jp; si:

(30)

Here, the isoscalar and isovector combinations, respec-
tively, correspond to the sum and the difference of the
quark flavors u and d. The relations between these quan-
tities and the generalized parton distribution functions
H�x; �; t� and E�x; �; t� are obtained most conveniently in
the so-called Breit frame. They are given by

 M �I�0�
s0s � 2�s0sH

�I�0�
E �x; �; t� �

i"3kl�k

MN


��l�s0sE
�I�0�
M �x; �; t�; (31)

 M �I�1�
s0s � 2�s0sH

�I�1�
E �x; �; t� �

i"3kl�k

MN


��l�s0sE
�I�1�
M �x; �; t�; (32)

where

 H�I�0=1�
E �x; �; t� 	 H�I�0=1��x; �; t� �

t

4M2
N

E�I�0=1��x; �; t�;

(33)

 E�I�0=1�
M �x; �; t� 	 H�I�0=1��x; �; t� � E�I�0=1��x; �; t�:

(34)

These two independent combinations of H�x; �; t� and
E�x; �; t� can be extracted through the spin projection of
M�I�0=1� as

 H�I�E �x; �; t� �
1
4 trfM�I�g; (35)

 E�I�M �x; �; t� �
iMN"

3bm�b

2�2
?

trf�mM�I�g; (36)

where ‘‘tr’’ denotes the trace over spin indices, while
�2
? � �2 � ��3�2 � �t� ��2MN��

2. Now, within the
CQSM, it is possible to evaluate the right-hand side (rhs)
of (35) and (36). Since the answers are already given in
several previous papers [40– 42], we do not repeat the
derivation. Here we comment only on the following gen-
eral structure of the theoretical expressions for relevant
observables in the CQSM. The leading contribution just
corresponds to the mean field prediction, which is inde-
pendent of the collective rotational velocity � of the
hedgehog soliton. The next-to-leading-order (NLO) term
takes account of the linear response of the internal quark
motion to the rotational motion as an external perturbation,
and consequently it is proportional to �. It is known that
the leading-order (LO) term contributes to the isoscalar
combination of HE�x; �; t� and to the isovector combina-
tion of EM�x; �; t�, while the isoscalar part of HE�x; �; t�
and the isovector part of EM�x; �; t� survived only at the
next-to-leading order of � (or of 1=Nc). The leading-order
GPDs are then given as

 

H�I�0�
E �x; �; t� � MNNc

Z dz0

2�

X
n�0

eiz
0�xMN�En�



Z
d3x�yn �x��1� �0�3�e�i�z

0=2�p̂3


 ei��xe�i�z
0=2�p̂3 �n�x�; (37)

 

E�I�1�
M �x; �; t� �

2iM2
NNc

3��?�2
Z dz0

2�

X
n�0

eiz
0�xMN�En�



Z
d3x�yn �x��1� �0�3��� 
��3


 e�i�z
0=2�p̂3ei��xe�i�z

0=2�p̂3 �n�x�: (38)

Here the symbol �n�0 denotes the summation over the
occupied (the valence plus negative-energy Dirac-sea)
quark orbitals in the hedgehog mean field. On the other
hand, the theoretical expressions for the isovector part of
HE and the isoscalar part of EM, which survive at the next-
to-leading order, are a little more complicated. They are
given as double sums over the single-quark orbitals as

 

H�I�1�
E �x; �; t� � �

MNNc
12I

Z dz0

2�

�� X
m�all;n�0�Em�En�

e�iEnz
0
�

X
n�all;m�0�Em�En�

e�iEmz
0

�
1

En � Em

�
1

MN

d
dx

X
m�all;n�0�Em�En�

e�iEnz
0

�
eixMNz0

hnj�ajmihmj�a�1� �0�3�e�i�z
0=2�p̂3ei��xe�i�z

0=2�p̂3 jni: (39)

and
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E�I�0�
M �x; �; t� � i

M2
NNc
2I

Z dz0

2�

�� X
m�all;n�0�Em�En�

e�iEnz
0
�

X
n�all;m�0�Em�En�

e�iEmz
0

�
1

En � Em

�
1

MN

d
dx

X
m�all;n�0�Em�En�

e�iEnz
0

�
eixMNz0

hnj�bjmihmj�1� �0�3�e�i�z
0=2�p̂3

"3ab�a

�2
?

ei��xe�i�z
0=2�p̂3 jni: (40)

These four expressions for the unpolarized GPDs, i.e.
(37)–(40), are the basic starting equations for our present
study of the generalized form factors of the nucleon within
the CQSM. There is an infinite tower of generalized form
factors, which are defined as the nth moments of GPDs. In
the present study, we confine ourselves to the 1st and the
2nd moments, which, respectively, corresponds to the stan-
dard electromagnetic form factors of the nucleon and the
so-called gravitational form factors. We are especially
interested in the second ones, since they are believed to
contain valuable information on the spin contents of the
nucleon through Ji’s angular-momentum sum rule [9,10].
For each isospin channel, the 1st and 2nd moments of
H�I�E �x; 0; t� define the Sachs-electric and gravitoelectric
form factors as

 G�I�0=1�
E;10 �t� 	

Z 1

�1
H�I�0=1�
E �x; 0; t�dx (41)

and

 G�I�0=1�
E;20 �t� 	

Z 1

�1
xH�I�0=1�

E �x; 0; t�dx: (42)

On the other hand, the 1st and 2nd moments of E�I�M �x; 0; t�,
respectively, define the Sachs-magnetic and gravitomag-
netic form factors as

 G�I�0=1�
M;10 �t� 	

Z 1

�1
E�I�0=1�
M �x; 0; t�dx (43)

and

 G�I�0=1�
M;20 �t� 	

Z 1

�1
xE�I�0=1�

M �x; 0; t�dx: (44)

In the following, we shall explain how we can calculate the
generalized form factors based on the theoretical expres-
sions of corresponding GPDs, by taking G�I�0�

E;10 �t� and
G�I�0�
E;20 �t� as examples. Setting � � 0 and integrating over

z0 in (37), we obtain
 

H�I�0�
E �x; 0; t� � MNNc

Z
d3xei�?�x

X
n�0

�yn �x��1� �0�3�


 ��xMN � En � p̂3��n�x�: (45)

Putting this expression into (41), we have

 G�I�0�
E;10 �t� � Nc

Z
d3xei�?�x

X
n�0

�yn �x��1� �0�3��n�x�:

(46)

It is easy to see that, using the generalized spherical

symmetry of the hedgehog configuration, the term contain-
ing the factor �0�3 identically vanishes, so that G�I�0�

E;10 �t� is
reduced to a simple form as follows:

 G�I�0�
E;10 �t� � Nc

Z
d3x

X
n�0

�yn �x�j0��?x��n�x�: (47)

Aside from the factor Nc�� 3�, this is nothing but the
known expression for the isoscalar Sachs-electric form
factor of the nucleon in the CQSM [26].

A less trivial example is G�I�0�
E;20 �t�, which is defined as

the 2nd moment of H�I�0�
E �x; 0; t�. Inserting (45) into (41)

and carrying out the integration over x, we obtain
 

G�I�0�
E;20 �t� �

1

MN
Nc

Z
d3xei�?�x

X
n�0

�yn �x��1� �0�3�


 �En � p̂3��n�x�: (48)

Using the partial-wave expansion of ei�?�x, this can be
written as
 

G�I�0�
E;20 �t� �

1

MN
Nc

Z
d3x

X
l;m

4�ilY�lm��̂?�
X
n�0

�yn �x�jl��?x�


 Ylm�x̂��1� 	3��En � p̂3��n�x�: (49)

This can further be divided into four pieces as

 G�I�0�
E;20 �t� �

X4

i�1

Gi; (50)

where

 Gi �
1

MN
Nc

Z
d3x

X
l;m

4�ilY�lm��̂?�Mi; (51)

with

 M1 �
X
n�0

�yn �x�jl��?x�Ylm�x̂�En�n�x�; (52)

 M2 �
X
n�0

�yn �x�jl��?x�Ylm�x̂�	3En�n�x�; (53)

 M3 �
X
n�0

�yn �x�jl��?x�Ylm�x̂�p̂3�n�x�; (54)

 M4 �
X
n�0

�yn �x�jl��?x�Ylm�x̂�	3p̂3�n�x�: (55)

To proceed further, we first notice that, by using the
generalized spherical symmetry, M1 survives only when
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l � m � 0, i.e.

 M1 
X
n�0

�yn �x�j0��?x�
�l;0�m;0�������

4�
p En�n�x�; (56)

which leads to the result

 G1 �
Nc
MN

Z
d3x

X
n�0

�yn �x�j0��?x�En�n�x�: (57)

To evaluate G2, we first note that

 Ylm�x̂� 
 	3 �
X
�

hlm10j�mi�Yl�x̂� 
�����: (58)

Here, the generalized spherical symmetry dictates that �
must be zero, so that the rhs of the above equation is
effectively reduced to

 �
1���
3
p �l;1�m;0�Y1�x̂� 
��

�0�: (59)

This then gives
 

G2 �
1

MN
Nc

Z
d3x4�iY�10��̂?�

�
�

1���
3
p

�X
n�0

�yn �x�j1��?x�


 �Y1�x̂� 
 ���0��n�x�: (60)

Owing to the identity

 Y10��̂?� �

�������
3

4�

s
P1

�
cos

�
2

�
� 0; (61)

we therefore find that

 G2 � 0: (62)

Next we investigate the third term G3. Using
 

Ylm�x̂� 
 p̂3 �
X
�

hlm10j�mi�Yl�x̂� 
 p̂����

 �
1���
3
p �l;1�m;0�Y1�x̂� 
 p̂��0�; (63)

we obtain
 

G3 �
1

MN
Nc

Z
d3x4�iY�10��̂?�

�
�

1���
3
p

�X
n�0

�yn �x�j1��?x�


 �Y1�x̂� 
 p̂�
�0��n�x�: (64)

This term vanishes for the same reason that G2 does. The
last term G4 is a little more complicated. We first notice
that
 

Ylm�x̂�	3p̂3�Ylm�x̂�
X
�

h1010j�0i��
 p̂����0


X
�

h1010j�0ihlm�0j00i�Yl�x̂�
��
 p̂������0�

��m;0h1010jl0ihl0l0j00i�Yl�x̂�
��
 p̂�
�l���0�;

(65)

which dictates that l must be 0 or 2. Inserting the above
expression into (55), and using the explicit values of
Clebsch-Gordan coefficients, G4 becomes

 

G4 � �
1���
3
p �

Nc
MN

Z
d3x

X
n�0

�yn �x�j0��?x���
 p̂��0��n�x�

�

�������
4�
p ���

6
p �

Nc
MN

Z
d3x

X
n�0

�yn �x�j2��?x��Y2�x̂�


 ��
 p̂��2���0��n�x�: (66)

Using the identities

 ��
 p̂��0� � �
1���
3
p � � p̂; (67)

 �Y2�x̂� 
 ��
 p�
�2���0� � ��Y2�x̂� 
 p̂�

�1� 
 ���0�; (68)

G4 can also be written as

 

G4 �
1

3
�
Nc
MN

Z
d3x

X
n�0

�yn �x�j0��?x�� � p̂�n�x�

�

�������
4�
p ���

6
p �

Nc
MN

Z
d3x

X
n�0

�yn �x�j2��?x�


 �Y2�x̂� 
 p̂��1� 
 ���0��n�x�: (69)

Collecting the answers for G1, G2, G3, and G4, we finally
obtain

 

G�I�0�
E;20 �t� �

Nc
MN

Z
d3x

X
n�0

�yn �x�j0��?x�En�n�x�

�
1

3
�
Nc
MN

Z
d3x

X
n�0

�yn �x�j0��?x�� � p̂�n�x�

�

�������
4�
p ���

6
p �

Nc
MN

Z
d3x

X
n�0

�yn �x�j2��?x�


 �Y2�x̂� 
 p̂��1� 
���0��n�x�: (70)

Up until now, we have obtained the theoretical expres-
sions for the isoscalar combination of the generalized form
factors G�I�0�

E;10 �t� and G�I�0�
E;20 �t�. For notational convenience,

we summarize these results in a little more compact form
as follows:

 G�I�0�
E;10 �t� �

Z 1

�1
H�I�0�
E �x; 0; t�dx � Nc

X
n�0

hnjj0��?r�jni

(71)

and
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G�I�0�
E;20 �t� �

Z 1

�1
xH�I�0�

E �x; 0; t�dx

�
1

MN

�
Nc
X
n�0

Enhnjj0��?r�jni

� Nc
X
n�0

hnjj0��?r�
1

3
� � pjni

�

�������
4�
p ���

6
p Nc

X
n�0

hnjj2��?r�


 ��Y2�r̂� 
 p��1� 
���0�jni
�
: (72)

As pointed out before, G�I�0�
E;10 �t� is Nc�� 3� times the

isoscalar combination of the standard Sachs-electric form
factor of the nucleon. Analogously, we may call G�I�0�

E;20 �t�
the gravitoelectric form factor of the nucleon (its quark
part), since it is related to the nonforward nucleon matrix
elements of the quark part of the QCD energy-momentum
tensor.

The other generalized form factors can be obtained in a
similar way. The isovector parts of the generalized electric
form factors survive only at the next-to-leading order of �.
They are given as

 G�I�1�
E;10 �t� �

Z 1

�1
H�I�1�
E �x; 0; t�dx

�
1

3I

�
Nc
2

� X
m>0;n�0

1

Em � En
hmjj�jjni


 hmjjj0��?r��jjni (73)

and

 

G�I�1�
E;20 �t� �

Z 1

�1
xH�I�1�

E �x; 0; t�dx

�
1

MN
�

1

3I

�
Nc
2

� X
m>0;n�0

1

Em � En
hmjj�jjni




�
Em � En

2
hmjjj0��?r��jjni � hmjjj0��?r�



1

3
�� � p��jjni �

�������
4�
p ���

6
p hmjjj2��?r�


 ��Y2�r̂� 
 p�
�1� 
 ���0��jjni

�
: (74)

The isoscalar combination of the generalized magnetic
form factors also survive only at the next-to-leading order
of �, so that they are given as double sums over the single-
quark orbitals in the hedgehog mean field as

 G�I�0�
M;10 �t� �

Z 1

�1
E�I�0�
M �x; 0; t�dx

� �
MN

I

�
Nc
2

� X
m>0;n�0

1

Em � En
hmjj�jjni


 hmjj
j1��?r�

�?r
�r
��jjni; (75)

and
 

G�I�0�
M;20 �t� �

Z 1

�1
xE�I�0�

M �x; 0; t�dx

� �
1

I

�
Nc
2

� X
m>0;n�0

1

Em � En
hmjj�jjni




�
Em � En

2
hmjj

j1��?r�
�?r

�r
 ��jjni

� hmjj
j1��?r�

�?r
Ljjni

�
: (76)

We recall that G�I�0�
M;10 �t� just coincides with the known

expression of the isoscalar Sachs-magnetic form factor of
the nucleon in the CQSM [43]. On the other hand,G�I�0�

M;20 �t�
is sometimes called the gravitomagnetic form factor of the
nucleon (its isoscalar part), which we can evaluate within
the CQSM based on the above theoretical expression.
Finally, the leading-order contributions to the isovector
part of the generalized magnetic form factors are given as

 G�I�1�
M;10 �t� �

Z 1

�1
E�I�1�
M �x; 0; t�dx

� �
MN

3
� Nc

X
n�0

hnjj
j1��?r�

�?r
� � �r
��jjni

(77)

and
 

G�I�1�
M;20 �t� �

Z 1

�1
xE�I�1�

M �x; 0; t�dx

� �
1

3
� Nc

X
n�0

�
Enhnjj

j1��?r�
�?r

� � �r
 ��jjni

� hnjj
j1��?r�

�?r
� � Ljjni

�
: (78)

Especially interesting to us are the values of the general-
ized form factors in the forward limit t! 0. The consid-
eration of this limit is also useful for verifying the
consistency of our theoretical analyses, since it leads to
fundamental sum rules discussed below. We first consider
the forward limit of G�I�0�

E;10 �t�. From (71), we find that

 G�I�0�
E;10 �t � 0� �

Z 1

�1
H�I�0�
E �x; 0; 0�dx � Nc

X
n�0

1: (79)

Subtracting the corresponding vacuum contribution, this
reduces to Nc�� 3�. If we remember the relation
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Z 1

�1
H�I�0�
E �x; 0; 0�dx �

Z 1

�1
Hu�d�x; 0; 0�dx

�
Z 1

�1
fu�d�x�dx � Nu � Nd;

(80)

the forward limit of (71) just leads to the sum rule

 G�I�0�
E;10 �t � 0� � Nu � Nd � 3; (81)

which denotes that the sum of the u-quark and d-quark
numbers in the proton is 3.

Next we turn to the forward limit of G�I�0�
E;20 �t�, which

gives

 G�I�0�
E;20 �t � 0� �

1

MN

�
Nc
X
n�0

En �
1

3
Nc
X
n�0

hnj� � pjni
�
:

(82)

It is easy to see that, after regularization and vacuum
subtraction, the first term of the rhs of the above equation
reduces to the fermion (quark) part of the soliton energy,
i.e. Ereg

F in (18). It was proved in [44] that, in the CQSM
with vanishing pion mass, the following identity holds:

 

X
n�0

hnj� � pjni � 0: (83)

In the case of finite pion mass, which we are handling, this
identity does not hold. Instead, we can prove (see the
Appendix) that

 

1

3
Nc
X
n�0

hnj� � pjni � EM: (84)

That is, the second term in the parentheses of the rhs of
Eq. (82) just coincides with the pion part of the soliton
energy (or mass). Since the sum of the quark and pion parts
gives the total soliton mass MN , we then find that

 G�I�0�
E;20 �t � 0� �

1

MN
�MN � 1: (85)

In consideration of Eq. (72), this relation can also be ex-
pressed as

 

Z 1

�1
xH�I�0�

E �x; 0; 0�dx �
Z 1

�1
xHu�d�x; 0; 0�dx

�
Z 1

�1
xfu�d�x�dx � hxiu�d � 1;

(86)

which means that the total momentum fraction carried by
quark fields (the u and d quarks) is just unity. This is an
expected result, since the CQSM contains quark fields only
(note that the pion is not an independent field of quarks), so
that the total nucleon momentum should be saturated by
the quark fields alone.

Taking the forward limit ofG�I�1�
E;10 �t�, we are again led to

a trivial sum rule, constrained by the conservation law. In
fact, we have

 G�I�1�
E;10 �t � 0� �

1

I

�
Nc
6

� X
m>0;n�0

1

Em � En
hmjj�jjni2

�
1

I
� I � 1; (87)

thereby leading to

 

Z 1

�1
H�I�1�
E �x; 0; 0�dx �

Z 1

�1
Hu�d�x; 0; 0�dx

�
Z 1

�1
fu�d�x�dx � Nu � Nd � 1;

(88)

which denotes that the difference of the u-quark and the
d-quark numbers in the proton is just unity. On the other
hand, the forward limit of G�I�1�

E;20 �t� leads to the 1st non-
trivial sum rule as

 G�I�1�
E;20 �t � 0� �

Z 1

�1
xH�I�1�

E �x; 0; 0�dx

�
Z 1

�1
xfu�d�x�dx � hxiu�d

�
1

MN

1

I

�
Nc
6

� X
m>0;n�0

1

Em � En
hmjj�jjni




�
Em � En

2
hmjj�jjni �

�
mjj

1

3
�� � p��jjn

	�
:

(89)

Since this quantity, which represents the difference of the
momentum fraction carried by the u quark and the d quark
in the proton, is not constrained by any conservation law,
its actual value can be estimated only numerically.

Next we turn to the discussion of the forward limit of the
generalized magnetic form factors. First, the forward limit
of G�I�0�

M;10 �t� gives
 

G�I�0�
M;10 �t � 0� � �

MN

I

�
Nc
6

� X
m>0;n�0

1

Em � En
hmjj�jjni


 hmjjr
�jjni; (90)

which reproduces the known expression of the isoscalar
magnetic moment of the nucleon in the CQSM [43]. On the
other hand, the forward limit of G�I�0�

M;20 �t� gives
 

G�I�0�
M;20 �t � 0� � �

1

I

�
Nc
6

� X
m>0;n�0

1

Em � En
hmjj�jjni




�
Em � En

2
hmjjr
 �jjni � hmjjLjjni

�
:

(91)

It was shown in [40] that the rhs of the above equation is
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just unity, i.e.

 G�I�0�
M;20 �t � 0� � 1: (92)

In consideration of (44), this identity can be recast into a
little different form as

 1 �
Z 1

�1
xE�I�0�

M �x; 0; 0�dx �
Z 1

�1
xEu�dM �x; 0; 0�dx

�
Z 1

�1
x�Hu�d�x; 0; 0� � Eu�d�x; 0; 0��dx: (93)

Assuming the familiar angular-momentum sum rule due to
Ji,

 

1

2

Z
x�Hu�d�x; 0; 0� � Eu�d�x; 0; 0��dx � Ju�d; (94)

the above identity claims that

 Ju�d � 1
2; (95)

which means that the nucleon spin is saturated by the quark
fields alone. This is again a reasonable result, because the
CQSM is an effective quark model which contains no
explicit gluon fields. The derived identity (92) has still
another interpretation. Remembering the fact that
G�I�0�
M;20 �t� consists of two parts as

 G�I�0�
M;20 �t� � Au�d20 �t� � B

u�d
20 �t�; (96)

Eq. (92) dictates that

 Au�d20 �0� � B
u�d
20 �0� � 1: (97)

Since it also holds that (the momentum sum rule)

 G�I�0�
M;20 �0� � Au�d20 �0� � 1; (98)

it immediately follows that

 Bu�d20 �0� � 0; (99)

which is interpreted as showing the absence of the net
quark contribution to the anomalous gravitomagnetic mo-
ment of the nucleon.

Finally, we investigate the forward limit of the isovector
combination of the generalized magnetic form factors.
From Eq. (77), we get

 G�I�1�
M;10 �t � 0� � �

MN

9
Nc
X
n�0

hnjj� � �r
��jjni; (100)

which reproduces the known expression of the isovector
magnetic form factor of the nucleon in the CQSM. On the
other hand, letting t! 0 in (78), we have

 

G�I�1�
M;20 �t � 0� � �

1

9
Nc
X
n�0

fEnhnjj� � �r
��jjni

� hnjj� � Ljjnig

�
Z 1

�1
xE�I�1�

M �x; 0; 0�dx: (101)

As shown in [41], this sum rule can be recast into the form

 

1

2

Z 1

�1
xE�I�1�

M �x; 0; 0�dx � J�I�1�; (102)

where J�I�1� consists of two parts as

 J�I�1� � J�I�1�
f � �J�I�1�: (103)

Here, the first part is given as a proton matrix element of
the free field expression for the isovector total angular-
momentum operator of quark fields as

 J�I�1�
f � hp " jĴ�I�1�

f jp "i; (104)

with

 Ĵ �I�1�
f �

Z
 y�x��3

�
�x
 p̂�3 �

1

2
�3

�
 �x�d3x

� L̂�I�1�
f �

1

2
�̂�I�1�: (105)

On the other hand, the second term is given as
 

�J�I�1� � �M
�
Nc
18

�X
n�0

hnjr sinF�r��0


 �� � r̂� � r̂�� � ��jni: (106)

IV. NUMERICAL RESULTS AND DISCUSSIONS

The model in the chiral limit contains two parameters,
the weak pion decay constant f� and the dynamical quark
mass M. As usual, f� is fixed to its physical value, i.e.
f� � 93 MeV. For the mass parameter M, there is some
argument, based on the instanton liquid picture of the QCD
vacuum, that it is not extremely far from 350 MeV [23].
The previous phenomenological analyses of various static
baryon observables based on this model prefer a slightly
larger value of M between 350 MeV and 425 MeV [25–
27]. In the present analysis, we use the value M �
400 MeV. With this value of M � 400 MeV, we prepare
self-consistent soliton solutions for seven values ofm�, i.e.
m� � 0, 100, 200, 300, 400, 500, and 600 MeV, in order to
see the pion mass dependence of the generalized form
factors, etc. Favorable physical predictions of the model
will be obtained by using the value of M � 400 MeV and
m� � 100 MeV, since this set gives a self-consistent soli-
ton solution close to the phenomenologically successful
one obtained withM � 375 MeV andm� � 0 MeV in the
single-subtraction Pauli-Villars regularization scheme
[30–35].
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We first show in Fig. 1 the soliton profile functions F�r�
obtained with several values of m�, i.e. m� � 0, 200, 400,
and 600 MeV. One sees that the spatial size of the soliton
profile becomes more and more compact as the pion mass
increases.

We are now ready to show the theoretical predictions of
the CQSM for the generalized form factors. Since the
corresponding lattice predictions are given for the gener-
alized form factors Au�dn0 �Q

2� and Bu�dn0 �Q
2�, which are the

generalization of the standard Dirac and Pauli form factors,
we first write down the relations between these form
factors and the generalized Sachs-type factors, which we
have calculated in the CQSM. They are given by

 Au�d10 �t� � �G
�I�0�
E;10 �t� � �G

�I�0�
M;10 �t��=�1� ��; (107)

 Au�d20 �t� � �G
�I�0�
E;20 �t� � �G

�I�0�
M;20 �t��=�1� ��; (108)

 Au�d10 �t� � �G
�I�1�
E;10 �t� � �G

�I�1�
M;10 �t��=�1� ��; (109)

 Au�d20 �t� � �G
�I�1�
E;20 �t� � �G

�I�1�
M;20 �t��=�1� ��; (110)

and

 Bu�d10 �t� � �G
�I�0�
M;10 �t� �G

�I�0�
E;10 �t��=�1� ��; (111)

 Bu�d20 �t� � �G
�I�0�
M;10 �t� �G

�I�0�
E;20 �t��=�1� ��; (112)

 Bu�d10 �t� � �G
�I�1�
M;10 �t� �G

�I�1�
E;10 �t��=�1� ��; (113)

 Bu�d20 �t� � �G
�I�1�
M;20 �t� �G

�I�1�
E;20 �t��=�1� ��; (114)

where � � �t=4M2
N . We recall that A10�t� and B10�t� are

nothing but the standard Dirac and Pauli form factors of the

nucleon:

 Au�d10 �t� � F�I�0�
1 �t� � Fp1 �t� � F

n
1�t�; (115)

 Bu�d10 �t� � F�I�0�
2 �t� � Fp2 �t� � F

n
2�t�; (116)

 Au�d10 �t� � F�I�1�
1 �t� � Fp1 �t� � F

n
1�t�; (117)

 Bu�d10 �t� � F�I�1�
2 �t� � Fp2 �t� � F

n
2�t�: (118)

Since the lattice simulations by the LHPC and QCDSF
collaborations were carried out in the heavy pion region
around m� ’ �700–900� MeV and since the simulation in
the small pion mass region is hard to perform, we think it
interesting to investigate the pion mass dependence of the
generalized form factors within the framework of the
CQSM. For simplicity, we shall show the pion mass de-
pendence of the generalized form factors at the zero-
momentum transfer only. We think it enough for our pur-
pose because the generalized form factors at the zero-
momentum transfer contain the most important informa-
tion for clarifying the underlying spin structure of the
nucleon. At zero-momentum transfer, the relations be-
tween the generalized Dirac and Pauli form factors and
the generalized Sachs-type form factors are simplified to
become

 Au�d10 �0� � G�I�0�
E;10 �0�; (119)

 Au�d20 �0� � G�I�0�
E;20 �0�; (120)

 Au�d10 �0� � G�I�1�
E;10 �0�; (121)

 Au�d20 �0� � G�I�1�
E;20 �0�; (122)

and

 Bu�d10 �0� � G�I�0�
M;10 �0� �G

�I�0�
E;10 �0�; (123)

 Bu�d20 �0� � G�I�0�
M;20 �0� �G

�I�0�
E;20 �0�; (124)

 Bu�d10 �0� � G�I�1�
M;10 �0� �G

�I�1�
E;10 �0�; (125)

 Bu�d20 �0� � G�I�1�
M;20 �0� �G

�I�1�
E;20 �0�: (126)

Figure 2 shows the predictions of the CQSM for Au�d10 �0�
and Au�d20 �0� as functions of m�, together with the corre-
sponding lattice predictions. As for Au�d10 �0�, the CQSM
predictions and the lattice QCD predictions are both inde-
pendent of m� and consistent with the constraint of the
quark number sum rule:

 Au�d10 �0� � Nu � Nd � 3; (127)

with high numerical precision. Turning to Au�d20 �0�, one

0.0 2.0 4.0 6.0 8.0 10.0
r (fm)

0.0

1.0

2.0

3.0

F
(r

)

mπ = 0 MeV

mπ = 200 MeV

mπ = 400 MeV

mπ = 600 MeV

FIG. 1. The self-consistent soliton profile functions obtained
with M � 400 MeV and m� � 0, 200, 400, and 600 MeV.
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finds a sizable difference between the predictions of the
CQSM and of the lattice QCD. The lattice QCD predicts
that

 Au�d20 �0� � hxi
u � hxid ’ �0:6–0:7�; (128)

which means that only about (60–70)% of the total nu-
cleon momentum is carried by the quark fields, while the
rest is borne by the gluon fields. On the other hand, the
CQSM predictions for the same quantity are

 Au�d20 �0� � hxi
u � hxid � 1; (129)

which means that the quark fields saturate the total nucleon
momentum. This may certainly be a limitation of an ef-
fective quark model, which contains no explicit gluon
fields. Note, however, that the total quark-momentum frac-
tion Au�d20 �0� is a scale dependent quantity. The lattice
result corresponds to the energy scale of Q2 � �2 GeV�2

[18], while the CQSM prediction should be taken as that of
the model energy scale around Q2 � 0:30 GeV2 ’
�560 MeV�2 [32]. We shall later make more meaningful
comparisons by taking care of the scale dependencies of
relevant observables.

Next, in Fig. 3, we show the isovector combination of
the generalized form factors Au�d10 �0� and Au�d20 �0�. The
meanings of the symbols are the same as in Fig. 2. As for
Au�d10 �0�, both the CQSM and the lattice simulation repro-
duce the quark number sum rule,

 Au�d10 �0� � Nu � Nd � 1; (130)

with good prediction. Turning to Au�d20 �0�, one observes
that the prediction of the CQSM shows somewhat peculiar
dependence on the pion mass. Starting from a fairly small
value in the chiral limit (m� � 0), it first increases as m�
increases, but as m� further increases it begins to decrease,
thereby showing a tendency to match the lattice prediction
in the heavy pion region. Very interestingly, putting aside
the absolute value, a similar m� dependence is also ob-
served in the chiral extrapolation of the lattice prediction
for the momentum fraction hxiu � hxid shown in Fig. 25 of
[17]. Physically, the quantity Au�d20 �0� has a meaning of the
difference of the momentum fractions carried by the u
quark and the d quark. The empirical value for it is
Au�d20 �0� � hxi

u�d � 0:154� 0:003 [17]. One sees that
the prediction of the CQSM in the chiral limit is not far
from this empirical information, although more serious
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FIG. 2. The predictions of the CQSM for Au�d10 �0� and Au�d20 �0� as functions of m� (the filled diamonds), together with the
corresponding lattice predictions. Here, the open triangles correspond to the predictions of the LHPC group [18], while the open
squares to those of the QCDSF Collaboration [21].

0.0 0.2 0.4 0.6 0.8 1.0 1.2
mπ [GeV]

0.0

0.5

1.0

A
10u−

d (0
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
mπ [GeV]

0.0

0.2

0.4

0.6

A
20u−

d (0
)

(a) (b)

FIG. 3. The predictions of the CQSM for Au�d10 �0� and Au�d20 �0� as functions ofm�, together with the corresponding lattice predictions
[18,21]. The meaning of the symbols are the same as in Fig. 2.
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comparison must take account of the scale dependence of
hxiu�d.

Next, shown in Fig. 4 are the CQSM predictions for
Bu�d10 �0� and Bu�d20 �0�. The former quantity is related to the
isoscalar combination of the nucleon anomalous magnetic
moment as Bu�d10 �0� � 
u � 
d � 3�
p � 
n� 	 3
�T�0�.
[We recall that its empirical value isBu�d10 �0� ’ �0:36.] We
find that this quantity is very sensitive to the variation of
the pion mass. It appears that the CQSM prediction
Bu�d10 �0� ’ �1:5 corresponding to the chiral limit under-
estimates the observation significantly. However, the dif-
ference is exaggerated too much in this comparison. In
fact, if we carry out a comparison in the total isoscalar
magnetic moment of the nucleon 1

3G
�I�0�
M;10 �0� �

�p ��n 	 ��T�0�, the CQSM in the chiral limit gives
��T�0�

CQSM ’ 0:5 in comparison with the observed value

��T�0�
exp ’ 0:88. To our knowledge, no theoretical predic-

tions are given for this quantity by either the LHPC or the
QCDSF collaborations. The right panel of Fig. 4 shows the
predictions for Bu�d20 �0�, which is sometimes called the
isoscalar part of the nucleon anomalous gravitomagnetic
moment, or alternatively the net quark contribution to the
nucleon anomalous gravitomagnetic moment. As already
pointed out, the prediction of the CQSM for this quantity is
exactly zero, i.e.

 Bu�d20 �0� � 0: (131)

The explicit numerical calculation also confirms it. It
should be recognized that the above result Bu�d20 �0� � 0
obtained in the CQSM is just a necessary consequence of
the momentum sum rule and the total nucleon spin sum
rule, both of which are saturated by the quark field only in
the CQSM as

 Au�d20 �0� � hxi
u�d � 1 (132)

and

 

1
2 �A

u�d
20 �0� � B

u�d
20 �0�� � hJi

u�d � 1
2: (133)

In real QCD, the gluon also contributes to these sum rules,
thereby leading to more general identities:

 Au�d20 �0� � A
g
20�0� � 1; (134)

 �Au�d20 �0� � B
u�d
20 �0�� � �A

g
20�0� � B

g
20�0�� � 1; (135)

which dictates that only the sum of Bu�d20 �0� and Bg20�0� is
forced to vanish as

 Bu�d20 �0� � B
g
20�0� � 0: (136)

(While we neglect here the contributions of quarks other
than the u and d quarks, it loses no generality in our
discussion below. In fact, to include them, we have only
to replace the combination u� d by u� d� s� � � � .)
The above nontrivial identity claims that the net contribu-
tions of quark and gluon fields to the anomalous gravito-
magnetic moment of the nucleon must be zero. An
interesting question is whether the quark and gluon con-
tributions to the anomalous gravitomagnetic moment van-
ish separately or are both large with opposite sign. A
perturbative analysis based on a very simple toy model
indicates the latter possibility [45]. On the other hand, a
nonperturbative analysis within the framework of the lat-
tice QCD indicates that the net quark contribution to the
anomalous gravitomagnetic moment is small or nearly
zero, Bu�d20 �0� � 0 [19,22]. [To be more precise, we see
that the prediction of the LHPC Collaboration for Bu�d20 �0�
is slightly negative [19], while that of the QCDSF group is
slightly positive [22].] This strongly indicates a surprising
possibility that the quark and gluon contributions to the
anomalous gravitomagnetic moment of the nucleon may
vanish separately. Worthy of special mention here is an
interesting argument given by Teryaev some years ago,
claiming that the vanishing net quark contributions to the
anomalous gravitomagnetic moment of the nucleon, vio-
lated in perturbation theory, are expected to be restored in
full nonperturbative QCD due to the confinement [46–48].
Very interestingly, once it actually happens, it leads to a
surprisingly simple result, i.e. the proportionality of the
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FIG. 4. The predictions of the CQSM for Bu�d10 �0� and Bu�d20 �0� as functions ofm�, together with the corresponding lattice predictions
[19,22]. The meaning of the symbols are the same as in Fig. 2.
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quark-momentum and angular-momentum fraction

 Ju�d � 1
2hxi

u�d; (137)

as advocated by Teryaev [46–48]. A far reaching physical
consequence resulting from this observation was exten-
sively discussed in our recent report [49]. (See also the
discussion at the end of this section.)

Next, we show in Fig. 5 the predictions for the isovector
case, i.e. Bu�d10 �0� and Bu�d20 �0�. We recall first that the
quantity Bu�d10 �0� represents the isovector combination of
the nucleon anomalous magnetic moment 
�T�1� 	 
p �

n�� 
u � 
d 	 
�I�1��, the empirical value of which is
known to be 
�T�1� � 3:706. One finds that this quantity is
extremely sensitive to the variation of the pion mass,
especially near m� � 0. This is only natural if one remem-
bers the important role of the pion cloud in the isovector
magnetic moment of the nucleon. (One may notice that the
prediction of the CQSM for 
�T�1� underestimates a little
its empirical value even in the chiral limit. We recall,
however, that, within the framework of the CQSM, there
is an important 1=Nc correction (or, more concretely, the
1st order rotational correction) to some kind of isovector
quantity like the isovector magnetic moment of the nu-
cleon in question or the axial-vector coupling constant of
the nucleon [50–52]. This next-to-leading correction in
1=Nc should also be taken into account in more advanced
investigations.) Shown in the right panel of Fig. 5 are the
theoretical predictions for Bu�d20 �0�, half of which can be
interpreted as the difference of the total angular momen-
tum carried by the u-quark and d-quark fields according to
Ji’s angular-momentum sum rule [9]. The CQSM predicts
a fairly small value for this quantity, in contrast to the
lattice predictions of sizable magnitude. It seems that the
pion mass dependence rescues this discrepancy only par-
tially. Here we argue that the reason why the CQSM (in the
chiral limit) gives a rather small prediction for this quantity
is intimately connected with the characteristic x depen-
dence of the quantity E�I�1�

M �x; 0; 0�, the forward limit of
the isovector unpolarized spin-flip GPD of the nucleon. To

show this, we first recall that, within the theoretical frame-
work of the CQSM, Bu�d10 �0� as well as Bu�d20 �0� are calcu-
lated as the difference of G�I�1�

M;10 �0� and G�I�1�
E;10 �0� and of

G�I�1�
M;20 �0� and G�I�1�

E;20 �0�, respectively, as

 Bu�d10 �0� � G�I�1�
M;10 �0� �G

�I�1�
E;10 �0�; (138)

 Bu�d20 �0� � G�I�1�
M;20 �0� �G

�I�1�
E;20 �0�: (139)

Although the quantities on the rhs can be calculated di-
rectly without recourse to any distribution functions, they
can also be evaluated as x-weighted integrals of the corre-
sponding GPDs as

 G�I�1�
M;10 �0� �

Z 1

�1
E�I�1�
M �x; 0; 0�dx; (140)

 G�I�1�
M;20 �0� �

Z 1

�1
xE�I�1�

M �x; 0; 0�dx; (141)

 

G�I�1�
E;10 �0� �

Z 1

�1
H�I�1�
E �x; 0; 0�dx �

Z 1

�1
fu�d�x�dx

� Nu � Nd � 1; (142)

 

G�I�1�
E;20 �0� �

Z 1

�1
xH�I�1�

E �x; 0; 0�dx �
Z 1

�1
xfu�d�x�dx

� hxiu � hxid: (143)

The distribution function E�I�1�
M �x; 0; 0� has already been

calculated within the CQSM in our recent paper [41]. As
shown there, the Dirac-sea contribution to this quantity has
a sizably large peak around x � 0. Since this significant
peak due to the deformed Dirac-sea quarks is approxi-
mately symmetric with respect to the reflection x! �x,
it hardly contributes to the 2nd moment G�I�1�

M;20 �0�, whereas

it gives a sizable contribution to the 1st moment G�I�1�
M;10 �0�.

The predicted significant peak of E�I�1�
M �x; 0; 0� around x �

0 can physically be interpreted as the effect of the pion
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FIG. 5. The predictions of the CQSM for Bu�d10 �0� and Bu�d20 �0� as functions ofm�, together with the corresponding lattice predictions
[19,22]. The meaning of the symbols are the same as in Fig. 2.
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cloud. One can convince it in several ways. First, we
investigate how this behavior of E�I�1�

M �x; 0; 0� changes as
the pion mass is varied.

Shown in Figs. 6 and 7 are the CQSM predictions for
E�I�1�
M �x; 0; 0� with several values of m�, i.e. m� � 0, 200,

and 400 MeV. One clearly sees that the height of the peak
around x � 0, due to the deformed Dirac-sea quarks, de-
creases rapidly as m� increases. This supports our inter-
pretation of this peak as the effect of pion clouds. On the
other hand, one also observes that the magnitude of the
valence quark contribution, peaked around x 1=3, gradu-
ally increases as m� becomes large. This behavior of
E�I�1�
M �x; 0; 0� turns out to cause a somewhat unexpected
m� dependence ofG�I�1�

M;10 �0� andG�I�1�
M;20 �0�. As a function of

m�, the Dirac-sea contribution to G�I�1�
M;10 �0� decreases fast,

whereas the valence quark contribution to it increases
slowly, so that the total G�I�1�

M;10 �0� becomes a decreasing
function of m�. On the other hand, owing to the approxi-

mate odd-function nature of the Dirac-sea contribution to
xE�I�1�

M �x; 0; 0� with respect to x, it hardly contributes to
G�I�0�
M;20 �0� independent of the pion mass, while the valence

quark contribution to xE�I�1�
M �x; 0; 0� is an increasing func-

tion of m�, thereby leading to the result that the net
G�I�0�
M;20 �0� is an increasing function of m�.
We can give still another support to the above-

mentioned interpretation of the contribution of the Dirac-
sea quarks. To see it, we first recall that the theoretical
unpolarized distribution function fu�d�x� appearing in the
decomposition

 Eu�dM �x; 0; 0� � fu�d�x� � Eu�d�x; 0; 0� (144)

also has a sizable peak around x � 0 due to the deformed
Dirac-sea quarks. As shown in Figs. 8 and 9, this peak is
again a rapidly decreasing function of m�, supporting our
interpretation of it as the effect of pion clouds. Here, we
can say more. We point out that this small-x behavior of
fu�d�x� is just what is required by the famous NMC
measurement [53]. To confirm this, first remember that
the distribution fu�d�x� in the negative-x region should
actually be interpreted as the distribution of antiquarks. To
be explicit, it holds that

 �u�x� � �d�x� � �fu�d��x��x � 0�: (145)

The large and positive value of fu�d�x� in the negative-x
region close to x � 0 means that �u�x� � �d�x� is negative,
i.e. the dominance of the �d quark over the �u quark inside
the proton, which has been established by the NMC mea-
surement [53].

Shown in Fig. 10 are the predictions of the CQSM for
�d�x� � �u�x� evolved to the high energy scales correspond-
ing to the experimental observation [54–56]. (The theo-
retical predictions here were obtained with M � 400 MeV
and m� � 100 MeV.) The model reproduces well the
observed behavior of �d�x� � �u�x�, although the magnitude
of the flavor asymmetry in the smaller-x region seems to be
slightly overestimated. It is a widely accepted fact that this
flavor asymmetry of the sea quark distribution in the proton
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can physically be understood as the effect of pion clouds at
least qualitatively [36,57,58]. This then supports our inter-
pretation of the effects of the deformed Dirac-sea quarks in
E�I�1�
M �x; 0; 0� and fu�d�x� as the effects of pion clouds.
We show in Table I the model predictions for G�I�1�

M;20 �0�,

G�I�1�
E;20 �0�, and Bu�d20 �0� � G�I�1�

M;20 �0� �G
�I�1�
E;20 �0� as func-

tions ofm�. One sees that the value ofG�I�1�
M;20 �0�withm� �

0 is around 0.36. As already pointed out, it gradually
increases as m� becomes large. This is also the case with
G�I�1�
E;20 �0�. As a consequence, the isovector combination of

the nucleon anomalous gravitomagnetic moment Bu�d20 �0�,
which is obtained as a difference of the above two quan-
tities, is also an increasing function ofm�, thereby having a
tendency to come closer to the lattice prediction given in
the heavy pion region. Still, the CQSM prediction
Bu�d20 �0� ’ 0:3 around m� � 500 MeV is a factor of 2
smaller than the corresponding lattice prediction
Bu�d20 �0� ’ 0:6. Now we summarize the reason why the
CQSM gives a fairly small prediction for Bu�d20 �0�. It is
due to two types of cancellations. The first is the cancella-

tion of the potentially large contribution of Dirac-sea
quarks arising from the approximately antisymmetric be-
havior of the Dirac-sea contribution to xE�I�1�

M �x; 0; 0� as
well as xfu�d�x�. The second is the cancellation between
the total gravitomagnetic moment G�I�1�

M;20 �0� and its canoni-

cal part G�I�1�
E;20 �0�. We are not sure whether the lattice

simulation carried out in the heavy pion region with ne-
glect to the so-called disconnected diagrams can efficiently
take account of such effects of chiral dynamics as dis-
cussed above.

So far, we have investigated the pion mass dependence
of the forward limit of the generalized form factors of the
nucleon. Here, we investigate the momentum-transfer de-
pendencies of some form factors of the nucleon. For the
reason explained before, all the physical predictions given
hereafter will be obtained using the mass parameters M �
400 MeV and m� � 100 MeV. We show in Figs. 11–14
the predicted momentum-transfer dependencies of the gen-
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eralized Sachs form factors, G�I�0�
E;10 �t�, G

�I�0�
E;20 �t�, G

�I�1�
E;10 �t�,

G�I�1�
E;20 �t�, G

�I�0�
M;10 �t�, G

�I�0�
M;20 �t�, G

�I�1�
M;10 �t�, and G�I�1�

M;20 �t�.
To get some feeling about the momentum-transfer de-

pendencies of the predicted form factors, we shall compare
them with the existing empirical data. At present, only the
lowest moment of the GPDs, i.e. the standard electromag-
netic form factors of the nucleon, are experimentally
known. Shown in Fig. 15 are the predictions of the
CQSM for the Dirac form factors of the proton and the

neutron, in comparison with the empirical data [59] to-
gether with the corresponding predictions at the LHPC
lattice simulation [18,19]. One observes that the t depen-
dence of the CQSM prediction for Fp1 �t� is a little too much
stronger than the empirical one, while the t dependence of
the lattice predictions is too much weaker than the empiri-
cal one. A little too fast of a falloff of the CQSM predic-
tions means that they slightly overestimate the
electromagnetic size of the proton. On the contrary, the
electromagnetic proton size predicted by the LHPC simu-
lation is too small as compared with the empirically known
size. As is well known, the Dirac form factor of the neutron
is not well determined experimentally. Neither the CQSM
predictions nor the lattice QCD predictions are incompat-
ible with the empirical information in that they are very
small in magnitude, although the former is slightly posi-
tive, while the latter is slightly negative.

Figure 16 shows the predictions of the CQSM for the
Pauli form factors of the proton and the neutron, in com-
parison with the empirical data together with the corre-
sponding predictions of the LHPC lattice simulation.
(Here, both the CQSM predictions and the lattice QCD

0.0 1.0 2.0 3.0
− t [GeV

2
]

−0.2

0.0

0.2

0.5

0.8

1.0

G
E

,1
0

(I
=

1)
 (

t)

0.0 1.0 2.0 3.0
− t [GeV

2
]

−0.1

0.0

0.1

0.2

0.3

0.4

G
E

,2
0

(I
=

1)
 (

t)

valence

Dirac sea

total

valence

Dirac sea

total

(a) (b)

FIG. 12. The predictions of the CQSM for the isovector generalized electric form factors G�I�1�
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TABLE I. The m� dependencies of G�I�1�
M;20 �0�, G

�I�1�
E;20 �0�, and

Bu�d20 �0� in the CQSM with M � 400 MeV.

m��MeV� G�I�1�
M;20 �0� G�I�1�

E;20 �0� Bu�d20 �0�

0 0.361 0.228 0.133
100 0.392 0.276 0.116
200 0.452 0.327 0.125
300 0.519 0.350 0.169
400 0.579 0.354 0.225
500 0.640 0.347 0.293
600 0.716 0.328 0.388
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predictions are normalized to the observed anomalous
magnetic moments of the proton and the neutron at the
zero-momentum transfer.) The solid curves represent the
predictions of the CQSM, whereas the dashed curves show
the corresponding lattice predictions. One can see that the
predictions of the CQSM reproduce the empirical Pauli

form factors fairly well. On the other hand, the lattice QCD
predicts too slow of a falloff of the Pauli form factors,
which means that the magnetic sizes of the nucleon are
largely underestimated by the lattice QCD simulations.
The underestimate of the nucleon electromagnetic sizes
seems to be a general tendency of the lattice QCD simu-
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FIG. 13. The predictions of the CQSM for the isoscalar generalized magnetic form factors G�I�0�
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lations by the LHPC and QCDSF collaborations. It is not
clear yet whether the origin of discrepancy can be traced
back to the fact that these lattice simulations were carried
out in the region with unrealistically heavy pion mass.

Concerning the genuine generalized form factors with
n � 2, we have no experimental information yet. Among
them, of our particular interest is the generalized form
factor Bu�d20 �t� appearing in Ji’s angular-momentum sum
rule. We show in Fig. 17 the prediction of the CQSM for
Bu�d20 �t� obtained with M � 400 MeV and m� �

100 MeV, in comparison with the corresponding predic-
tions of the LHPC group. One sees that, for an arbitrary
value of t, Bu�d20 �t� does not vanish in the CQSM, which is
an indication of the fact that the shapes of the quark-
momentum and the total angular-momentum distributions

are not completely the same. Still, the magnitude of
Bu�d20 �t� turns out to be very small, which seems qualita-
tively compatible with the prediction of the LHPC group,
although one should not forget about large uncertainties in
the lattice simulation at the present level.

We are now ready to discuss the spin contents of the
nucleon from our investigation on the generalized form
factors of the nucleon. The quantities of our interest are all
obtained from the forward limit of the generalized form
factors, which are defined as the 2nd moments of the
relevant GPDs:

 hxiu�d � G�I�0�
E;20 �0�; hxiu�d � G�I�1�

E;20 �0�; (146)

 2Ju�d � G�I�0�
M;20 �0�; 2Ju�d � G�I�1�

M;20 �0�: (147)

Summarized below are the predictions of the CQSM model
for these quantities obtained with M � 400 MeV and
m� � 100 MeV:

 hxiu�d � 1:00; hxiu�d � 0:276; (148)

 2Ju�d � 1:00; 2Ju�d � 0:406: (149)

As pointed out before, these 2nd moments of GPDs are
generally scale dependent. Our viewpoint is that the pre-
dictions of the CQSM correspond to those at the low
energy scale where the validity of the model is ensured.
(This energy may typically be characterized by the Pauli-
Villars mass �1 ’ 600 MeV.) We shall take account of the
scale dependence of the above quantities by solving the
QCD evolution equation at the NLO with the predictions of
the CQSM as the initial conditions [60–62]. For simplicity,
let us assume that, at this low energy scale, there is no
contribution of gluon fields or of strange quarks, which
dictates that

 hxis � 0:0; 2Js � 0:0;

hxig � 0:0; 2Jg � 0:0:
(150)

The starting energy of the evolution is taken to be Q2
ini �

0:30 GeV2 ’ �550 MeV�2, because it is favored from the
previous successful application of the model to high energy
deep-inelastic-scattering observables [31–34]. Taking
Nf � 3 and �QCD � 0:248 GeV, we find that, at Q2 �

4 GeV2,

 hxiu�d�s � 0:676; hxiu�d � 0:171;

hxig � 0:324;
(151)

 2Ju�d�s � 0:676; 2Ju�d � 0:257; 2Jg � 0:324:

(152)

One may notice that the values of hxiu�d�s and 2Ju�d�s at
Q2 � 4 GeV2 precisely coincide. Actually, the equality of
these two quantities holds at any energy scale. The reason
is because these two quantities obey exactly the same
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evolution equation and because they are equal at the initial
energy scale according to the CQSM [11]. (We emphasize
that the latter is also the case for the LHPC and QCDSF
lattice predictions, at least approximately [19,22].) In
Table II, we compare these predictions of the CQSM
with those of the lattice QCD and also with the empirical
values for hxiu�d�s and hxiu�d obtained from the phenome-
nological PDF fits [63]. As one sees, the total momentum
fraction hxiu�d�s carried by the quarks decreases rapidly as
Q2 increases. The evolved value hxiu�d ’ 0:68 at Q2 �
4 GeV2 is not extremely far from the lattice QCD predic-
tion at the same normalization scale, although it is a little
larger than the empirical value hxiu�d�sempirical ’ 0:57. This
difference may be an indication of the fact that, even at
the low energy scale around Q2 ’ 0:30 GeV2, the gluons
may carry some portion of the nucleon momentum. As far
as the difference of the momentum fractions carried by the
u quark and the d quark is concerned, the CQSM repro-
duces the empirical value hxiu�dempirical ’ 0:16 well at Q2 �

4 GeV2, whereas the lattice QCD overestimates it a little.
Next we turn to the discussion of the total angular

momenta Ju and Jd carried by the quark fields, on which
we do not have any empirical information yet. One can see
that, as far as the total angular-momentum fraction Ju�d�s

carried by the quark fields is concerned, the prediction of
the CQSM is qualitatively consistent with that of the lattice
QCD. However, a big discrepancy is observed for the
difference Ju�d of the angular momentum carried by the
u quark and the d quark. The cause of this discrepancy can
be traced back to that of the isovector gravitomagnetic
moment of the nucleon G�I�1�

M;20 �0�, which we have already
discussed. A fairly small prediction of the CQSM for Ju�d

also appears to be incompatible with the semitheoretical
(or semiphenomenological) estimate carried out in [6] with
partial use of the predictions of the CQSM. As we shall
discuss below, however, their estimate for Ju and Jd shown
in Tables 4 and 5 of [6] should be taken with care. In fact, it
was obtained based on the valencelike approximation, i.e.
by neglecting the sizable Dirac-sea contributions to
Eu�x; 0; 0� and Ed�x; 0; 0�. To be more concrete, Ref. [6]
starts with a simple guess for these distribution functions as

 Eu�x; 0; 0� � 1
2


ufuval�x�; (153)

 Ed�x; 0; 0� � 
dfdval�x�; (154)

with

 
u � 2
p � 
u � 1:673; (155)

 
d � 
p � 2
u � �2:033: (156)

This parametrization trivially satisfies the 1st moment sum
rule

 

Z 1

�1
Eq�x; 0; 0�dx � 
q: (157)

On the other hand, by using the 2nd moment sum rule or
Ji’s angular-momentum sum rule, Ref. [6] obtains

 Ju � 1
2�hxi

u � 
uhxiuval�; (158)

 Jd � 1
2�hxi

d � 
dhxidval�; (159)

where hxiq is the momentum fraction carried by the quark
of flavor q, while hxiqval is the corresponding contribution
of the valence quark in the sense of the parton model.
Using the MRST98 parametrization for the unpolarized
PDFs [64], Ref. [6] could thus obtain, at Q2 ’ 1 GeV2,

 hxiuval ’ 0:34; hxiu ’ 0:40; 2Ju ’ 0:69; (160)

and

 hxidval ’ 0:14; hxid ’ 0:22; 2Jd ’ �0:07; (161)

which appears to be qualitatively consistent with the lattice
predictions. (Here, we have discarded the small contribu-
tion of the s quark, for simplicity.) However, after this
simple estimate for Ju and Jd, Ref. [6] next tries to take
account of the sizable Dirac-sea contribution to the distri-
butions Eu�x; 0; 0� and Ed�x; 0; 0�. As already shown in our
exact model calculation, and as shown in Fig. 8 of [6],
which is obtained based on the derivative-expansions-type
approximation within the CQSM, the Dirac-sea contribu-
tion to Eu�d�x; 0; 0� has a narrow and positive peak around
x ’ 0. To simulate this narrowly peaked behavior of the
Dirac-sea contribution, Ref. [6] proposes to parametrize it
by a � function in x. The new and improved parametriza-
tions for Eu�x; 0; 0� and Ed�x; 0; 0� are then given as

 Eu�x; 0; 0� � Aufuval�x� � Bu��x�; (162)

TABLE II. The predictions of the CQSM for hxiu�d, hxiu�d, 2Ju�d, and 2Ju�d in comparison
with the predictions of the lattice QCD simulations [18–20,22] as well as with the empirical
information [63].

CQSM (model scale) CQSM (Q2 � 4 GeV2) LHPC QCDSF Empirical

hxiu�d�s 1.000 0.676 0.61 0.59 0.57
hxiu�d 0.276 0.171 0.269 0.24 0.157
2Ju�d�s 1.000 0.676 0.58 0.66 � � �

2Ju�d 0.406 0.257 0.93 0.82 � � �
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 Ed�x; 0; 0� � Adfdval�x� � Bd��x�: (163)

From the 1st and 2nd sum rules for Eu�x; 0; 0� and
Ed�x; 0; 0�, Ref. [6] obtains

 Au �
2Ju � hxiu

hxiuval
; (164)

 Ad �
2Jd � hxid

hxidval
; (165)

 Bu � 2
�

1

2

u �

2Ju � hxiu

hxiuval

�
; (166)

 Bd � 
d �
2Jd � hxid

hxidval
: (167)

As pointed out in [6], the total angular momenta carried by
u and d quarks, Ju and Jd, now enter as fit parameters in the
parametrization of Eu�x; 0; 0� and Ed�x; 0; 0�. If this hap-
pens, there is no compelling reason to believe that they are
close to the estimate given in (158) and (159), obtained
within the valence-type parametrization for Eu�x; 0; 0� and
Ed�x; 0; 0�. In fact, if one puts the estimate given in (160)
and (161) into the above relations (165)–(167), one obtains

 Au ’ 0:853; Ad ’ �2:071;

Bu ’ �0:033; Bd ’ 0:038;
(168)

which dictates that the coefficients of the � functions are
small or nearly zero. This is only natural, since the used
values of Ju and Jd are just estimated based on the valence-
type parametrization for Eu�x; 0; 0� and Ed�x; 0; 0�.
Conversely speaking, the values of Ju and Jd quoted in
Tables 4 and 5 of [6] need a revision, because they are
incompatible with the existence of a sharp peak of
Eu�d�x; 0; 0� with sizable positive magnitude around x ’
0 observed in Fig. 8 of the same paper. The inseparable
relation between the magnitude of Ju � Jd and the sharp
peak of Eu�d�x; 0; 0� can be made more transparent by
slightly modifying their schematic analysis. Instead of
Eu�d�x; 0; 0�, we chose here to parametrize Eu�dM �x; 0; 0� 	
Hu�d�x; 0; 0� � Eu�d�x; 0; 0� as

 Eu�dM �x; 0; 0� � c1�fuval�x� � fdval�x�� � c2��x�: (169)

Here the �-function term is thought to simulate the sizable
sharp peak of Eu�dM �x; 0; 0� predicted by the CQSM.
Actually, it need not be a � function. It can be any function
g of x, as long as it satisfies the following two conditions:

(i) g�x� is an even function of x, at least approximately;
(ii) the integral of g�x� over x gives a (positive) number

c2.
Assuming that these conditions are satisfied (as is the

case for the predictions of the CQSM), the 1st and 2nd
moment sum rules of Eu�dM �x; 0; 0� lead to the identities

 1� 
u � 
d �
Z 1

�1
Eu�dM �x; 0; 0�dx � c1 � c2; (170)

 2�Ju � Jd� �
Z 1

�1
Eu�dM �x; 0; 0�dx � c1�hxi

uval � hxidval�:

(171)

Combining these relations, we have

 2�Ju � Jd� �
1� 
u � 
d

1� r
�hxiuval � hxidval�: (172)

Here we have introduced a parameter r 	 c2=c1. This
relation shows that, except for one parameter r, the differ-
ence of the total angular momenta, carried by the u and d
quarks, Ju � Jd, is given by 
u, 
d, hxiuval , and hxidval ,
which are all observables. What is the physical meaning
of the parameter r then ? To understand it, we first recall
that the quantity Eu�dM �x; 0; 0� represents the distribution of
the isovector magnetic moment of the nucleon in Feynman
x space not in ordinary coordinate space. The contribution
of its valencelike distribution to the magnetic moment
gives c1, whereas that of its sealike distribution gives c2.
The CQSM indicates that they are of approximately equal
magnitude, i.e. c1 ’ c2, which means that r ’ 1. On the
other hand, roughly speaking, the lattice simulations car-
ried out in the heavy pion region with neglect to the
disconnected diagrams correspond to r ’ 0.

Table III shows the values of 2�Ju � Jd� obtained from
(172) for several typical values of the ratio r. The quantity
hxiuval � hxidval is actually scale dependent. For simplicity,
here we have used the empirical value hxiuval � hxidval ’ 0:2
corresponding to Q2 � 1 GeV2 quoted in [6]. One sees
that the two cases, i.e. the r � 0 and r � 1 cases, lead to a
factor of 2 difference for Ju � Jd. What is indicated by this
observation is an inseparable connection between the an-
gular momentum carried by the quark fields in the nucleon
and the magnetic moment of the nucleon, or more precisely
the distribution of magnetic moments in Feynman x space.
As a matter of course, the relation between the quark
angular momentum and the nucleon magnetic moment
could be anticipated from more general theoretical frame-
work of Ji’s angular-momentum sum rule. However, an
advantage of our explicit model analysis is that we can get
more deep and concrete insight into the possible behavior
of the relevant distribution Eu�d�x; 0; 0�, on which we have
no experimental information yet.

TABLE III. The value of 2�Ju � Jd� as a function of the ratio
of the parameters c2 and c1 defined in (172).

r 	 c2=c1 2�Ju � Jd�

0 0.941
0.5 0.627
1 0.471
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Returning to the isoscalar (flavor-singlet) combination
or the net quark contribution to the total angular momen-
tum of the nucleon, Ju�d�s, we have pointed out that the
prediction of the CQSM for it is not so far from that of the
lattice QCD. However, both the LHPC and QCDSF col-
laborations also estimated the net orbital angular momen-
tum carried by the quark fields, thereby being led to the
conclusion that the total orbital angular momentum of the
quarks is very small or consistent with zero. As pointed out
in our recent paper, this conclusion contradicts not only the
prediction of the CQSM but also the famous EMC obser-
vation. Although the possible reason for this discrepancy
was already pointed out in that paper [49], here we discuss
it in more detail, especially by taking care of the scale
dependencies of the relevant observables. The quark orbi-
tal angular momentum can be obtained by subtracting the
intrinsic quark spin term from the total quark angular
momentum Ju�d as

 Lu�d � Ju�d � 1
2��u�d; (173)

where Ju�d is given by

 Ju�d � 1
2�hxi

u�d � Bu�d20 �0��: (174)

Using the results of the dipole fits for the generalized form
factors, the LHPC Collaboration obtained

 hxiu�d � Au�d20 �0� � 0:666� 0:009; (175)

 Bu20�0� � 0:29� 0:04; Bd20�0� � �0:38� 0:02;

(176)

 ��u � 0:860� 0:069; ��d � �0:171� 0:043;

(177)

which, in turn, gives

 Lu � �0:088� 0:019; Ld � 0:036� 0:013; (178)

or

 Lu�d � �0:052� 0:019: (179)

On the other hand, the QCDSF Collaboration obtained

 hxiu � Au20�0� � 0:400� 0:022;

hxid � Ad20�0� � 0:147� 0:011;
(180)

 Bu20�0� � 0:334� 0:113; Bd20�0� � �0:232� 0:077;

(181)

 ��u � 0:84� 0:02; ��d � �0:24� 0:02; (182)

which gives

 Lu�d � 0:03� 0:07: (183)

As one sees, a common conclusion of the two groups is that

the total orbital angular momentum of quarks is very small
or consistent with zero.

Since these lattice predictions correspond to the energy
scale of Q2 � 4 GeV2 in the MS scheme, we try to evolve
the corresponding predictions of the CQSM to the same
energy. To find the scale dependence of the total quark
orbital angular momentum LQ with Q denoting the sum of
all quark flavors, we need to know the scale dependence of
the total quark angular momentum JQ and that of the total
quark longitudinal polarization ��Q. We recall again the
fact that the angular-momentum fractions carried by the
quark and gluon fields, i.e. JQ and Jg, obey exactly the
same evolution equation as the total momentum fractions
carried by the quark and gluon fields hxiQ and hxig [11].
The evolution equation of ��Q, which is coupled with the
evolution of the gluon polarization, is also well known
[65]. As initial conditions of the evolution, we use the
predictions of the CQSM [the flavor SU(2) version]:

 2Ju�d � 1:0; (184)

supplemented with the assumption

 2Js � 0:0; ��s � 0:0; �g � 0:0; (185)

at Q2
ini � 0:30 GeV2. [There also exists the flavor SU(3)

version of the CQSM [33,34]. It predicts that ��s is a
negative quantity of the order of (5–10)%. However, the
flavor-singlet combination or the net quark contribution to
the total quark longitudinal polarization ��Q takes almost
the same value in both versions of the CQSM, so that the
following discussion will receive no modification.)

The left panel of Fig. 18 shows the scale dependence of
JQ obtained by solving the evolution equation at the NLO
in the MS scheme. (Here we set Nc � 3 and �QCD �

0:248 GeV.) One observes that, especially at low energy
scales, JQ is a rapidly decreasing function, while Jg is a
rapidly increasing function of Q2. The right panel of
Fig. 18 shows the scale dependence of ��Q and �g
obtained by solving the NLO evolution equation in the
same renormalization scheme [65]. As one sees, �g is a
rapidly increasing function of Q2. On the other hand,
��u�d�s has a fairly weak scale dependence. Its scale
dependence is restricted to the very low energy region
below Q2 � 0:6 GeV2, and beyond that scale it changes
very slowly. [We recall that, at the LO, ��Q in the MS is
exactly scale independent. One may also remember the fact
that ��Q in the chiral-invariant renormalization scheme is
scale independent by definition [66–69].] Now, combining
the results for the scale dependencies of JQ, Jg, ��Q, and
�g, one can predict the scale dependencies of LQ and Lg at
the NLO from

 LQ � JQ � 1
2��Q; (186)

 Lg � Jg � �g: (187)

Figure 19 shows the scale dependencies of quark and gluon
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orbital angular momenta obtained in this manner. One sees
that the total quark orbital angular momentum is a rapidly
decreasing function of the energy scale, especially at the
low energy scales. Since the longitudinal quark polariza-
tion is only weakly scale dependent, this feature comes
from the scale dependence of the total quark angular
momentum, which has the same scale dependence as the
total quark-momentum fraction. One also sees that the
gluon orbital angular momentum is a decreasing function
of the energy scale.

For the sake of comparison with the lattice QCD pre-
dictions corresponding to the energy scale of Q2 �
4 GeV2, we summarize in Table IV the predictions of the
CQSM for the nucleon spin contents at the same energy
scale. One confirms that the total quark orbital angular
momentum is a rapidly decreasing function of the energy

scale, and its value atQ2 � 4 GeV2 is nearly half of that at
the low energy model scale around Q2

ini � 0:30 GeV2.
Nonetheless, it still bears a sizable amount of the total
nucleon spin even at the scale Q2 � 4 GeV2, in contrast
to the lattice predictions. We point out that, after taking
account of the scale dependence, the predictions for JQ are
not so different between the CQSM and the lattice QCD.
What is remarkably different are the predictions of the two
theories for the net longitudinal quark polarization or the
contribution of intrinsic quark spin. It is clear that the
lattice QCD simulations by the LHPC and QCDSF collab-
orations for ��Q considerably overestimate the empiri-
cally known value of ��Q, which is known to be quite
small as

 ��Q
empirical � �0:2–0:35�; (188)

while the prediction of the CQSM is qualitatively consis-
tent with this empirical information. A plausible reason
why the lattice simulations by the LHPC and QCDSF
collaborations predict fairly large ��Q around 0.6 was
pointed out in [49]. In that paper, we investigated the
pion mass dependence of ��Q within the framework of
the CQSM and found that it is very sensitive to the varia-
tion of m�, especially in the region close to the chiral limit
m� � 0. (The magnitude of ��Q decreases rapidly as m�
approaches 0.) This indicates that the lattice estimates
carried out in the heavy pion region around m� �
�700–900� MeV may not give a reliable prediction for
the particular observable ��Q. As a consequence, the
conclusion of the LHPC and QCDSF collaborations that
the orbital angular momentum carried by the quark fields in
the nucleon is negligible must also be taken with care. It
may be justified in the heavy pion world, but whether it is
also the case in our chiral world is a different question,
which should be answered by the lattice QCD studies in the
future.

Also noteworthy is the fact that the large values of
��u�d obtained by the LHPC and QCDSF lattice collab-
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orations seem to contradict the results of earlier lattice
QCD studies [70–72], which predict fairly small ��Q

around (0.2–0.3). Among them, Mathur et al. [70] also
estimated the total quark angular momentum JQ from the
quark energy-momentum tensor form factors on the lattice
with the quenched approximation, and deduced that the
quark orbital angular momentum carries about 34% of the
total proton spin, which is compatible with (or even domi-
nant over) the contribution of intrinsic quark spin around
26% obtained by their simulation.

So far, we have given several interesting theoretical
predictions on the basis of an effective theory of QCD,
i.e. the CQSM. Although we believe that the reliability of
these predictions is guaranteed by the phenomenological
success of the CQSM achieved in the physics of nucleon
structure functions, it would be nicer if one can extract
some predictions, which do not depend on a specific model
of the nucleon. It is in fact possible, if one accepts the
following two theoretical postulates. They are

(i) Ji’s angular-momentum sum rule: JQ � 1
2 


�hxiQ � BQ20�0��;
(ii) the absence of the net quark contribution to the

anomalous gravitomagnetic moment of the nucleon:
BQ20�0� � 0.

It is reasonable to accept the first postulate. Otherwise, we
would lose our only clue to experimentally access the
quark angular momentum in the nucleon. What is crucial
in the following argument is therefore the second postulate.
As already mentioned, the identity BQ20�0� � 0, that holds
within the CQSM, just follows from the total momentum
and the total angular-momentum sum rules, both of which
are saturated by the quark fields alone in this effective
quark theory. It can therefore be an artifact of the model.
However, it should be emphasized that the smallness of
BQ20�0� is alsopredicted by the LHPC and the QCDSF
lattice QCD simulations, which take account of full
quark-gluon dynamics. Naturally, one should not forget
about large uncertainties in the lattice simulations at the
present stage. One should also worry about the m� depen-
dence of BQ20�0�, although we conjecture from our analyses
in the CQSM a weak m� dependence of this quantity.

Here, we shall proceed by assuming that BQ20�0� vanishes
exactly or is at least very small. As already pointed out, the
identity BQ20�0� leads to remarkable relations, i.e. the pro-
portionality of the total momentum and total angular mo-
mentum carried by the quark fields and also by the gluon

fields as

 JQ � 1
2hxi

Q; Jg � 1
2hxi

g: (189)

An important fact here is that the quark- and gluon-
momentum fractions, i.e. hxiQ and hxig, are empirically
known with fairly good precision. For instance, the two
popular PDF fits, i.e. MRST2004 [63] and CTEQ5 [73],
give almost the same answer for hxiQ and hxig, at least
within the energy range Q2 � 10 GeV2. There also exist
phenomenological fits for the longitudinally polarized
PDFs, which contain the information on ��Q and �g,
although with larger uncertainties compared with the un-
polarized case. These phenomenological PDFs can there-
fore be used for estimating the orbital angular momenta
carries by the quark fields and the gluon fields through the
relations

 LQ � JQ � 1
2��Q; (190)

 Lg � Jg � �g: (191)

The values of LQ and Lg at Q2 � 4 GeV2 estimated in this
way are shown in Table. V. Here, we use the MRST2004
PDF fit to estimate JQ and Jg [63]. On the other hand, ��Q

and �g are estimated by using three independent PDF fits,
i.e. LSS2005, DNS2005, and GRSV2000 [74–76]. Here,
all of the three independent fits we are using correspond to
the MS regularization scheme. As one sees, there are

TABLE IV. The predictions of the CQSM for the spin contents of the nucleon in comparison
with the corresponding predictions of the LHPC and QCDSF lattice QCD simulations [19,22].

CQSM (model scale) CQSM (Q2 � 4 GeV2) LHPC QCDSF

2Ju�d�s 1.000 0.676 0.56 0.66
��u�d�s 0.350 0.318 0.69 0.60
2Lu�d�s 0.650 0.358 �0:11 0.06

TABLE V. The model-independent predictions of the spin
contents of the nucleon at Q2 � 4 GeV2, based only upon one
theoretical postulate, BQ20�0� � 0. Here, all of the three indepen-
dent fits for the longitudinally polarized PDFs correspond to the
MS scheme.

MRST2004 LSS2005 MRST2004� LSS2005

JQ Jg �� �g LQ Lg

0.289 0.211 0.198 0.368 0.190 �0:157

MRST2004 DNS2005 MRST2004� DNS2005

JQ Jg �� �g LQ Lg

0.289 0.211 0.313 0.477 0.133 �0:266

MRST2004 GRSV2000 MRST2004� GRSV2000

JQ Jg �� �g LQ Lg

0.289 0.211 0.137 0.623 0.221 �0:412
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sizable uncertainties for the phenomenological values of
��Q and �g. Still, a common conclusion obtained from
all these PDF fits is a very important role of the quark
orbital angular momentum. Table V shows, at the least,
that the magnitude of the quark orbital angular momentum
is comparable with that of the intrinsic quark spin even at
the scale of Q2 � 4 GeV2. Since the quark orbital angular
momentum is a rapidly decreasing function of the energy
scale, while the scale dependence of ��Q is very weak,
this means that the former is dominant over the latter at the
scale below Q2 ’ 1 GeV2 where any low energy models
are supposed to hold. Naturally, the whole argument here is
crucially dependent on one theoretical postulate, that
BQ20�0� ’ 0. Although it is supported by both the LHPC
and QCDSF lattice simulations, efforts to improve the
accuracy of the lattice prediction should be continued, in
consideration of its extremely important role in determin-
ing the quark-gluon contents of the nucleon spin. Also
highly desirable is an analytical proof of it within the
framework of (nonperturbative) QCD.

V. CONCLUDING REMARKS

In this paper, we have investigated the generalized form
factors of the nucleon, which will be extracted through
near-future measurements of the generalized parton distri-
bution functions, within the framework of the CQSM. A
particular emphasis is put on the pion mass dependence as
well as the scale dependence of the model predictions,
which we compare with the corresponding predictions of
the lattice QCD by the LHPC and QCDSF collaborations
carried out in the heavy pion regime around m� ’
�700–900� MeV. The generalized form factors contain
the ordinary electromagnetic form factors of the nucleon
such as the Dirac and Pauli form factors of the proton and
the neutron. We have shown that the CQSM with good
chiral symmetry reproduces well the general behaviors of
the observed electromagnetic form factors, while the lat-
tice simulations by the above two groups have a tendency
to underestimate the electromagnetic sizes of the nucleon.
Undoubtedly, this cannot be unrelated to the fact that the
above two lattice simulations were performed with unre-
alistically heavy pion mass.

We have also tried to figure out the underlying spin
contents of the nucleon through the analysis of the gravito-
electric and gravitomagnetic form factors of the nucleon,
by taking care of the pion mass despondencies as well as of
the scale dependencies of the relevant quantities. After
taking account of the scale dependencies by means of the
QCD evolution equations at the NLO in the MS scheme,
the CQSM predicts, at Q2 � 4 GeV2, that 2JQ ’ 0:68,
��Q ’ 0:32, and 2LQ ’ 0:36, which means that the quark
orbital angular momentum carries a sizable amount of total
nucleon spin even at such a relatively high energy scale. It
contradicts the conclusion of the LHPC and QCDSF col-
laborations indicating that the total orbital angular momen-

tum of quarks is very small or consistent with zero. It
should be recognized, however, that the prediction of the
CQSM for the total quark angular momentum is not ex-
tremely far from the corresponding lattice prediction
2JQ ’ 0:6 at the same renormalization scale. The cause
of the discrepancy can therefore be traced back to the
LHPC and QCDSF lattice QCD predictions for the quark
spin fraction ��Q around 0.6, which contradicts not only
the prediction of the CQSM but also the EMC observation.
As was shown in our recent paper [49], ��Q is a quantity
that is extremely sensitive to the variation of the pion mass,
especially in the region close to the chiral limit. More
serious lattice QCD studies on the m� dependence of
��Q are highly desirable.

Worthy of special mention is the fact that, once we
accept a theoretical postulate BQ20�0� � 0, i.e., the absence
of the net quark contribution to the anomalous gravitomag-
netic moment of the nucleon, which is supported by both
the LHPC and QCDSF lattice simulations, we are neces-
sarily led to surprisingly simple relations, JQ � 1

2 hxi
Q and

Jg � 1
2 hxi

g, i.e., the proportionality of the linear and
angular-momentum fractions carried by the quarks and
the gluons. Using these relations, together with the existing
empirical information for the unpolarized and the longitu-
dinally polarized PDFs, we can give model-independent
predictions for the quark and gluon contents of the nucleon
spin. For instance, with the combined use of the
MRST2004 fit [63] and the DNS2005 fit [76], we obtain
2JQ ’ 0:58, ��Q ’ 0:31, and 2LQ ’ 0:27 at Q2 �
4 GeV2. Since LQ (as well as JQ) is a rapidly decreasing
function of the energy scale, while the scale dependence of
��Q is very weak, we must conclude that the former is
even more dominant over the latter at the scale belowQ2 ’
1 GeV2 where any low energy models are supposed to
hold.

The situation is a little more complicated in the flavor-
nonsinglet (or isovector) channel, because Bu�d20 �0� 	

G�I�1�
M;20 �0� �G

�I�1�
E;20 �0� � 2Ju�d � hxiu�d � 0, and also be-

cause the CQSM and the lattice QCD give fairly different
predictions for G�I�1�

M;20 �0�. As compared with the lattice

prediction for G�I�1�
M;20 �0� around 0.8, the prediction of the

CQSM turns out to be around 0.4. We have argued that the
relatively small value ofG�I�1�

M;20 �0� obtained in the CQSM is
intimately connected with the small-x enhancement of the
generalized parton distribution E�I�1�

M �x; 0; 0�, which is
dominated by the clouds of pionic q �q excitation around x ’
0. [We recall that the 2nd moment of E�I�1�

M �x; 0; 0� gives
G�I�1�
M;20 �0�.] Unfortunately, such an x-dependent distribution

as E�I�1�
M �x; 0; 0� cannot be accessed within the framework

of lattice QCD. Still, the predicted small-x behavior of
Eu�dM �x; 0; 0� 	 E�I�1�

M �x; 0; 0� as well as of fu�d�x� indi-
cates again the importance of chiral dynamics in the phys-
ics of nucleon structure functions, which has not been fully
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accounted for in the lattice QCD simulation at the present
level.
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APPENDIX: PROOF OF THE MOMENTUM SUM
RULE

Here we closely follow the proof of the momentum sum
rule given in [44], by taking into account a necessary
modification in the case of m� � 0. The starting point is
the following expression for the soliton mass (or the static
soliton energy):

 MN � NcSp���E0 �H� i"�H� � �H ! H0� � EM;

(A1)

with

 EM�F�r�� � �f
2
�m

2
�

Z
�cosF�r� � 1�d3x: (A2)

The soliton mass must be stationary with respect to an
arbitrary variation of the chiral field U or, equivalently, the
soliton profile F�r�, which leads to a saddle point equation:

 Sp ���E0 �H � i"��H� � �Em � 0: (A3)

Here we consider a particular (dilatational) variation of the
chiral field,

 U�x� ! U��1� ��x�: (A4)

For infinitesimal �, we have

 �U 	 U��1� ��x� �U�x� ’ �xk@kU�x�; (A5)

so that

 �H � M�0�xk@kU
�5 � ��xk@k;M�

0U�5�

� ���xk@k; H� � i�0�k@k�: (A6)

Noting the identity

 Sp ���E0 �H� i"��xk@k; H��

� Sp��H; ��E0 �H � i"��xk@k� � 0; (A7)

we therefore obtain a key identity,

 �Sp���E0 �H � i"���i��0�k@k� � ��EM: (A8)

Now, by using (A2) together with the relations

 �F�r� � �rF0�r�; (A9)

 � cosF�r� � � sinF�r��F � ��r sinF�r�F0�r�; (A10)

we get

 �EM � � � 4�f2
�m

2
�

Z 1
0
drr3 sinF�r�F0�r�

 � �� � 4�f2
�m

2
�

Z 1
0
drr3 d

dr
cosF�r�: (A11)

Here, taking account of the boundary condition

 F�0� � �; F�1� � 0; (A12)

we can show that

 

Z 1
0
drr3 d

dr
cosF�r� �

Z 1
0
drr3 d

dr
�cosF�r� � 1�

 � r3�cosF�r� � 1�j10 � 3
Z 1

0
drr2�cosF�r� � 1�

 � �3
Z 1

0
drr2�cosF�r� � 1�: (A13)

We thus find an important relation:

 �EM � �3�EM: (A14)

Putting this relation into (A8), we have

 �Sp���E0 �H � i"�� � p� � 3�EM; (A15)

or

 

1
3 Sp���E0 �H � i"�� � p� � EM: (A16)

If we evaluate the trace sum above by using the eigenstates
of the static Dirac Hamiltonian H as a complete set of
bases, (A16) can also be written as

 

X
n�0

�
n








1

3
� � p









n
	
� EM; (A17)

which is the relation quoted in (84). We point out that our
result has a correct chiral limit, since EM ! 0 as m� ! 0
and therefore

 lim
m�!0

X
n�0

�
n








1

3
� � p









n
	
� 0; (A18)

in conformity with the proof given in Ref. [44].
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