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We construct the full axial current of the constituent quarks by a summation of the infinite number of
diagrams describing constituent quark soft interactions. By requiring that the conservation of this current
is violated only by terms of order O�M2

��, where M� is the mass of the lowest pseudoscalar �QQ bound
state, we derive important constraints on (i) the axial coupling gA of the constituent quark and (ii) the �QQ
potential at large distances. We define the chiral point of the constituent quark model as those values of the
parameters, such as the masses of the constituent quarks and the couplings in the �QQ potential, for which
M� vanishes. At the chiral point the main signatures of the spontaneously broken chiral symmetry are
shown to be present, namely: the axial current of the constituent quarks is conserved, the leptonic decay
constants of the excited pseudoscalar bound states vanish, and the pion decay constant has a nonzero
value.
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I. INTRODUCTION

Chiral symmetry is a basic symmetry of massless QCD
which leads to the conservation of the axial-vector current,
apart from the axial anomaly in the singlet-flavor channel.
The masses of the light u and d quarks are small compared
to the confinement scale, and therefore the chiral limit
serves as a good approximation for the light-quark sector
of QCD. The consequences of chiral symmetry for the
QCD Green functions in the nonperturbative region
and the expansion of these functions in powers of the
external momenta and the small quark masses have been
worked out within chiral perturbation theory [1]. Chiral
symmetry in QCD is spontaneously broken, and there-
fore it is not a symmetry of the hadron spectrum: except
for the existence of the octet of light pseudoscalars, the
lowest part of the hadron spectrum shows no trace of chiral
symmetry.

Because of confinement, the calculation of the hadron
mass spectrum directly from the QCD Lagrangian is a
very challenging task, which requires a nonperturbative
approach. For the description of the mass spectrum of
hadrons and their interactions at low momentum transfers,
QCD-inspired constituent quark models (i.e., models based
on constituent quark degrees of freedom in which mesons
appear as �QQ bound states in a potential) proved to
be quite successful [2,3]. Moreover, there are many
pieces of evidence that the constituent quark picture pro-
vides a good description not only of the mass spectrum
of hadrons, but also of their interactions at not too
large momentum transfers [4–7]. Just because of the
proper description of the hadron mass spectrum, the
Lagrangian of the constituent quark model cannot be
chirally invariant (otherwise it would produce a chirally

invariant spectrum of hadron states).1 As a result, the
Noether axial current constructed in such models is not
conserved.

In this paper we show that, nevertheless, a properly
formulated constituent quark model has a ‘‘chiral point’’
which corresponds to the chiral limit of QCD. We start by
constructing the full axial current of the constituent quarks
by a summation of the infinite number of diagrams describ-
ing constituent quark soft interactions. By requiring that
the conservation of this current is violated only by terms
O�M2

��, we derive important constraints on the axial cou-
pling of the constituent quark, gA, and on the �QQ potential
at large distances. We then define the chiral point as those
values of the quark-model parameters (masses of the con-
stituent quarks and couplings in the quark potential) for
which the mass of the pseudoscalar �QQ ground state
vanishes. The following signatures of the spontaneously
broken chiral symmetry may be observed at the chiral
point:

(a) The axial current of the constituent quarks is con-
served. This requires a relation between the axial

1Several versions of chirally invariant Lagrangians based on
massive constituent quarks have been discussed in the literature
[8,9]. In this case the axial current constructed as the Noether
current from the Lagrangian is explicitly conserved. However,
explicit chiral symmetry for massive constituent quarks at the
Lagrangian level requires the inclusion of Goldstones along with
the constituent quark degrees of freedom. Although very elegant,
these approaches are not well suited for the description of the
meson spectrum: in constituent quark potential models, such as
the Godfrey-Isgur model [2], mesons are nicely described as
bound states of constituent quarks, leaving no room for addi-
tional Goldstone degrees of freedom. Inclusion of both constitu-
ent quarks and Goldstones leaves doubts on possible double
counting of meson states in these approaches.
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coupling of the constituent quark, gA�s�, and the
pion wave function ���s� in the chiral limit, which
we derive explicitly.

(b) The decay constant of the pion remains finite.
(c) The decay constants of the excited massive pseudo-

scalars vanish.
(d) The coupling gA�s� should be finite at s � 0 in

accordance with a spontaneously broken chiral sym-
metry. This requires that the potential of the �QQ
interaction saturates at large distances: V�r� !
const as r! 1.

The paper is organized as follows: In Sec. II, we recall
the basic properties of the axial current in QCD. In Sec. III,
we construct the full nonperturbative axial current of the
constituent quarks by taking into account their soft inter-
actions. We obtain the constraint on the axial coupling of
the constituent quark, gA�s�, which provides the conserva-
tion of the full axial current of the constituent quarks when
the mass of the lowest pseudoscalar Q �Q bound state van-
ishes. The constraints on the Q �Q potential which lead to a
nonvanishingQ �Q� coupling in the chiral limit are derived.
In Sec. IV, we discuss the properties of pseudoscalar
mesons at the chiral point. Section V gives our conclusions.
Appendix A gives the connection between the behavior of
the �QQ potential at large r and the analytic properties of
the bound-state wave function. In Appendix B we discuss
vector and scalar couplings of the constituent quarks.

II. AXIAL CURRENT IN QCD

Let us briefly recall the main properties of the axial
current in QCD: the axial current j5

��x� � �u�x����5d�x�
and the pseudoscalar current j5�x� � i �u�x��5d�x� are re-
lated by

 @�j5
��x� � �mu �md�j5�x�: (1)

The axial current is conserved in the limit of massless
quarks (the chiral limit). This leads to specific properties
of its correlators [10]. The coupling of a pseudoscalar
meson to these currents has the form

 h0j �u���5djP�q�i � ifPq�; h0ji �u�5djP�q�i � f5
P:

(2)

The divergence equation (1) requires

 fPM2
P / m; (3)

implying that at least one of the quantities on the left-hand
side vanishes in the chiral limit. If chiral symmetry is
spontaneously broken, Eq. (3) leads to the following alter-
natives [11]:

 M2
� � O�m�; f� � O�1�; ground-state pion

M2
P � O�1�; fP � O�m�; excited pseudoscalars:

(4)

Note that the nonvanishing of the pion decay constant in

the chiral limit means that the generator of the axial
symmetry Q5 �

R
d~x �q�0�5q�x� does not annihilate the

vacuum but rather produces a massless pion from the
vacuum state. Thus, the vacuum is not invariant under
chiral transformations, and chiral symmetry is spontane-
ously broken. If no spontaneous breaking of chiral sym-
metry occurs, then in the chiral limit the pion behaves the
same way as the excited pseudoscalars: it stays massive
and its decay constant vanishes [12]. The divergence equa-
tion (1) leads to the following relation between the cou-
plings:

 M2
PfP � �mu �md�f

5
P: (5)

For the pion, by virtue of the Gell-Mann–Oakes–Renner
(GMOR) formula [13]

 f2
�M2

� � ��mu �md�h �uu� �ddi �O�M4
��; (6)

we obtain

 f5
� � �

h �uu� �ddi
f�

: (7)

III. CONSERVED NONPERTURBATIVE AXIAL
CURRENT OF THE CONSTITUENT QUARKS

In this section we construct the full axial current of the
constituent quarks by summing soft interactions among the
latter. We show that the current obtained by this procedure
is conserved if the spectrum of the pseudoscalar �QQ bound
states contains a massless state.

A. The constituent quark interaction amplitude

Let us start with a discussion of the amplitude of the
constituent Q �Q interaction. We are interested in the region
of small invariant mass of theQ �Q pair, and we want to take
into account only two-particle intermediate Q �Q states. In
the region of small invariant mass of the �QQ pair, the JP �
0� partial S-wave Q �Q amplitude, A, which satisfies the
two-particle unitarity condition, may be parametrized in
the form [14]

 A �
�Qi�5Q������
Nc
p

�Qi�5Q������
Nc
p

G2�p2�

1� B�p2�
; (8)

with the function G�p2� having no singularities in the
region p2 > 0. The two-particle unitarity relation leads to
the expression

 B�p2� �
1

�

Z ds

s� p2 G
2�s���s�; (9)

with
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��s� �
1

Nc
Im
�
i
Z
d4xeipxh0jT� �Qi�5Q�x�; �Qi�5Q�0��j0i

�

�
s� �m1 �m2�

2

8�s
�1=2�s;m2

1; m
2
2���s� �m1 �m2�

2�;

(10)

where ��s;m2
1; m

2
2� � �s�m

2
1 �m

2
2�

2 � 4m2
1m

2
2 is the tri-

angle function. By a formal expansion of the denominator
in (8), the amplitude A may be represented by the series of
diagrams

+ + ...B (11)

with small solid circles denoting G�p2�. These diagrams
may be generated by the nonlocal vertex [14,15]

 

�Q��k1�i�5Q�k2�������
Nc
p �

�Q��k01�i�5Q�k02�������
Nc
p G2�p2�;

p � k1 � k2 � k01 � k
0
2:

(12)

The pseudoscalar meson corresponds to a pole in the
amplitude A, and its mass MP is obtained from

 1� B�M2
P� � 0: (13)

The parametrization (8) corresponds to a separable Ansatz
for the N-function of the N=D-representation of the �QQ
partial-wave scattering amplitude, which allows one to
describe the interaction of the �QQ bound state with exter-
nal currents (see [14] and references therein). This simple
Ansatz clearly has a limited applicability, namely, it is
suitable only for the low-energy region and leads to the
appearance of only one—lowest-mass— �QQ bound state.
Nevertheless, the amplitudes of the interaction of this
bound state with the external currents, obtained with the
nonlocal separable vertex (12), satisfy rigorous require-
ments of gauge invariance and analyticity. This approxi-
mation is very convenient for constructing the full axial
current of constituent quarks, and can be easily generalized
to include excited states [14].

B. Axial current of the constituent quarks

The interaction of the constituent quarks with gluons is
constructed through their covariant derivatives, and the
constituent quark currents satisfy the following divergence
equation:

 @�� �Q�x����5Q�x�� � 2mQ
�Q�x�i�5Q�x�: (14)

Therefore, the partially conserved axial current of the
constituent quarks, similar to the case of the axial current
of the nucleon, should contain not only the �Q���5Q
structure but also the induced pseudoscalar term �Q�5Q:

 h0j �q���5qj �QQi � �QfgA�p
2����5 � gP�p

2�p��5gQ:

(15)

In the chiral limit the conservation of the current (15) leads
to the relation gP�p2� �

2mQ

p2 gA�p2� [16]. The form factor

gP�0� contains a pole at p2 � 0 if gA�0� � 0.
We shall see that the pseudoscalar term in the full axial

current of the constituent quark emerges after taking into
account the soft interactions of the constituent quarks
described by the amplitude (8). Moreover, we shall see
that this term contains a pole at p2 � M2

� and that the axial
current (15) is conserved in the chiral limit.

We start with the axial-vector structure of the constituent
quark current (the Noether current obtained from the
Lagrangian of the constituent quark model), which we
refer to as the bare current:

 h0j �q���5qj �QQibare � gA�p2� �Q���5Q: (16)

As known from the application of the constituent quark
model to light mesons and baryons [17], the coupling
gA�p2� is a slowly varying function of p2, and the ‘‘on-
shell’’ axial coupling of the constituent quark is close to
unity, gA�4m2

Q� ’ 1 [18].
Let us take into account the soft interactions generated

by the vertex (12).2 Retaining only two-particle �QQ singu-
larities, as done already for the amplitude (8), the full axial
current is given by the set of diagrams

gA gA
Bµ

gA
Bµ+ + ...+B (17)

where small solid circles denote G and small empty circles
denote gA. The first term in this series corresponds to the
bare current given by Eq. (16). The loop diagram B� has
the following expression [15]:
 

B� � ip�BA�p
2�;

BA�p2� �
1

�

Z ds

s� p2 G�s�gA�s��A�s�; (18)

with �A defined by

2Quark interactions in the JP � 1� channel also contribute to
the full axial current. These interactions may be generated by the
vertex �Q���5Q � �Q���5QG

2
A�p

2�, where the operator �Q���5Q
is constructed to be orthogonal to �Q�5Q, i.e.,
Sp� �Q���5Q �Q�5Q� � 0. Inclusion of this structure leads to
the appearance of an additional transverse term in the full
expression for the axial current of the constituent quarks. This
term contains poles corresponding to axial mesons, and is
irrelevant for the region of small p2 we are interested in.
Therefore, we shall not take this spinorial structure into account
in our analysis.
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p��A�p2� �
1������
Nc
p Im

�
i
Z
d4xeipx

� h0jT� �Qi�5Q�x�; �Q���5Q�0��j0i
�
: (19)

Explicit calculations give

 �A�s� � 2mQ

������
Nc

p ��s�
s
: (20)

Making use of this relation, we obtain

 BA�p
2� � 2mQ

������
Nc

p Z ds

�s�s� p2�
G�s�gA�s���s�: (21)

This expression may be written in the form

 BA�p
2� � 2mQ

������
Nc

p 1

p2 f
~B�p2� � ~B�0�g; (22)

with

 

~B�p2� �
Z ds

��s� p2�
G�s�gA�s���s�: (23)

Notice that ~B reduces to B if one replaces gA�s� by G�s�.
Summation of the diagrams in (17) leads to the follow-

ing expression for the axial current of the constituent
quarks:
 

h0j �q���5qj �QQi � gA�p2� �Q���5Q

�
�Qi�5Q������
Nc
p G�p2�

ip�BA�p
2�

1� B�p2�
: (24)

Making use of Eq. (22), we obtain

 h0j �q���5qj �QQi � gA�p2� �Q���5Q

� 2mQ
p�
p2

�Q�5QG�p2�

�
~B�0� � ~B�p2�

1� B�p2�
; (25)

which may be recast in the following convenient form:

 h0j �q���5qj �QQi � gA�p2�

�
�Q���5Q� 2mQ

p�
p2

�Q�5Q
�
� 2mQ

p�
p2

�Q�5Q
gA�p

2��B�p2� � 1� �G�p2�� ~B�0� � ~B�p2��

1� B�p2�
:

(26)

The term in curly brackets is conserved by virtue of
Eq. (14). We now require the second term to be of order
O�M2

�� � O�m� in accordance with the divergence of the
axial current in QCD. To provide for such a behavior, the
constituent quark axial coupling gA cannot be a constant,
but should depend on the momentum as follows:

 gA�s� � �AG�s� �O�M2
��; (27)

with constant �A. This relation leads to the following
relation between the functions B and ~B:

 

~B�p2� � �AB�p2� �O�M2
��: (28)

The pion corresponds to the pole in the amplitude (26),
which implies

 B�p2 � M2
�� � 1: (29)

Expanding B�p2� and B�0� near B�M2
�� in Eq. (26), and

making use of Eq. (28), the axial current takes the form

 h0j �q���5qj �QQi � gA�p2�

�
�Q���5Q� 2mQ

p�
p2

�Q�5Q
�

� 2mQgA�p2�
p�
p2

�Q�5Q
O�M2

��

p2 �M2
�
:

(30)

Thus, taking into account soft interactions among constitu-
ent quarks leads to a conserved axial current if the mass
spectrum of the model contains a massless pseudoscalar.

It should be recalled that the spontaneous breaking of
chiral symmetry requires that for a massive fermion (such
as a nucleon or a constituent quark) the coupling gA�s� does
not vanish for s � M2

�. As we have found, the conservation
of the axial current at the chiral point requires that gA�s� �
�AG��s� �O�M2

��. Therefore, to be compatible with the
spontaneous breaking of chiral symmetry, the potential
model should lead to the light pseudoscalar bound state
for which G��s � M2

�� � const � 0. The vertex G��s� is
related to the radial wave function by [14,15]

 ���s� �
G��s�

s�M2
�
: (31)

Therefore the condition G��M
2
�� � 0 implies that ��

should have a pole at s � M2
�.

As shown in Appendix A, in order a pole in ���s� to
occur at s � M2

�, the potential of the Q �Q interaction
should saturate at large r:

 V�r! 1� � const: (32)

In this case the nearly massless pion is a strongly bound
Q �Q state with the binding energy 	 ’ 2m.

C. Pseudoscalar current of the constituent quarks

Similarly, starting with the bare pseudoscalar current

 h0j �q�5qj �QQibare � g5�p
2� �Q�5Q; (33)

the effect of soft quark interactions leads to the full pseu-
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doscalar current

 h0j �q�5qj �QQi � g5�p
2� �Q�5Q

1

1� B�p2�
: (34)

Making use of the QCD divergence Eq. (1) and the diver-
gence equation for the constituent quarks (14), we obtain
from Eqs. (25) and (34)

 �mu �md�g5�p2� � 2mQgA�p2��B�M2
�� � B�0�	

�O�M2
��

� 2mQgA�p2�M2
�B0�0� �O�M2

��:

(35)

The terms denoted as O�M2
�� emerge from the O�M2

��
terms in Eq. (27). If they are numerically small, then in
the chiral limit g5�p2� / gA�p2�, and by virtue of the
GMOR relation we find

 

g5�p2�

gA�p
2�
� �2mQB0�0�

h �uu� �ddi

f2
�

: (36)

The vector and scalar couplings of the constituent quarks
are considered in Appendix B.

IV. CHIRAL POINT OF THE CONSTITUENT
QUARK MODEL

We now consider certain properties of pseudoscalar
mesons making use of the results obtained in the previous
section.

A. Decay constants of pseudoscalar mesons

We start with the decay constants fP and f5
P defined in

(2) for both the ground-state and the excited pseudoscalar
mesons. Isolating the pole term at p2 � M2

P in the repre-
sentations of the axial and the pseudoscalar current gives
the following expressions for the axial and pseudoscalar
couplings of a pseudoscalar meson [15]3:

 fP�n� �
������
Nc

p Z
dsgA�s��n�s���s;m2

Q;m
2
Q�

2mQ

s
; (37)

 f5
P�n� �

������
Nc

p Z
dsg5�s��n�s���s;m2

Q;m
2
Q�; (38)

with the wave functions of the pseudoscalar mesons, �n,
normalized according to

 

Z
ds�n�s��m�s���s;m

2
Q;m

2
Q� � 
mn: (39)

In the region s 
 4m2, the function gA�s�may be expanded
over the full system of the eigenfunctions �n�s�. To pro-
vide for the conservation of the axial current in the chiral

limit M� � 0, the expansion should have the following
functional form:
 

gA�s� � �A�0�s��s�M
2
�� �M

2
�

X1
n�0

Cn�n�s�;

Cn � O�1�:

(40)

Substituting this expression into (37) we find

 fP�n� � 2mQ�A
������
Nc

p Z
ds�0�s��n�s���s;m

2
Q;m

2
Q�

�
s�M2

�

s
�O�M2

��: (41)

For the ground state, n � 0, the decay constant is clearly
finite in the chiral limit. Making use of Eq. (39) gives the
relation

 f� � 2mQ�A
������
Nc

p
�O�M2

��: (42)

For excited states, n � 0, by virtue of the orthogonality
condition (39), we find
 

fP�n � 0� � �2mQ�AM
2
�

Z
ds�0�s��n�s�

��s;m2
Q;m

2
Q�

s

�O�M2
��: (43)

This decay constant is proportional to M2
� and thus van-

ishes in the chiral limit. Also beyond the chiral limit, the
decay constants of the excited pseudoscalars are predicted
to be much suppressed compared to the pionic decay
constant. However, we cannot give further predictions for
the decay constants of the excited pseudoscalars, since in
this case the unknown terms�M2

� are of the same order as
the contribution given by the main term in gA�s�. A better
knowledge of the details of gA�s� is necessary.4

For the pseudoscalar coupling f5
P�n�, making use of the

expression (36), we obtain
 

f5
P�n� � �5

������
Nc

p Z
ds�0�s��n�s���s;m

2
Q;m

2
Q��s�M

2
��

�O�M2
��;

�5 � ��A2mQB0�0�
h �uu� �ddi

f2
�

: (44)

This coupling does not vanish in the chiral limit both for
the ground and the excited states, in accordance with (5).

Let us notice that the usual approximation, gA�s� �
const, may work well, at least for those quantities which

3In the nonrelativistic limit, gA�s� ! 1: then Eq. (37) is
reduced to the standard nonrelativistic relation fP�n� ����������������������

12=MP�n�
p

�n�~r � 0�.

4The terms O�M2
�� in gA�s�, Eq. (27), cannot be obtained

within the constituent quark picture itself, but they may be
determined, e.g., by comparing the results for the excited pseu-
doscalars obtained from the constituent quark picture with those
from other approaches (e.g., lattice QCD, Schwinger–Dyson
equation, etc.). Presently, only a few results for the first excited
state are available, which are unfortunately not sufficient for a
reliable determination of these O�M2

�� terms.
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do not vanish in the chiral limit, for the following reason:
In the relativistic quark model [14,15], the observables are
given by integrals over s along the two-particle cut. The
region of s near the two-particle threshold s � 4m2 is
suppressed by the two-particle phase space, which van-
ishes at the threshold. The region of large s is suppressed
by the wave function. So the main contribution comes from
intermediate values of s, where the specific details of the
function gA�s� are not essential. The approximation of a
constant gA�s� may even work numerically for the decay
constants of the excited pseudoscalars for the physical
values of the quark masses. However, this approximation
cannot be applied for studying the behavior of these quan-
tities in the chiral limit.

B. Pionic coupling of hadrons

The expression for the full axial current (25) contains an
explicit pion pole, thus providing the possibility to extract
the amplitude of the pionic decay h1 ! h2�:
 

p�A�h1 ! h2�� � lim
p2!M2

�

p2 �M2
�

f�
hh2jj

5
�jh1i

� p�
2mQ

f�
hh2j �Q�5Qjh1i: (45)

It is understood that the amplitude hh2j �Q�5Qjh1i is calcu-
lated making use of the constituent quark description of the
hadrons h1 and h2. The expression (45) for the amplitude
has been successfully applied to pionic decays of charmed
mesons [19].

C. The chiral constituent quark mass

We give now an estimate for the constituent quark mass
corresponding to the chiral limit, m0

Q, making use of the
following relation between the constituent quark mass mQ

and the current quark mass m at the chiral symmetry
breaking scale �� ’ 1 GeV [20]:

 h �qqi �
Nc
�2

Z 1
0
dkk2 exp��k2=�2

1�

�
m

m2 � k2 �
mQ

m2
Q � k

2

�
;

(46)

with �1 ’ 0:7 GeV [20]. Notice that the quark condensate
depends on the value of the current quark mass [1,11]. For
the physical value of the quark condensate, corresponding
to the current quark mass m � 6 MeV, we use h �qqi �
��240� 15 MeV�3 [21]. Equation (46) then gives mQ �

220 MeV, a typical value of the u and d constituent quark
mass [2,15]. In order to consider the chiral limit, m! 0,
the dependence of the quark condensate on the current
quark mass should be taken into account. Setting m � 0,
and making use of the chiral quark condensate h �qqim�0 ’
��230� 15 MeV�3, Eq. (46) gives the chiral constituent
quark mass m0

Q � 180 MeV. This estimate has, however,
rather an illustrative purpose: to find the true value of the

chiral constituent quark mass in a given model, one should
recalculate the meson spectrum and obtain m0

Q as the value
for which the pion mass vanishes.

V. SUMMARY

We demonstrated that the relativistic constituent quark
picture based exclusively on constituent quarks is compat-
ible with the chiral properties of QCD, if it has the follow-
ing features:

(i) The axial coupling gA�s� of the constituent quark is
a momentum-dependent quantity and is related to
the pion �QQ wave function by Eq. (40).

(ii) The �QQ potential saturates at large separations,
V�r! 1� ! const.

Under these conditions, a summation of the infinite number
of diagrams describing constituent quark soft interactions
leads to the full axial current of the constituent quarks,
conserved up to terms of order O�M2

��.
We defined the chiral point of the constituent quark

model as those values of the parameters of the model
(masses of the constituent quarks and couplings in the
quark potential) for which the mass of the lowest pseudo-
scalar �QQ bound state, M�, vanishes. The chiral point of
the constituent quark model corresponds to the spontane-
ously broken chiral limit of QCD: At the chiral point the
full nonperturbative axial current of the constituent quarks
is conserved (without explicit introduction of Goldstone
degrees of freedom). The lowest part of the hadron spec-
trum has no other traces of chiral symmetry except for a
massless pseudoscalar. Two important signatures of the
spontaneously-broken chiral symmetry can be seen—the
decay constant of the massless pion is finite, whereas the
decay constants of the excited massive pseudoscalars
vanish.

We emphasize that the nonperturbative emergence of
chiral symmetry in a model with only constituent quark
degrees of freedom, reported in this paper, is qualitatively
different from chiral symmetry in models which explicitly
contain Goldstones along with constituent quark degrees of
freedom:, namely, the latter may be made chirally invariant
for any value of the constituent quark mass, whereas in our
approach the model is chirally symmetric only for a defi-
nite (nonvanishing) value of the constituent quark mass
which leads to the massless ground-state pseudoscalar.

Let us notice that the usual approximation, gA � const,
may work reasonably for the calculation of most of the
hadron properties beyond the chiral limit. However, within
this approximation one gets wrong properties of the excited
pseudoscalars in the chiral limit.
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APPENDIX A: ANALYTIC PROPERTIES OF THE
WAVE FUNCTION IN A POTENTIAL MODEL

To study the connection between the properties of the
potential and the analytic structure of the wave function in
momentum space, we start with the Schrödinger equation
describing the interaction of two particles with massm in a
relative S-wave by the potential V�r� � 
ra:

 

�
�

1

m
d2

dr2 � V�r� � 	
�
r��r� � 0: (A1)

Here 	 is the binding energy of the eigenstate with mass
M � 2m� 	. For a > 0, the wave function has the follow-
ing behavior at large r:

 ��r� �
1

r
exp��

��������

m
p

r1�a=2�: (A2)

The momentum-space wave function is obtained by
Fourier transform and has the form (k � j ~kj):

 ��k� �
Z
drr

sin�kr�
k

��r�: (A3)

To perform the analytic continuation in ~k2 to the unphys-
ical negative values, we set k � i

���
z
p

and obtain

 ��z� �
Z
drr

exp�r
���
z
p
� � exp��r

���
z
p
����

z
p ��r�: (A4)

A singularity on the real axis of the variable z at z > 0 may
emerge if the integral (A4) diverges at r � 1 for some
positive value of z. Evidently, for the wave function (A2)
with a > 0 this does not happen: the integral (A4) is a
regular function for all z > 0. Therefore we conclude that
for a potential rising for r! 1, the wave function in the
momentum space is a regular function on the real axis.
Respectively, the vertex function G�s� � �s�M2���s�,
with s � 4m2 � 4k2, vanishes at s � M2.

The situation is different for a potential which saturates
at large separations, V�r! 1� � V1. Then, the wave
function behaves at large r as

 ��r� �
1

r
exp���r�; � �

�����������������������
m�V1 � 	�

q
: (A5)

Setting V1 � 0 and performing the Fourier transform, the
momentum-space wave function takes the form

 �� ~k2
� �

1

~k2
��2

�
1

�s�M2�
: (A6)

Here we used the relation s�M2 � 4m2 � 4k2 � �2m�
	�2 � 4�k2 �m	� � 	2 ’ 4�k2 �m	� relevant for the
nonrelativistic treatment. The wave function (A6) has a
pole at s � M2, and thus the vertex function G�s� � �s�

M2���s� is finite at s � M2. Notice that the location of the
pole may be directly obtained from the Schrödinger equa-
tion in the momentum-space representation, which for r!
1 reads

 

~k2

m
�� V� � �	�: (A7)

For V�r � 1� � 0, we obtain the location of the pole at
~k2
� �m	 solving Eq. (A7) as an algebraic equation.
The generalization of the Schrödinger equation used for

the calculation of the spectrum in relativistic quark models
has a similar structure [22],

 �
���
s
p
� V̂�� � M�; (A8)

where V̂ is the relativistic potential operator. If the poten-
tial vanishes at large separations, the wave function ��s�
has a pole at s < 4m2 (below the two-particle threshold).
The location of the pole can be found by solving the above
equation as an algebraic equation. Then we find ��s� �
1=�s�M2�, and thus G�s� � �s�M2���s� is finite for
s � M2.

APPENDIX B: VECTOR AND SCALAR
COUPLINGS OF THE CONSTITUENT QUARKS

We consider here vector and scalar couplings of the
constituent quarks of different flavors defined as follows:

 hQ1Q2j �q1��q2j0ibare � gV �Q1��Q2;

hQ1Q2j �q1q2j0ibare � gS �Q1Q2;
(B1)

where gV�0� � 1 for the elastic vector current, and gV�0� is
close to 1 for the weak current. In the first expression, we
omit the possible structure �Q1
��p

�Q2 [17] which is of no
importance for our analysis. What can be said about the
scalar coupling?

Let us calculate the scalar and vector couplings of a
scalar meson defined according to

 h0j �q2��q1jM�p�i � p�fv; h0j �q2q1jM�p�i � fs:

(B2)

By virtue of the QCD equations of motion, we have

 � �m1 � �m2�fs � M2fv; (B3)

where M is the mass of the scalar meson, and �m1, �m2 are
current quark masses. The corresponding constituent quark
masses are denoted as m1, m2.

The dispersion approach based on the constituent quark
picture [15] leads to the following representations for the
amplitudes:
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 h0j �q2��q1jM�p�i � 2p��m2�m1�
Z
dsgV�s� s�s��s

� �m1�m2�
2�
��s�
s
;

h0j �q2q1jM�p�i � �
Z
dsgS�s� s�s��s� �m1�m2�

2���s�:

(B4)

Making use of Eq. (B3) we find, for s 
 4m2
Q,

 � �m1 � �m2�gS�s� � �m1 �m2�gV�s�
M2

s
: (B5)

Since constituent and current quark masses approximately
obey the relation

 �m 1 � �m2 ’ m1 �m2; (B6)

we find

 gS�s� ’ gV�s�
M2

s
: (B7)

No other constraints on the functional dependence of gV�s�
and gS�s� emerge in this case.
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