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The three-gluon glueball states are studied with the generalization of a semirelativistic potential model
giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-
gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes
singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying
JPC states are computed and compared with recent lattice calculations. A good agreement is found for
1�� and 3�� states, but our model predicts a 2�� state much higher in energy than the lattice result. The
0�� mass is also computed.
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I. INTRODUCTION

The QCD theory allows the existence of bound states of
gluons, called glueballs, but no firm experimental discov-
ery of such states has been obtained yet. An important
difficulty is that glueball states might possibly mix strongly
with nearby meson states. Nevertheless, the computation of
pure gluon glueballs remains an interesting task. This
could guide experimental searches and provide some cali-
bration for more realistic models of glueballs.

Lattice calculations are undoubtedly a powerful tool to
investigate the structure of glueballs. A previous study [1]
predicts the existence of a lot of resonances between 2 and
4 GeV. A recent update of this work [2] confirms the results
already obtained.

The potential model, which is so successful to describe
bound states of quarks, is also a possible approach to study
glueballs [3–7]. In a recent paper [8], a semirelativistic
Hamiltonian is used to compute two-gluon glueballs with
masses in good agreement with those obtained by the
lattice calculations of Ref. [1]. This Hamiltonian, the
model III in Ref. [8], relies on the auxiliary fields formal-
ism [9,10] and on a one-gluon exchange (OGE) interaction
proposed in Ref. [3]. It depends only on three parameters:
the strong coupling constant �S, the string tension a, and a
gluon size �which removes singularities in the short-range
part of the potential. The constituent gluon mass is dy-
namically generated and it is assumed that the Casimir
scaling determines the color structure of the confinement.
These two ingredients are actually necessary to obtain a

good agreement between the results from a potential model
and from lattice calculations.

The purpose of this paper is to check if the potential
model built for two-gluon systems in Ref. [8] can be
generalized to three-gluon systems. Compared to previous
models [5,6], our approach is characterized by some im-
proved features: semirelativistic kinematics, more realistic
confinement, dynamical definition of the gluon mass, co-
herent treatment of the gluon size. These points will be
detailed below. The masses of the lowest negative parity
L � 0 glueballs are computed with a great accuracy and
compared with lattice calculations [1,2]. In Sec. II, the
three-gluon Hamiltonian is build, and the structure of the
glueballs studied is presented in Sec. III. The three-gluon
glueball spectrum is presented with the two-gluon glueball
spectrum from Ref. [8] and is discussed in Sec. IV. Some
concluding remarks are given in Sec. V.

II. HAMILTONIAN

A. Parameters

In Ref. [8], two sets of parameters, denoted A and B,
were presented for the model III (see Table I). With the set
A, it is possible to obtain glueball masses in agreement
with the results of some experimental works [11,12]: the
lowest 2�� state near 2 GeV, the lowest 0�� state near
1.5 GeV, and the lowest 0�� state near 2.1 GeV. The values
of a and �S are close to the ones used in some recent

TABLE I. Parameters for models A and B (� � 3a=4). For
both models, the gluon current mass is zero and f � 0:9515.

Model A Model B

a 0:16 GeV2 0:21 GeV2

�S 0.40 0.50
� 0:504 GeV�1 0:495 GeV�1
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baryon calculations [13]. With the set B, glueball masses
were computed in agreement with the results of the lattice
calculations of Ref. [1]. If the absolute glueball masses
found in Ref. [8] with both sets are strongly different, the
rescaled spectra are nearly identical. As we use in this work
a three-body generalization of the Hamiltonian model III
of Ref. [8], the two sets will also be considered.

It is worth mentioning how the parameters have been
determined in Ref. [8]. The mass of the lightest 2�� is
nearly independent of the values of �S and �, but depends
strongly on a. So, this last parameter has been determined
with this 2�� state. The remaining parameters �S and �
have then be computed in order to reproduce the lightest
0�� and 0�� states. The three states 2��, 0��, and 0��

have been chosen because they are possible experimental
glueball candidates [11,12] and because they are computed
with relatively small errors in lattice calculations [1,2].

B. Confinement potential

A good approximation of the confining interaction be-
tween a quark and an antiquark in a meson is given by the
linear potential ar, where r is the distance between the two
particles and where a is the string tension. In a baryon,
lattice calculations and some theoretical considerations
indicate that each quark generates a flux tube and that these
flux tubes meet in a junction point R0 which minimizes the
potential energy. Following this hypothesis, the confine-
ment in a baryon could be simulated by the three-body
interaction

 Vqqq � a
X3

i�1

jri �R0j: (1)

For such a potential, the pointR0 minimizes also the length
of the three flux tubes and is identified with the Toricelli
point [14].

The energy density �c of a flux tube (string tension) can
depend on the color charge c which generates it. Lattice
calculations [15] and effective models of QCD [16] predict
that the Casimir scaling hypothesis is well verified in QCD,
that is to say that the energy density is proportional to the
value of the quadratic Casimir operator F̂2

c of the color
source

 �c � F̂2
c�: (2)

We have then �q � � �q � 4�=3 � a and �g � 3�. In this
work we will assume that the confinement in a three-body
color singlet is given by

 Vccc � �
X3

i�1

F̂2
i jri � R0j: (3)

This potential can be considered as the three-body general-
ization of the confinement used in Ref. [8]. No constant
potential is added, contrary to usual Hamiltonians in me-
sons and baryons [3,17]. Let us note that if the three color

charges are not the same,R0 is no longer identified with the
Toricelli point [18].

Interaction (3) is very difficult to use in a practical
calculation. A good approximation can be obtained for
three identical color charges by replacing R0 by the center
of mass coordinate Rcm and by renormalizing the potential
by a factor f which depends on the three-body system [14].
For three identical particles, the best value is f � 0:9515.
We will use this approximation in the following, which
seems more realistic than a confinement obtained by the
sum of two-body forces [5,6].

As already mentioned, only the L � 0 states are studied
in this paper. So, no spin-orbit correction to the confine-
ment [8] is taken into account here.

In Refs. [3,5,6], the confinement potential saturates at
large distances in order to simulate the breaking of the
color flux tube between gluons due to color screening
effects. An interaction of type (3) seems a priori inappro-
priate since the potential energy can grow without limit.
But the phenomenon of flux tube breaking must only
contribute to the masses of the highest glueball states.
Moreover, it has been shown that the introduction of a
saturation could not be the best procedure to simulate the
breaking of a string joining two colored objects [19].

C. Dynamical constituent gluon mass

Within the auxiliary field formalism (also called einbein
field formalism) [9], which can be considered as an ap-
proximate way to handle semirelativistic Hamiltonians
[10,20], the effective QCD Hamiltonian has a kinetic part
depending on the current particle masses mi and the inter-
action is dominated by the confinement. A state-dependent

constituent mass�i � h
������������������
p2
i �m

2
i

q
i can be defined for each

particle, and all relativistic corrections (spin, momentum,
. . .) to the static potentials are then expanded in powers of
1=�i. This approach has been used in Ref. [8] to build the
two-gluon Hamiltonian. So, the same formalism will be
applied also in this paper.

Taking into account the considerations of Sec. II B, the
simplest generalization to a three-gluon system of the
dominant part of the model III two-gluon Hamiltonian of
Ref. [8] is

 H0 �
X3

i�1

������
p2
i

q
�f�

X3

i�1

F̂2
i jri � Rcmj; (4)

with the condition
P3
i�1 pi � 0, since we work in the

center of mass of the glueball. The gluons have vanishing
current masses and their color is such that hF̂2

i i � 3.
Contrary to some previous works [3,5,6], our
Hamiltonian is a semirelativistic one. In Ref. [8], it has
been shown that it is an important ingredient to obtain
correct two-gluon glueball spectra.

Using the technics of Ref. [21], it is possible to obtain an
analytical approximate formula giving the glueball mass
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M0 and the constituent gluon mass �0 (the three constitu-
ent gluon masses are the same since the wave function is
completely symmetrized, see Sec. III) for the L � 0 eigen-
states of Hamiltonian H0

 M0 � 6�0 with

�0 � 2

���������
6f�
�

s �
2

3� 51=3
�

8

9� 55=6

�
n�

1

2

��
3=4
:

(5)

The accuracy of these formulas, which is around 5% for the
ground state (n � 0), deteriorates with increasing values of
n. With a value of a � 4�=3 around 0:2 GeV2, the small-
est gluon constituent mass is around 600 MeV. It is then
relevant to use an expansion in powers of 1=�0. Such a
value of the gluon mass is in agreement with the values
used in Refs. [3,5,6], but here the constituent mass is
dynamically generated.

Instead of using the auxiliary field formalism, it is
possible to consider relativistic corrections which are ex-

panded in powers of 1=Ei�pi� where Ei�pi� �
������������������
p2
i �m

2
i

q
(see for instance Ref. [22]). But, this leads to very compli-
cated non local potentials which are difficult to handle.

D. Short-range potential

The Hamiltonian H0 (4) gives the main features of the
three-gluon glueball spectra, but the introduction of a
short-range potential is necessary to achieve a detailed
study. In Ref. [8], a OGE interaction between two gluons,
coming from Ref. [3], has been considered. It is not pos-
sible to use it directly for a three-gluon glueball because
the color structure of the interaction is different. So, we use
here the last version of a OGE interaction between two
gluons developed specifically for three-gluon glueballs
[5,6]. Its explicit form, which is very similar to the form
of the OGE interaction for two-gluon glueballs, is given
below.

This interaction contains a tensor part and a spin-orbit
part. Both are neglected in this paper since only L � 0
states are studied. Moreover, it has been shown that the
tensor interaction between two gluons is small in two-
gluon glueballs [8].

The OGE two-gluon potential has a priori a very serious
flaw: depending on the spin state, the short-range singular
part of the potential may be attractive and leads to a
Hamiltonian unbounded from below [6]. This problem is
solved, as in Ref. [8], by giving a finite size to the gluon
(see Sec. II E).

The OGE two-gluon potential depends on the gluon
constituent mass. To determine it, we follow the procedure
proposed in Ref. [8]. For a given set of quantum numbers
f�g, the eigenstate j��i of the Hamiltonian H0 is com-
puted. With this state, a constituent gluon mass is com-

puted �� � h��j
������
p2

1

q
j��i. This value of �� is then used

in the complete Hamiltonian (see Sec. II F) to compute its

eigenstate with quantum numbers f�g. It is worth noting
that, with this procedure, two states which differ only by
the radial quantum number are not orthogonal since they
are eigenstates of two different Hamiltonians which differ
by the value of�. It is shown in Ref. [10] that this problem
is not serious, the overlap of these states being generally
weak.

E. Gluon size

In potential models, the gluon is considered as an effec-
tive degree of freedom with a constituent mass. Within this
framework, it is natural to assume that a gluon is not a pure
pointlike particle but an object dressed by a gluon and
quark-antiquark pair cloud. Such an hypothesis for quarks
leads to very good results in meson [23] and baryon [24]
sectors. As in Ref. [8], we assume here a Yukawa color
charge density for the gluon

 ��u� �
1

4��2

e�u=�

u
; (6)

where � is the gluon size parameter. The interactions
between gluons are then modified by this density, a bare
potential being transformed into a dressed one.

The main purpose of the gluon dressing is to remove all
singularities in the short-range part of the interaction [24].
But, for consistency, the same regularization is applied to
the confinement potential, although no singularity is
present in this case. We think that the definition of a gluon
size, which has a clear physical meaning, is preferable to
the use of a smearing function only for potentials with
singularity [4,6].

A one-body potential, like jri � Rcmj, is dressed by a
simple convolution over the density of the interacting
gluon and the potential and the corresponding potential is
given by

 V�r�� �
Z
dr0V�r0���r� r0�: (7)

A dressed two-body potential, depending on jri � rjj, is
obtained by a double convolution. This procedure is
equivalent to the following calculation [25]

 V�r��� �
Z
dr0V�r0���r� r0� with

��u� �
1

8��3 e
�u=�:

(8)

F. Total Hamiltonian

To obtain the total Hamiltonian for three-gluon glueballs
which is the simplest generalization of the Hamiltonian for
two-gluon glueballs from Ref. [8], we take the
Hamiltonian H0 given by the relation (4); we add the
OGE interactions coming from Ref. [6] (without spin-orbit
and tensor parts); and we dress all the potentials with the
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gluon color density (6). This gives the following Hamiltonian
 

H �
X3

i�1

������
p2
i

q
�V��OGE � V

�
Conf with (9a)

V��OGE � �S
X3

i<j�1

F̂i 	 F̂j

��
1

4
�

1

3
~S2
ij

�
U�rij�

�� �
�

�2 	�rij�
��

�

�

5

6
~S2
ij

��
; (9b)

U�r��� �
1

��2�2 � 1�2

�
e��r

r
�
e�r=�

r

�
�

e�r=�

2���2�2 � 1�
with U�r� �

e��r

r
; (9c)

	�r��� �
1

8��3 e
�r=�; (9d)

V�Conf � f�
X3

i�1

F̂2
i jri � Rcmj

� with r� � r� 2�2 1� e�r=�

r
; (9e)

where � � 3a=4,
P3
i�1 pi � 0 and ~Sij � ~Si � ~Sj. 
 �

�1 (� 1) for a gluon pair in color octet antisymmetrical
(symmetrical) state. The constituent state-dependent gluon
mass � is computed in advance with a solution of the
Hamiltonian H0.

III. WAVE FUNCTIONS

A gluon is a I�JP� � 0�1�� color octet state. Two differ-
ent three-gluon color singlet states exist [5], which are
completely symmetrical or completely antisymmetrical
(hF̂i 	 F̂ji � 3 for such states). The total isospin state of a
glueball is an isosinglet and is completely symmetrical.
Different total spin states are allowed with different prop-
erties of symmetry. They are presented in Table II. As
gluons are bosons, the total wave function must be com-
pletely symmetrical. Its parity is the opposite of the spatial
parity, and its C-parity is positive for color antisymmetrical
state and negative for color symmetrical state. Let us note
that a two-gluon glueball has always a positive C-parity.

In this work, we will mainly consider glueballs with the
lowest masses. These states are characterized by a vanish-
ing total orbital angular momentum L � 0 and by a spatial
wave function completely symmetrical with a positive
parity. This immediately implies that the lowest glueballs
are states with JPC equal to 0��, 1��, and 3�� [5,6]. In
order to reach a good accuracy, the trial spatial wave
functions are expanded in large gaussian function bases

[26]. With more than 10 gaussian functions for each color/
isospin/spin channels, we have checked that the numerical
errors on masses presented are around or less than 1 MeV.

Using the value of � from models A and B, the L � 0
ground state masses of the Hamiltonian H0 (4) are pre-
sented in Table III for all possible JPC quantum numbers.
The 0��, 1��, and 3�� glueballs have clearly the lowest
masses. In this table, they are degenerate since the
Hamiltonian H0 is spin-independent. For each state, the
corresponding constituent gluon masses �0 is indicated. It
is used to define the complete Hamiltonian H (9).

IV. RESULTS

We present here the three-gluon glueball masses ob-
tained with the complete Hamiltonian H (9) together
with the two-gluon glueball masses computed in Ref. [8]
(see Table IV). These masses are compared with the results
obtained by the lattice calculations of Ref. [2]. This work is
an update of a previous study [1]. So, a state not computed
in Ref. [2] but presented in Ref. [1] is also considered here.
As it can be seen on Fig. 1, with the set B of parameters,
our masses are in quite good agreement with the results of
the lattice calculations, except for one exception discussed
below. Unfortunately, the masses predicted for the 0��,
2��, and 0�� two-gluon glueballs are larger than some
possible experimental candidates [11,12]. A best agree-
ment with these data can be achieved with the set A of

TABLE II. Characteristics of three-gluon spin functions with
total spin S, intermediate couplings Sint, and symmetry proper-
ties which can be obtained by coupling (A: Antisymmetrical, S:
Symmetrical, MS: Mixed symmetry).

S Sint Symmetry

0 0 1 A
1 0, 1, 2 1 S, 2 MS
2 1, 2 2 MS
3 2 1 S

TABLE III. L � 0 ground state masses M0 of the Hamiltonian
H0 (4) as a function of the JPC quantum numbers. The corre-
sponding constituent gluon masses �0 are also given. Values in
MeV are computed with the value of � from models A=B.

JPC M0 �0 JPC M0 �0

0�� 5574=6385 929=1064 0�� 3211=3679 535=613
1�� 3211=3679 535=613 1�� 4156=4761 693=794
2�� 4156=4761 693=794 2�� 4156=4761 693=794
3�� 3211=3679 535=613 3�� 5574=6385 929=1064
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parameters [8]. But the situation is not simple, since recent
works [27,28] suggest that the new observed resonance
f0�1810� reported by the BES collaboration [29] could be a
0�� glueball. Such a data is then compatible with the set B
of parameters.

As the lattice results can suffer from quite large error of
normalization, it is then interesting to present a rescaled
spectra. In Fig. 2, the ratios of two- and three-gluon glue-
ball masses on the lowest 2�� mass are presented. At this
scale, results coming from sets A and B of parameters
cannot be distinguished.

Let us first point that the 1�� and 3�� states occur only
in three-gluon glueballs, whereas the 0�� state is available

for two- and three-gluon systems. The mixing between
these two channels is ignored here. Our results share
some similarities with other potential models. For instance,
in Ref. [5], the three lowest three-gluon glueballs are those
with JPC equal to 0��, 1��, and 3��, but they are found
around 2400 MeV and the mass splitting between theses
states is around 50 MeV. In Ref. [6], the same three lowest
states are found: the 1�� glueball is predicted in the range
3500–3700 MeV and the mass difference between these
three sates is around 100 MeV.

FIG. 1. Glueball masses given in MeV. Dotted diamonds:
Results from model B (two-gluon masses are taken from
Ref. [8]); Black and white circles: Lattice results from
Ref. [1]; White squares: Lattice results from Ref. [2]. Black
circles indicate the reference states taken as inputs to fix the
parameters. The error bars for lattice results are computed by
summing the two uncertainties (see Table IV).

FIG. 2. Glueball mass ratios normalized to the lightest 2��

state (see Table IV). Dotted diamonds: Results from model B
(two-gluon masses are taken from Ref. [8]); Black and white
circles: Lattice results from Ref. [1]; White squares: Lattice
results from Ref. [2]. Black circles indicate the reference states
taken as inputs to fix the parameters. The error bars for lattice
results are computed without the normalization error on glueball
masses. Results from models A and B cannot be distinguished on
this graphic.

TABLE IV. Glueball masses in MeV and (glueball mass ratios normalized to lightest 2��).
The two-gluon masses are taken from Ref. [8]. The error bars for lattice mass ratios are
computed without the normalization error on the masses. The lightest 0��, 2��, and 0�� states
are taken as inputs to fix the parameters. The first column indicates the valence gluon content as
predicted by our model.

JPC Lattice [Ref.] Model A Model B

gg 0�� 1710
 50
 80 (0:72
 0:03) [2] 1604 (0.78) 1855 (0.78)
2670
 180
 130 (1:12
 0:09) [1] 2592 (1.26) 2992 (1.26)

2�� 2390
 30
 120 (1:00
 0:03) [2] 2051 (1.00) 2384 (1.00)
0�� 2560
 35
 120 (1:07
 0:03) [2] 2172 (1.06) 2492 (1.05)

3640
 60
 180 (1:52
 0:04) [1] 3228 (1.57) 3714 (1.56)
2�� 3040
 40
 150 (1:27
 0:03) [2] 2573 (1.25) 2984 (1.25)

3890
 40
 190 (1:63
 0:04) [1] 3345 (1.63) 3862 (1.62)
3�� 3670
 50
 180 (1:54
 0:04) [2] 3132 (1.53) 3611 (1.51)

ggg 1�� 3830
 40
 190 (1:60
 0:04) [2] 3433 (1.67) 3999 (1.68)
2�� 4010
 45
 200 (1:68
 0:04) [2] 4422 (2.16) 5133 (2.15)
3�� 4200
 45
 200 (1:76
 0:04) [2] 3569 (1.74) 4167 (1.75)
0�� 3688 (1.80) 4325 (1.81)
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A detailed comparison between the results of our poten-
tial model and the lattice calculations of Ref. [1] have been
performed in Ref. [8] for the two-gluon glueballs. The
conclusions of this work are not changed by the new lattice
predictions obtained in Ref. [2]. Let us then focus our
attention on the three-gluon glueball spectrum obtained
with the set B of parameters. Without any new parameters,
the 1�� and 3�� glueballs are in good agreement with the
lattice predictions of Ref. [2] (see Table IVand Fig. 1). The
agreement is slightly less good for the relative spectra (see
Fig. 2) because the error is smaller for lattice mass ratios.
Our results also suggest the existence of a three-gluon 0��

glueball near these two last states. The others 0�� states
already computed by the lattice calculations can be iden-
tified as two-gluon systems by our model.

The lattice results predict a 2�� state at 4010 MeV near
the 1�� and 3�� states. With our Hamiltonian, a mass
more than 1 GeV above is computed. It is unavoidable in
our model, since a spin 2 function has a mixed symmetry
which implies a mixed symmetry for the space function
and then a greater mass for the corresponding glueball, in
agreement with the results of Refs. [5,6]. It has been
checked that the spatial wave function of the 2�� state is
dominated by a configuration in which each internal vari-
able is characterized by one unit of angular momentum.

We have no firm explanation for such a discrepancy.
This problem could arise because the gluon has a constitu-
ent mass within our formalism. So, it possesses a spin as
any massive particle, that is to say three states of polariza-
tion. In lattice calculations, the gluon is a massless particle
with a definite helicity and then only two states of polar-
ization. The same phenomenon could be at the origin of
another puzzling—to some extent opposite—situation in
the two-gluon glueball sector: the existence of 1PC states
with low masses in our model [8], which are actually not
predicted below 4 GeV by lattice calculations [1]. Further
studies are necessary to clarify the situation.

The lattice results predict also several three-gluon J��

states in the range 2980–4780 MeV. These states with
positive parity have a negative spatial parity and then are
expected to have masses larger than the lowest three-gluon
J�� states. This is manifestly not the case in these lattice
calculations. In Ref. [8], it is shown that the structure of
some two-gluon glueballs can be explained with our po-
tential model by the existence of strong spin-orbit forces
coming from the OGE interaction and the confinement. It

is possible that similar forces act in three-gluon system to
lower the masses of some of these states.

V. CONCLUSION

The masses of pure three-gluon glueballs have been
studied with the generalization of a semirelativistic poten-
tial model [8] which gives pure two-gluon glueball spectra
in good agreement with lattice calculations [1,2]. The
short-range part of the potential is the sum of two-body
OGE interactions. For the confinement, a potential simu-
lating a genuine Y-junction is used and it is assumed that
the Casimir scaling hypothesis is well verified. The gluon
is massless but the OGE interaction is expressed in terms of
a state-dependent constituent mass. The Hamiltonian de-
pends only on 3 parameters fixed in Ref. [8]: the strong
coupling constant, the string tension, and a gluon size. All
masses have been accurately computed with an expansion
of trial states in gaussian functions [26].

In this work, only the negative (natural) parity L � 0
three-gluon glueballs are studied. The masses of the lowest
1�� and 3�� glueballs predicted by our potential model
are in agreement with the results of a recent lattice calcu-
lations [2], but the lowest 2�� state is found at higher
energy in agreement with other potential models [5,6]. The
origin of such a discrepancy between both approaches is
not known. It could be due to the fact that gluons have
constituent non vanishing masses in our approach. They
are then characterized by a spin, and not by a helicity as it
could be expected for particles with a vanishing current
mass.

Other positive parity three-gluon glueballs predicted by
lattice calculations are not considered here [2]. We think
that their properties could be explained by the action of
strong spin-orbit forces, similar to those present into two-
gluon glueballs. To take into account these interaction, it is
necessary to consider the spin-orbit forces arising from
OGE interactions but also from the Y-junction confine-
ment. Such a work is in progress.
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