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We study a QCD sum rule analysis for an exotic tetraquark ud �s �s of JP � 0� and I � 1. We construct
qq �q �q currents in a local product form and find that there are five independent currents for this channel.
Because of the high dimensional nature of the current, it is not easy to form a good sum rule when using a
single current. This means that we do not find any sum rule window to extract reliable results, due to the
insufficient convergence of the operator product expansion and to the exceptional important role of QCD
continuum. Then we examine sum rules by using currents of linear combinations of two currents among
the independent ones. We find two reasonable cases that predict a mass of the tetraquark around 1.5 GeV.
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I. INTRODUCTION

The history of exotic hadrons is rather long. But the
recent experimental observations have triggered a tremen-
dous amount of research activities [1–3]. Among them the
report on the pentaquark �� from the LEPS group in 2002
was the most influential one [4], partly because �� is a
genuine exotic state of the quark content uudd �s. It also has
unusual properties such as a light mass and a very narrow
width. Its existence is, however, now questioned, which
should be confirmed in the future experiments [5].

Turning to mesons, though not genuine exotic states,
X�3872� and Ds�2317� are found to have properties that
seem difficult to be explained by a conventional picture of
�qq [6–12]. Rather, they could be considered to have a
significant amount of multiquark components. Histori-
cally, tetraquark mesons were investigated long ago as an
attempt to explain relatively light masses and excess of
states in scalar channels [13–17]. Just as in the exotic
baryons, it is interesting to consider genuine exotic states
in the meson sector whose minimal component is qq �q �q .
Tetraquark states of ud�s �s component have been studied as
candidates of such exotic states. Since they may be ob-
tained by replacing one of ud diquarks in �� by an �s
antiquark, similarities between �� and ud �s �s have been
discussed, though precise analogy is a dynamical question
[18–20].

In the former studies, the tetraquark ud �s �s of JP � 1�

was investigated in detail, where it was shown that the state

has a relatively low mass and a narrow width decaying into
K�K in the flux tube model [21]. The narrow decay width is
associated with the fact that the KK channel is forbidden
due to the conservation of parity and angular momentum,
which partly motivated the study of the 1� channel.

In principle, it is also possible to study other channels
of the ud �s �s tetraquarks [21–23]. From a naive point of
view of mass, it is natural to investigate 0� scalar states.
In contrast to �qq mesons, the tetraquark does not need
orbital excitation to form the quantum number 0�, but
all quarks may occupy the lowest state. In this case, it is
shown that the tetraquark should have isospin one I � 1.
This is the object that we would like to study in this
paper.

We perform QCD sum rule analyses for the scalar (JP �
0�) and isovector (I � 1) exotic tetraquark ud �s �s . We
attempt a rather comprehensive analysis in which we will
pay special attention to the structure of the interpolating
fields (currents). First, we find that there are five indepen-
dent interpolating fields for the tetraquark. We show this by
constructing the tetraquark currents in terms of diquark
fields (�qq�� �q �q�) and mesonic fields (� �qq�� �qq�), where �qq
can be both color singlet and octet. We then consider two-
point correlation functions first by using a single current of
various types. It turns out that many of them do not achieve
a good sum rule. Therefore, we attempt linear combina-
tions of two independent currents. This method was first
proposed in Ref. [24]. We then find that there are several
cases with good Borel stability, indicating the mass of the
tetraquark around 1.5 GeV. We also investigate the relia-
bility of the sum rule not only from the Borel stability but
also from the dependence on the threshold value and the
amount of the pole contribution in the total sum rule. We
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also mention the convergence of operator product expan-
sion (OPE).

The difficulties to make a good sum rule for exotic
particles of high dimensional operators were nicely dis-
cussed in a recent work by Kojo et al. [25]. They proposed
a sum rule using a linear combination of two-point func-
tions rather than currents in order, for instance, to suppress
large contributions from low dimensional terms that are
irrelevant to nonperturbative properties of hadrons. They
have successfully achieved a good sum rule that satisfy the
necessary requirements. In our present study, our strategy
is different from theirs, but the consideration along their
idea is certainly important in the discussion of the tetra-
quark also.

This paper is organized as follows. In Sec. II, we estab-
lish five independent currents in diquark-antidiquark and
meson-meson (actually mesonlike) constructions. Some
relations among various currents will be discussed.
Section III is the main part of this paper, where we perform
sum rule analyses using various tetraquark currents con-
structed in Sec. II. We study the sum rule of a single current
and then consider linear combinations of currents. Sec-
tion IV is devoted to the summary. In the Appendix, we
discuss the equivalence and relations between the currents
of diquark-antidiquark and meson-meson constructions.

II. INDEPENDENT CURRENTS

Let us consider currents for the tetraquark ud�s �s having
JP � 0�. Here we consider only local currents. To write a
current, Lorentz and color indices are contracted with
suitable coefficients (Labcd����) to provide necessary quantum
numbers,

 � � Labcd���� �s�a �s�bu
�
cd�d ; (1)

where the sum over repeated indices (�; �; . . . for Dirac
spinor indices, and a; b; . . . for color indices) is taken.

For the Dirac spinor space, using possible diquark and
antidiquark bilinears [26–29], there are five independent
terms:

 Sabcd � � �sa�5C�sTb ��u
T
cC�5dd�;

Vabcd � ��sa���5C�sTb ��u
T
cC���5dd�;

Tabcd � � �sa���C�sTb ��u
T
cC�

��dd�;

Aabcd � ��sa��C�sTb ��u
T
cC��dd�;

Pabcd � ��saC�sTb ��u
T
cCdd�:

(2)

Here, color indices are not yet specified. For the diquark
and antidiquark pair, color structures providing a color-
singlet tetraquark are 3 � �3 and �6 � 6, which we will
denote by labels 3 and 6 for short.

Therefore, we have altogether ten terms of products

 fS � V � T � A � PgLorentz � f3 � 6gcolor: (3)

However, half of them drop due to the Pauli principle. For
instance,

 P3 	 PLorentz � 3color � �abc� �sbC�sTc ��ab0c0 �uTb0Cdc0 � � 0:

(4)

Eventually, we end up with five independent currents:

 

S6 � � �sa�5C�sTb ��u
T
aC�5db�;

V6 � � �sa���5C�sTb ��u
T
aC���5db�;

T3 � � �sa���C�sTb ��u
T
aC���db�;

A3 � � �sa��C�sTb ��u
T
aC��db�;

P6 � � �saC�sTb ��u
T
aCdb�:

(5)

In the nonrelativistic language, these five terms correspond
to combinations of diquarks and antidiquarks:

 


�1S0��
1S0��0� ; 
�3S1��

3S1��0� ; 
�1P1��
1P1��0� ;


�3P0��
3P0��0� ; 
�3P1��

3P1��0� : (6)

Another possible piece of 3P2 is irrelevant, since the five
bilinear forms qT�q (� � S, V, T, A, P) can only have spin
j � 1, while the 3P2 diquark has j � 2.

Finally we consider the flavor structure. The �s �s anti-
diquark is symmetric in flavor, and hence belongs to the
symmetric representation �6f. If the other ud diquark be-
longs to �3f, and so isospin I � 0, the diquark and anti-
diquark will have different flavor symmetry. But they
should have the same color and spin symmetries for com-
posing a color-singlet scalar tetraquark. Considering the
Pauli principle, they must have different parity, and hence
their combination is a negative-parity scalar tetraquark.
Accordingly, the other ud diquark also belongs to 6f, and
so isospin I � 1. Among the irreducible representations of
the tetraquark

 

�6 � 6 � 1 � 8 � 27;

S � �2 and I � 1 states are in the 27 representation of
SU�3�f, which is the flavor structure of the present tetra-
quark. As shown in Fig. 1, three isovector states of the 27f
are uu�s �s , 1=

���
2
p
�ud� du��s �s , and dd �s �s .

We have constructed five independent currents using
diquark and antidiquark combination. We refer to this as
the diquark construction. Similarly, we can also construct
the tetraquark currents using �qq combination (mesonic
construction). Obviously, there are ten combinations of
the Dirac (S, V, T, A, and P) and color (1 and 8) spaces:
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S1 � ��saua���sbdb�;

S8 � ��sa�nabub���sc�
n
cddd�;

V1 � ��sa��ua���sb��db�;

V8 � ��sa���
n
abub���sc�

��ncddd�;

T1 � ��sa���ua���sb�
��db�;

T8 � ��sa����
n
abub���sc�

���ncddd�;

A1 � ��sa���5ua���sb�
��5db�;

A8 � ��sa���5�
n
abub���sc�

��5�
n
cddd�;

P1 � ��sa�5ua���sb�5db�;

P8 � ��sa�5�nabub���sc�5�ncddd�;

(7)

where subscripts 1 and 8 denote color-singlet and octet
representations, respectively. Unlike the diquark construc-
tion, all ten currents in Eq. (7) remain finite. However, it is
possible to show only five of them (in fact any five of them)
are independent. The proof of this and various relations
among different currents are discussed in Appendix A.

III. QCD SUM RULES ANALYSIS

A. Formulas of QCD sum rule

For the past decades QCD sum rule has proven to be a
very powerful and successful nonperturbative method
[30,31]. In sum rule analyses, we consider two-point cor-
relation functions:

 ��q2� 	 i
Z
d4xeiqxh0jT��x��y�0�j0i; (8)

where � is an interpolating current for the tetraquark. We
compute ��q2� in the OPE of QCD up to certain order in
the expansion, which is then matched with a hadronic

parametrization to extract information of hadron proper-
ties. At the hadron level, we express the correlation func-
tion in the form of the dispersion relation with a spectral
function:

 ��p� �
Z 1

0

��s�

s� p2 � i"
ds; (9)

where

 ��s� 	
X
n

	�s�M2
n�h0j�jnihnj�yj0i

� f2
X	�s�M

2
X� � higher states: (10)

For the second equation, as usual, we adopt a parametri-
zation of one pole dominance for the ground state X and a
continuum contribution. The sum rule analysis is then
performed after the Borel transformation of the two ex-
pressions of the correlation function, (8) and (9),

 ��all��M2
B� 	 BM2

B
��p2� �

Z 1
0
e�s=M

2
B��s�ds: (11)

Assuming the contribution from the continuum states can
be approximated well by the spectral density of OPE above
a threshold value s0 (duality), we arrive at the sum rule
equation

 ��M2
B� 	 f2

Xe
�M2

X=M
2
B �

Z s0

0
e�s=M

2
B��s�ds: (12)

Differentiating Eq. (12) with respect to 1
M2
B

and dividing it

by Eq. (12), finally we obtain

 M2
X �

Rs0
0 e
�s=M2

Bs��s�dsRs0
0 e
�s=M2

B��s�ds
: (13)

In the following, we study both Eqs. (12) and (13) as
functions of the parameters such as the Borel mass MB
and the threshold value s0 for various combinations of the
tetraquark currents.

B. Analysis of single diquark currents

In this subsection, we perform a QCD sum rule analysis
using the five diquark currents, S6, V6, T3, A3, and P6,
separately. Let us first outline briefly how we performed
the OPE calculation. For illustration, let us take P6. Then
 

��q2� 	 i
Z
d4xeiqxh0jTP6�x�P

y
6 �0�j0i

� Tr
C�Saa
0

u �x��
TCSbb

0

d �x��


 Tr
Sa
0a
s ��x�C�Sb

0b
s ��x��TC�

� Tr
C�Saa
0

u �x��TCSbb
0

d �x��


 Tr
Sb
0a
s ��x�C�S

a0b
s ��x��

TC�: (14)

For the quark propagator, we use

x

x

x

x

x

x

x

xx

x

x

x

x

xx

x

x

x

x

x

x

x

x

xxx

x

dd s s uu s s

1

2
ud + du( ) s s

I = 1
S = 2

FIG. 1. SU(3) weight diagram for 27, where the locations of
three tetraquark components of S � 2 and I � 1 are shown.
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iSabq �x� 	 h0jT
q
a�x� �qb�0��j0i

�
i	ab

2
2x4 x̂�
i

32
2

�nab
2
gcGn

��
1

x2 ��
��x̂� x̂����

�
	ab

12
h �qqi �

	abx2

192
hgc �q�Gqi �

	abmq

4
2x2

�
i	abmq

48
h �qqix̂�

i	abm2
q

8
2x2 x̂: (15)

The two-point function is then divided into three parts:
(1) Terms proportional to 	ab (a, b being color indices),

where no soft gluon is emitted. The lowest term of
this kind is the continuum term.

(2) Terms containing one �ab (color matrix), where one

soft gluon is emitted. The lowest terms of this type
contain condensates such as hg �q�Gqi (q � u and d)
and hg �s�Gsi.

(3) Terms containing two �ab’s, where two soft gluons
are emitted. The lowest terms of this type contain
the condensate hg2G2i.

We have performed the OPE calculation for the spectral
function up to dimension eight, which is up to the constant
(s0) term of ��s�. Actual computation is very complicated.
We have performed this calculation using MATHEMATICA

with FEYNCALC [32]. MATHEMATICA programs are avail-
able from the authors. The results are

 

�S6�s� �
s4

61 440
6
�

ms
2s3

3072
6
�

�
ms

4

256
6
�
msh �ssi

192
4 �
hg2GGi

12 288
6

�
s2 �

�
�
m3
sh�ssi

32
4 �
m2
shg2GGi

4096
6
�
mshg �s�Gsi

64
4 �
h �qqi2

24
2

�
h�ssi2

24
2

�
s�

m2
sh �qqi

2

12
2 �
m2
sh �ssi

2

48
2 �
h �qqihg �q�Gqi

24
2 �
mshg

2GGih�ssi

1536
4 �
h�ssihg �s�Gsi

24
2 �
m4
shg

2GGi

2048
6
; (16)

 

�V6�s� �
s4

15 360
6
�

5ms
2s3

1536
6
�

�
ms

4

64
6
�
msh�ssi

24
4 �
5hg2GGi

6144
6

�
s2 �

�
�
m3
sh�ssi

8
4 �
11m2

shg
2GGi

2048
6
�
mshg �s�Gsi

32
4

�
h �qqi2

12
2 �
h�ssi2

12
2

�
s�

2m2
sh �qqi2

3
2 �
m2
sh �ssi2

12
2 �
h �qqihg �q�Gqi

12
2 �
7mshg2GGih�ssi

768
4 �
h�ssihg�s�Gsi

12
2 ; (17)

 

�T3�s� �
s4

5120
6
�
ms

2s3

128
6
�

�
3ms

4

64
6
�
msh�ssi

16
4 �
hg2GGi

1536
6

�
s2 �

�
�

3m3
sh�ssi

8
4 �
m2
shg

2GGi

256
6

�
s�

m2
sh �qqi

2


2 �
m2
sh�ssi

2

4
2

�
mshg

2GGih�ssi

192
4 �
m4
shg

2GGi

256
6
; (18)

 

�A3�s� �
s4

30 720
6
�

ms
2s3

1024
6
�

�
ms

4

128
6
�
hg2GGi

6144
6

�
s2 �

�
�
m3
sh�ssi

16
4 �
3m2

shg
2GGi

2048
6
�
mshg �s�Gsi

64
4 �
h �qqi2

24
2 �
h �ssi2

24
2

�
s

�
m2
sh�ssi

2

24
2 �
h �qqihg �q�Gqi

24
2 �
mshg

2GGih�ssi

256
4 �
h �ssihg �s�Gsi

24
2 ; (19)

 

�P6�s� �
s4

61 440
6
�

ms
2s3

1024
6
�

�
ms

4

256
6
�
msh�ssi

64
4 �
hg2GGi

12 288
6

�
s2 �

�
�
m3
sh �ssi

32
4 �
3m2

shg
2GGi

4096
6
�
mshg �s�Gsi

64
4 �
h �qqi2

24
2

�
h �ssi2

24
2

�
s�

m2
sh �qqi2

4
2 �
m2
sh �ssi2

48
2 �
h �qqihg �q�Gqi

24
2 �
mshg2GGih�ssi

512
4 �
h �ssihg�s�Gsi

24
2 �
m4
shg2GGi

2048
6
: (20)

In these equations, q represents a u or d quark, and s
represents an s quark. h �qqi and h�ssi are dimension D � 3
quark condensates; hg2GGi is a D � 4 gluon condensate;
hg �q�Gqi and hg�s�Gsi are D � 5 mixed condensates.
From these expressions, we observe the following:

(i) The coefficients of the lowest dimension, or of the
leading term in powers of s, have the relations c�4�S6 �

c�4�P3 and c�4�A3 � 1=2c�4�V6. These are the consequences
of chiral symmetry at the perturbative level [33].

(ii) As empirically known, the terms of quark conden-
sates have important contributions to the sum rule.

For numerical calculations, we use the following values
of condensates [34–40]:
 

h �qqi � ��0:240 GeV�3;

h �ssi � ��0:8� 0:1� 
 �0:240 GeV�3;

hg2
sGGi � �0:48� 0:14� GeV4;

ms�2 GeV� � 0:11 GeV;

hgs �q�Gqi � �M2
0 
 h �qqi;

M2
0 � �0:8� 0:2� GeV2:

(21)
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As usual we assume the vacuum saturation for higher
dimensional operators such as h0j �qq �qqj0i � h0j �qqj0i

h0j �qqj0i. There is a minus sign in the definition of the
mixed condensate hgs �q�Gqi, which is different with some
other QCD sum rule calculation. This is just because the
definition of coupling constant gs is different [34,41].

In Fig. 2, we show all five Borel transformed correlation
functions ��M2

B� [the left-hand side (lhs) of Eq. (12)] as
functions of Borel mass square for threshold value s0 �
3 GeV2. From the definition of (10), the lhs should be
positive definite quantities. In practical calculations, how-
ever, the positivity may not be necessarily realized, if the
OPE up to finite terms does not work due to insufficient
convergence of the OPE. In the present analysis, we find
that among the five cases, two functions of V6 and P6

currents show such a bad behavior. Therefore, the QCD
sum rules for these two currents are not physically accept-
able. The correlation functions of A3 and S6 change the
sign from negative to positive values. But the sum rule
values take positive values for M2

B � several GeV2.
The tetraquark currents S6 and A3 are constructed by

diquark fields which correspond to 1S0 and 3S1 in the
nonrelativistic language, where the two quarks can be in
the ground state s-orbit. In contrast, the currents V6 and P6

correspond to linear combinations of 3P1, and 3P0, respec-
tively, where one of the two quarks is in an excited p-orbit.
The T3 current is a linear combination of 3S1 and 1P1.
Therefore, we verify an empirical fact that the sum rule
constructed by currents having the s-wave components in
the nonrelativistic limit works better than those dominated

by p-wave components. For completeness, we show the lhs
with numerical coefficients for the three better cases A3,
T3, and S6:

 ��all�
A3 � 8:2
 10�7M10

B � 7:4
 10�8M8
B � 1:6


 10�7M6
B � 1:8
 10�6M4

B � 1:1
 10�6M2
B;

��all�
T3 � 4:8
 10�6M10

B � 5:9
 10�7M8
B � 9:1


 10�7M6
B � 3:4
 10�8M4

B � 2:4
 10�7M2
B;

��all�
S6 � 4:1
 10�7M10

B � 2:5
 10�8M8
B � 5:1


 10�8M6
B � 1:8
 10�6M4

B � 1:1
 10�6M2
B:

(22)

From these expressions, we observe that the convergence
of the current T3 seems better, while the convergence of the
currents A3 and S6 is not very good in the region 1<M2

B <
2 GeV2. They can only converge at M2

B � 3 GeV2.
To determine the mass, we need to fix the two parame-

ters: the threshold value s0 and the Borel mass square M2
B.

For a good sum rule, the predicted masses should not
depend on these two parameters strongly with sizable
pole contribution (Borel window). In Fig. 3, we show the
masses of the tetraquark as functions of the Borel mass for
several threshold values s0 (Borel curves). We observe that
the Borel mass dependence is somewhat strong for the
currents S6 and A3 in the region 1<M2

B < 2 GeV2, which
is expected to be a reasonable choice of the Borel mass. For
these currents S6 and A3, however, we see that the mini-
mum occurs at around 3 GeV2 when s0 is varied in the
region M2

B * 1:5 GeV2. (For the current S6, the mass of
s0 � 2 GeV2 is far above the region shown in the figure.)
For this reason, we consider that s0 � 3 GeV2 is a reason-
able choice which we will mainly use for the estimation of
the mass of the tetraquark in the following sum rule analy-
ses. At this s0 value, the mass of the tetraquark turns out to
be about 1.6 GeV. For the T3 current, the Borel stability
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FIG. 2. Borel transformed correlation functions �S6, �V6,
�T3, �A3, and �P6 as functions of Borel mass square, in units
of GeV10, for threshold value s0 � 3 GeV2.
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FIG. 3. Mass of the tetraquark calculated by the three currents
S6, A3, and T3, as functions of the Borel mass square M2

B, for
several threshold values s0 � 2, 3, 4, and 6 GeV2.
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seems better. The result, however, depends on the threshold
value s0 to some extent. However, it is interesting to see
that the mass of the tetraquark is about 1.6 GeV when s0 �
3 GeV2.

To see the amount of the pole contribution, we define the
quantity

 pole contribution 	

Rs0

4m2
s
e�s=M

2
B��s�dsR

1
4m2

s
e�s=M

2
B��s�ds

: (23)

As shown in Table I, the pole contribution of the diquark
currents A3, T3, and S6 is not very large; at M2

B � 1 GeV2

they are of order 10%. This is a general problem of the
QCD sum rule when multiquark currents are used.
Therefore the results so far might be doubtful.

From the analysis of the single current of the diquark
construction, we expect that the mass of the tetraquark is
about 1.6 GeV, although the stability against the variation
of both the Borel mass and the threshold parameter is not
simultaneously achieved. Furthermore, the pole contribu-
tion is rather small. As we will see, however, a suitable
linear combination will improve them.

C. Analysis of single mesonic currents

In this subsection, we perform QCD sum rule analysis
using the ten mesonic currents, S1;8, V1;8, T1;8, A1;8, and
P1;8, separately. Here we only show two important spectral
densities:

 

�V8�s� �
s4

110 592
6
�

19ms
2s3

55 296
6
�

�
5ms

4

2304
6
�
msh �qqi

432
4 �
msh �ssi

432
4 �
17hg2GGi

221 184
6

�
s2

�

�
m3
sh �qqi

72
4 �
5m3

sh �ssi

288
4 �
13m2

shg2GGi

24 576
6
�
mshg �qGqi

2304
4 �
5mshg �sGsi

4608
4 �
h �qqi2

432
2 �
h�ssi2

432
2 �
h �qqih�ssi

54
2

�
s

�
m2
sh �qqi

2

27
2 �
5m2

sh �ssi
2

432
2 �
msh �qqihg

2GGi

6912
4 �
5h �qqihg �qGqi

1728
2 �
m3
shg �qGqi

144
4 �
m2
sh �qqih�ssi

18
2 �
hg �qGqih�ssi

864
2

�
mshg2GGih�ssi

1024
4 �
h �qqihg�sGsi

864
2 �
5h �ssihg �sGsi

1728
2 �
m4
shg2GGi

9216
6
; (24)

 

�T8�s� �
s4

18 432
6
�

5ms
2s3

2304
6
�

�
5ms

4

384
6
�

5msh �ssi

288
4 �
31hg2GGi

55 296
6

�
s2 �

�
�

5m3
sh �ssi

48
4 �
31m2

shg2GGi

9216
6

�
s�

5m2
sh �qqi2

18
2

�
5m2

sh�ssi
2

72
2 �
31mshg

2GGih�ssi

6912
4 �
13m4

shg
2GGi

9216
6
: (25)

As shown in Fig. 4, we find that, among the ten correlation
functions, only two correlation functions for the currents
V8 and T8 show good behavior with having positive values.

The currents V1, V8, P1, and P8 are constructed by
mesonic fields (either color singlet or color octet) which
correspond to 3S1 and 1S0 in the nonrelativistic language,
where two quark-antiquark pairs can be in the ground state
s-orbit. Their spectral densities then show similar behavior
to S6 and A3 in the previous subsection. In contrast, S1, S8,
A1, and A8 correspond to linear combinations of 3P0 and
3P1, respectively; T1 and T8 currents are the combinations
of 3S1 and 1P1.

From the above argument, we might expect that six
currents, V1, V8, P1, P8, T1, and T8 would work.
However, we found that the Borel transformed correlation
functions calculated by the currents V1, P1, P8, and T1 take
negative values and therefore, they must be abandoned.
Now there remain only two better currents V8 and T8 in the

mesonic construction. This is the reason why we have
shown their spectral densities in (24) and (25). Using the
numerical values of various condensates (21), we find the
Borel transformed correlation functions

 ��all�
V8 � 2:3
 10�7M10

B � 2:6
 10�8M8
B � 9:1


 10�8M6
B � 3:5
 10�7M4

B � 4:9
 10�8M2
B;

��all�
T8 � 1:4
 10�6M10

B � 1:7
 10�7M8
B � 1:2


 10�7M6
B � 4:3
 10�9M4

B � 4:9
 10�8M2
B:

(26)

From these equations, we find that better convergence is
achieved for T8 than for V8 in the region 1 & M2

B &

2 GeV2. The pole contributions are significantly improved
as shown in Table I.

In Fig. 5, we show the masses of the tetraquark currents
V8 and T8 as functions of the Borel mass for several

TABLE I. Pole contributions of various currents. The thresh-
old value s0 � 3 GeV2 is used.

Diquark current Mesonic current Mixed current
M2
B A3 T3 S6 V8 T8 �1 �2

0:7 GeV2 � � � � � � � � � � � � � � � 0.60 0.49
1 GeV2 0.17 0.11 0.10 0.54 0.23 0.30 0.22
2 GeV2 0.04 0.01 0.05 0.09 0.02 0.03 0.02
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threshold values s0 (Borel curves). As in the case of T3

current, the Borel stability seems good but the result de-
pends on the threshold value s0. However, once again, if we
take the threshold value at s0 � 3 GeV2, the mass of the
tetraquark turns out to be reasonable, though the precise

values are slightly smaller: the mass of T8 � 1:5 GeV and
the mass of V8 � 1:4 GeV.

D. Analysis of mixed currents

In order to improve the sum rule, we attempt to make
linear combinations of independent currents for both di-
quark and mesonic currents. Since linear combinations of
five currents contain ten mixing angles, the full considera-
tion with these ten parameters is rather cumbersome.
Instead, we make a linear combination of two currents J1

and J2 (any two from the independent currents), � �
cos�J1 � sin�J2, where � is a mixing angle. Then the
correlation functions are written as
 

h��yi � cos2�hJ1J
y
1 i � sin2�hJ2J

y
2 i � cos� sin�hJ1J

y
2 i

� cos� sin�hJ2J
y
1 i: (27)

The mixing is chosen with the following requirements:
(1) The OPE has a good convergence as going to terms

of higher dimensional operators.
(2) The spectral density becomes positive for all (or

almost all) s values, and then ��M2
B� becomes

positive for all Borel mass and threshold values.
(3) Pole contribution is sufficiently large.
We have tried various combinations of two currents to

realize good sum rules. While doing so, we have realized
that the diquark currents are more independent than the
mesonic currents. This means that the cross terms of (27)
have only a minor contribution for diquark currents, while
they have a large contribution for mesonic currents.

According to the requirement (1), we would like to make
a linear combination such that the highest dimensional
(eight) term is suppressed. For diquark currents, we find
it convenient to take two combinations:

 � � cos�A3 � sin�V6; (28)

 � � cos�P6 � sin�S6: (29)

By choosing cot��
���
2
p

, we find that the term of dimension
eight of (28) is suppressed, while for cot�� 1, the term of
dimension eight of (29) is suppressed. The Borel trans-
formed correlation function of (29) ���M2

B�, however,
takes negative values. Therefore, this current should be
rejected for the sum rule analysis. In this way we are led
to the current � of (28). From now on, we will denote �!
�1.

For the mesonic case, it turns out that the cross term
contributions are large. Accordingly, we attempt a complex
angle to improve the sum rule analysis. By choosing t1 �
0:91, t2 � �0:41, we construct a current:

 �2 � S1 � �t1 � it2�P1: (30)

The numerical Borel transformed correlation functions are
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FIG. 5. Mass of the tetraquark calculated by the currents V8

(left) and T8 (right), as functions of the Borel mass square M2
B,

for several threshold values s0 � 2, 3, 4, and 6 GeV2.
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 ��all�
1 � 1:1
 10�6M10

B � 1:3
 10�7M8
B � 4:8


 10�7M6
B � 2:0
 10�8M4

B � 5:2
 10�9M2
B;

��all�
2 � 5:0
 10�7M10

B � 6:0
 10�8M8
B � 8:4


 10�8M6
B � 2:2
 10�8M4

B � 8:3
 10�9M2
B;

(31)

which may be compared with the previous results of (22)
and (26). Here the convergence of the series is improved
significantly. Therefore, we can choose a smaller Borel
mass square down to M2

B * 0:7 GeV2, where the pole
contribution will be further increased up to around 50%,
and the convergence is still maintained.

In Fig. 6, we show the mass calculated from �1 and �2

as functions of the Borel mass square for several threshold
values s0. The Borel stability is improved from the cases of
the single currents.

In these figures, we may think that there is still a big
threshold value s0 dependence. However, this dependence
will be largely reduced if we choose a small Borel mass,
where the pole contribution is large enough. In Fig. 7, we
show the mass calculated from �1 and �2 as functions of
the threshold value for several Borel mass. When M2

B �
0:7 GeV2, the curve is very stable. Moreover, the pole
contribution is around 50%, and the convergence is still
maintained. Therefore, we obtain a very good sum rule,
where we find the mass calculated from the two currents�1

and �2 is about 1.5 GeV. As the Borel mass increases, the
pole contribution decreases, therefore, the threshold de-
pendence becomes bigger.

Finally, in order to summarize our analysis, we show in
Fig. 8 masses of the tetraquark calculated by several rea-

sonable currents used in the present study as functions of
the Borel mass square at s0 � 3 GeV2. They are S6, A3,
and T3 for the diquark construction, T8 and V8 for the
mesonic construction, and �1 and �2 for the mixed cur-
rents. The plots are extended to a wider region of M2

B up to
4 GeV2, where the masses predicted by different currents
tend to a same value. We verify once again a good Borel
mass stability for the mixed currents, while some of the
single currents show good stability also (T3, T8, and V8).
The mass values varies slightly, while we expect the mass
of the tetraquark around 1.5 GeV.

IV. SUMMARY

We have presented a QCD sum rule study of the ud �s �s
tetraquark of JP � 0� and I � 1, both in the diquark
[� �q �q��qq�] and mesonic [� �qq�� �qq�] constructions. We
have found that in this channel of tetraquark, there are
five independent currents, which is shown both in the
diquark and mesonic constructions. For each single cur-
rent, we have tested the sum rule analysis, but it is found
that not all of them provide a good stability.

As an attempt to improve the stability of the sum rule,
we have considered linear combinations of independent
currents. In order to simplify the analysis, we took a
superposition of various combinations of two currents.
Among them, we have found two cases that lead to good
sum rules, where we investigated s0 (threshold value) and
MB (Borel mass) dependence, and convergence of OPE. A
good Borel stability is achieved in the region 0:7 & M2

B &

4 GeV2. In order to obtain a large enough pole contribution
(50%) and reduce the threshold value dependence, we have
to reduce the Borel mass. However, to maintain the con-
vergence of OPE, we cannot reduce it too largely. When
Borel mass square M2

B is around 0:7 GeV2, we get a very
good QCD sum rule, where the mass of the tetraquark turns
out to be around 1.5 GeV.
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Despite the seemingly good Borel mass stability, we
think that we should investigate the following points
more carefully. For instance, estimation of higher dimen-
sional terms of O�1=s� could be important. Although we
are able to construct the two mixed currents such that the
higher order contributions (in the present calculation of
OPE) of dimension six and eight terms are suppressed, the
question still remains concerning even higher order con-
tributions. Another question is the contribution of KK
scattering states, since the mass of the tetraquark is around
1.5 GeV, and it can fall apart into the KK states. Such a
contribution can be estimated by using the method pro-
posed in Refs. [42,43]. These will be further investigated in
the future work.
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APPENDIX A: FIVE INDEPENDENT CURRENTS IN
� �qq�� �qq� BASIS

We attempt to write a diquark current of (5) as a sum of
� �qq� mesonic pairs (q � u, d, s),

 L���� 
 �s�a �s�bu
�
cd�d �

X
n;i;j

C1
i C

2
j � �sb�

n�idd���sa�
n�juc�;

(A1)

where �i are the five Dirac matrices and �n (n � 1; . . . ; 8)
are color matrices forming color-singlet and octet states
out of 3
 �3. Therefore, in (A1), the sum runs over ten
terms of five �i matrices and two �n combinations. They
are

 

S1 � ��saua���sbdb�; S8 � � �sa�nabub���sc�
n
cddd�; V1 � � �sa��ua���sb��db�; V8 � � �sa���nabub���sc�

��ncddd�;

T1 � � �sa���ua���sb���db�; T8 � ��sa����nabub���sc�
���ncddd�; A1 � � �sa���5ua���sb���5db�;

A8 � ��sa���5�nabub���sc�
��5�ncddd�; P1 � � �sa�5ua���sb�5db�; P8 � ��sa�5�nabub���sc�5�ncddd�; (A2)

where in the octet representation inner product of �n (n � 1; . . . ; 8) is taken. The quark-antiquark pairs in different currents
have different properties:

 S1: �JP � 0�; 8f; 1c�; S8: �JP � 0�; 8f; 8c�; V1: �JP � 1�; 8f; 1c�; V8: �JP � 1�; 8f; 8c�;

T1: �JP � 1�&1�; 8f; 1c�; T8: �JP � 1�&1�; 8f; 8c�; A1: �JP � 1�; 8f; 1c�; A8: �JP � 1�; 8f; 8c�;

P1: �JP � 0�; 8f; 1c�; P8: �JP � 0�; 8f; 8c�:

In order to establish the five independent currents, first we
change their color structures:

 

��saub���sbda� �
1

3
� �saua���sbdb�

�
1

2
��saub���scdd��ab�cd;

��saud���scdb��ab�cd �
16

9
� �saua���sbdb�

�
1

3
��saub���scdd��ab�cd: (A3)

Then we use the Fierz transformation [44]:

 

1
3� �saua���sbdb� �

1
2� �saub���scdd��ab�cd

� ��saub���sbda�

� �1
4f��saua���sbdb� � ��sa��ua���sb�

�db�

� 1
2� �sa���ua���sb�

��db� � ��sa���5ua���sb�
��5db�

� ��sa�5ua���sb�5db�g: (A4)

We obtain 10 equations in all:
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1

3
S1 �

1

2
S8 � �

1

4

�
S1 � V1 �

1

2
T1 � A1 � P1

�
;

16

9
S1 �

1

3
S8 � �

1

4

�
S8 � V8 �

1

2
T8 � A8 � P8

�
;

1

3
V1 �

1

2
V8 � �

1

4
f4S1 � 2V1 � 2A1 � 4P1g;

16

9
V1 �

1

3
V8 � �

1

4
f4S8 � 2V8 � 2A8 � 4P8g;

1

3
T1 �

1

2
T8 � �

1

4
f12S1 � 2T1 � 12P1g;

16

9
T1 �

1

3
T8 � �

1

4
f12S8 � 2T8 � 12P8g;

1

3
A1 �

1

2
A8 � �

1

4
f�4S1 � 2V1 � 2A1 � 4P1g;

16

9
A1 �

1

3
A8 � �

1

4
f�4S8 � 2V8 � 2A8 � 4P8g;

1

3
P1 �

1

2
P8 � �

1

4

�
S1 � V1 �

1

2
T1 � A1 � P1

�
;

16

9
P1 �

1

3
P8 � �

1

4

�
S8 � V8 �

1

2
T8 � A8 � P8

�
:

(A5)

Solving these linear equations, we find that there are five
independent currents. In other words, the rank of the 10


10 coefficient matrix is five. Any five currents among (A1)
are independent and can be expressed by the other five
currents. For instance, we have the relations as

 

S8 � �
7
6S1 �

1
2V1 �

1
4T1 �

1
2A1 �

1
2P1;

V8 � �2S1 �
1
3V1 � A1 � 2P1;

T8 � �6S1 �
1
3T1 � 6P1;

A8 � 2S1 � V1 �
1
3A1 � 2P1;

P8 � �
1
2S1 �

1
2V1 �

1
4T1 �

1
2A1 �

7
6P1:

(A6)

Finally, we establish the relations between the diquark
currents and the mesonic currents. For instance, we can
verify the relations

 

S6 � �
1
4S1 �

1
4V1 �

1
8T1 �

1
4A1 �

1
4P1;

V6 � S1 �
1
2V1 �

1
2A1 � P1;

T3 � 3S1 �
1
2T1 � 3P1;

A3 � S1 �
1
2V1 �

1
2A1 � P1;

P6 � �
1
4S1 �

1
4V1 �

1
8T1 �

1
4A1 �

1
4P1:

(A7)
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