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I. INTRODUCTION

Muons are one of the most significant sources of back-
ground for underground experiments. An accurate and
efficient numerical method to calculate the muon rate
and average energy at an underground lab is indispensable
for this type of research. This work was originally moti-
vated by a need to resolve the question of the average muon
energy for Daya Bay and KamLAND. Since Super-
Kamiokande (Super-K) is essentially next to KamLAND
and already has many publications quoting its muon rates,
it easily becomes an ideal source of cross checks. At the
same time, the need to understand the cosmic background
at the far site of Double Chooz also arises. Muon data from
the first CHOOZ experiment are subsequently made avail-
able so that comparison with simulation becomes possible.
Given the diversity of the experimental sites being dis-
cussed, some effort is made to present the analysis in a
more general context. It is hoped that the method presented
here will be useful to a larger community.

The muon rate can be measured in an experiment by a
number of methods. Measurement of muon energy on the
other hand is quite difficult. Since a measurement made in
one site under a certain hill profile is unlikely to be trans-
ferable to another site, an economical calculational method
is the only practical solution. For these reasons, whenever
the average muon energy is needed for the calculation of
cosmogenic background rate, accurate Monte Carlo simu-
lation is often the most reasonable alternative.
Traditionally there have been some discrepancies in vari-
ous reports regarding muon rate and average energy for
both Super-K and KamLAND. For example, different val-
ues of muon rates have been reported by different collab-
orators of Super-K such as 1.88 Hz [1], 2.2 Hz [2], 2.5 Hz
[3], and 3 Hz [4]. Some of these discrepancies are due to
the differences of detector regions or different selection
criteria used in making various cuts. For example, a cut at
1.6 GeV is made to eliminate the muon background in the

study of the upward throughgoing muons in Ref. [2]. This
cut has the effect of lowering the cosmic muon rate. In
Ref. [3], the 2.5 Hz cosmic muon rate quoted is an estimate
used to make the spallation cut. Differences in cosmic
muon rates due to the differences in detector regions will
be analyzed by simulation studies later. As far as
KamLAND is concerned, accurate simulations of the av-
erage muon energy, flux, and rate are presently needed to
aid the data analysis process. In addition, the design of
muon tracker systems for future experiments depend on
detailed simulations that can handle complicated topogra-
phy. In an effort to build a reliable tool for all these needs,
this paper introduces a complete numerical method from
the ground up—beginning with an improved Gaisser sea-
level muon parametrization, showing in detail the logic of
the numerical method, making mention of useful numeri-
cal tools and ending with numerous cross checks with
experimental data including those of ground level muons.

II. A BOTTOM-UP DESIGN

A. Preliminaries

The goal of this section is to lay the theoretical founda-
tion for how to incorporate MUSIC with a user-supplied
sampling algorithm. Details of the implementation of the
numerical method outlined in this section can be found in
the appendix. MUSIC is a FORTRAN subroutine that sim-
ulates the 3-dimensional transport of muons through a slant
depth X of a material taking into account energy loss due to
ionization, pair production, Bremsstrahlung, and inelastic
scattering [5,6]. MUSIC is composed of two main parts—
(1) the Monte Carlo simulation of muon energy loss and
(2) the Monte Carlo simulation of angular deviation and
lateral displacement. In order to distinguish quantities
related to initial muons on the surface and the final muons
that survive at a certain depth underground, the subscripts
�0 and � will be used to denote the two types of muons,
respectively.
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The testing of the present numerical method involves the
comparison of the simulated results against published ex-
perimental and simulated data. The most convenient item
of comparison is the vertical muon intensity Iv��h� versus
vertical depth h underneath a flat surface in standard rock
because of the abundance of experimental data. In order to
set the stage for the following discussions, several conven-
tional quantities are defined in the beginning. For instance,
� is defined to be the zenith angle of the line of sight of the
muons and � is the azimuthal angle of the same, measured
from the easterly direction in the counterclockwise sense.
Directional muon intensity I��h; cos�� has units of
cm�2 sr�1 s�1. Vertical muon intensity is taken as

 Iv��h� � I��h; cos� � 1�; (1)

which also has the unit of cm�2 sr�1 s�1. Integrated muon
intensity is defined as [7]

 J��h� �
Z

�
I��X; cos��d�; (2)

where � defines the solid angle coverage and the slant
depth X is the distance traveled by the muon in rock. The
argument X in I��X; cos�� is generally a function of cos�.
For example, X � h= cos� in the case of a flat surface. The
unit of integrated muon intensity is cm�2 s�1.

B. Modified Gaisser parametrization

The accuracy of the simulation depends on MUSIC, the
parametrization of the surface muon intensity, and the user-
supplied sampling algorithm. A standard atmospheric
muon parametrization is given by Gaisser [8] as
 

dN�0

dE�0d�
’ A

0:14E��0

cm2 sr s GeV

�

�
1

1�
1:1 ~E�0 cos�

115

�
:054

1�
1:1 ~E�0 cos�

850

� rc

�
: (3)

Muon energy E�0 at the surface is measured in GeV and �
is the angle subtended between the incoming cosmic ray
particle and the normal to the upper atmospheric layer. If
the earth were flat, � is also the zenith angle on the ground
surface. Since the earth is not flat, a correlation needs to be
made between the zenith angle on the ground surface and
the angle measured on the upper atmosphere. In order to
clarify the distinction between the two definitions of angle,
a new symbol �? is invented to denote the angle measured
on the upper atmosphere as a function of � which is
assigned specifically to the zenith angle on the ground
surface from now on. The calculation of �? will be ex-
plained later. The symbols A, �, and rc refer to the overall
scale factor, power index, and the ratio of the prompt
muons to pions, respectively. In the low energy regime,
E�0 needs to be modified slightly by an energy loss
through the atmosphere. The symbol ~E�0 denotes the

energy of muon on top of the atmosphere. The differentials
of time dt and area dA are omitted from the denominator
on the left-hand side of Eq. (3) for the sake of simplicity.
The original Gaisser parametrization has A � 1, � � 2:70,
~E�0 � E�0, and rc � 0. For large depth greater than 1–
2 km w.e. (kilometer water equivalence), the large volume
detector (LVD) parametrization [9] is recommended. In
that case, A � 1:84, � � 2:77. Since this work primarily
concerns simulations for relatively shallow depths as in
Super-K, KamLAND, and CHOOZ, the Gaisser parame-
trization is adequate for the high energy part (E�0 >
�100= cos�� GeV) of the spectrum. Since there are enough
low energy muons that survive at shallow depths, rare high
energy muons (E�0 > 106 GeV) are omitted from the cal-
culations. The valid energy range for the Gaisser parame-
trization is �100= cos��<E�0 < 106 GeV and small angle
� < 70� where the effect due to the curvature of the earth is
negligible. In the low energy limit (E�0 �

�100= cos�� GeV), the Gaisser parametrization is signifi-
cantly higher than the observed values. The expected an-
gular dependence of cosn� with n	 2 in this regime must
also be taken into account. To satisfy all these additional
requirements in the small E�0 and large � regimes, the
following modifications to Eq. (3) are suggested for
�1= cos�?�<E�0 < �100= cos�?� GeV:

 rc � 10�4; (4)

 � � 2:06� 10�3

�
950

cos�?
� 90

�
; (5)

 

~E�0 � E�0 � �; (6)

 A � 1:1
�
90

����������������������������
cos�� 0:001
p

1030

�
4:5=�E�0 cos�?�

: (7)

It is important to note the term involving cos� inside the
square root of Eq. (7) does not have a star. The LVD
publications set the upper limit on the ratio of prompt
muons to pions to be rc < 2� 10�3 at 95% confidence
level [9,10]. However �2 of the fits is lower for smaller
values of rc such that the choice of Eq. (4) is justified by
statistical reason. The symbol � in Eq. (5) has the inter-
pretation of mean energy loss of muons in the atmosphere.
The value 2:06� 10�3 refers to the stopping power of
matter against muons in units of GeV per g=cm2 at E�0 ’

50 GeV where the radiative effects reach 1% [11]. The
multiplication of this value with the mean muon slant depth
in the atmosphere will give the mean energy loss of muons
in the atmosphere. A commonly quoted value of the at-
mospheric height hF is 1000 g=cm2. Reference [12] quotes
a specific value of hF � 1030 g=cm2 along with a value of
interaction length (the average distance between the point
where a primary proton enters the atmosphere and the point
where a muon is produced) �N � 120 g=cm2. The atmos-
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pheric height hF is a function of scale height h0 which in
turn is a function of temperature. In addition the stopping
power used in Eq. (5) is simply a rough estimate. For these
reasons, hF should be adjusted to produce the best fit of
experimental data in the low energy regime. For the pur-
pose of constructing �, the choice of hF � 950 g=cm2 is
made. Beside the aforementioned value of interaction
length �N � 120 g=cm2 quoted in Ref. [12], many other
values have also been quoted in the literatures, e.g. �N �
77:6 g=cm2 [13] and �N � 80 g=cm2 [14]. Again for the
purpose of constructing the fits, a median value of �N �
90 g=cm2 is chosen for �. Putting all these values together,
the mean muon slant depth is �950= cos�? � 90� g=cm2

such that the final form of Eq. (5) is obtained. For low
energy muons, there is a slight difference, �, between the
muon energy at ground level E�0 and the muon energy on
top of the atmosphere ~E�0. Since the critical energy (the
threshold by which the mechanism changes from radiation
losses to ionization losses) used in Eq. (3) refers to ~E�0, an
adjustment is needed for the low energy regime as given in
Eq. (6). The meaning of Eq. (7) is essentially the multi-
plication of an effective factor of 1.1 due to the nuclear
enhancement of multiplicity [12] and the probability of
muon decay S�. The form of S� used in Eq. (7) is similar to
that in Ref. [12] and can easily be derived as follows: the
decay probability is related to decay length L � �v�� lnR
such that S� � exp���F=L� where �F 
 hF= cos�? is the

slant height of the atmosphere, v is muon velocity, � 

1=

��������������
1� v2
p

is the Lorentz factor, � is the muon lifetime,
and 0 � R � 1 is a uniformly distributed number [15]. In
the muon energy regime E�0 > �1= cos�?� GeV, the ap-
proximation v ’ 1 is acceptable. Furthermore, if the
choice of R � �N=�F is made along with the standard
substitutions � � E�0=m� and hFm�=� ’ 1:04 GeV, the
original form of S� in Ref. [12] is recovered. This deriva-
tion reveals that the form of S� in Ref. [12] does not
incorporate any matter and geomagnetic effects which
may be important for low energy muons. In the present
work, nonlinear effects are taken into consideration by
assuming a modification to the decay length to achieve
the best fits of experimental data such that

 

~L 
 0:231 ln
� ����������������������������

cos�� 0:001
p

cos�?

�
L: (8)

At this point, Eq. (8) is purely phenomenological. There is
no simple physical explanation for this change other than
the fact that it fits the low energy muon data. By replacing
L with ~L in Eq. (8) and repeating the derivation of S�
above, Eq. (7) is obtained.

The modifications in Eqs. (4)–(7) alone cannot fit the
data in the lowest energy range. For E�0 � 1= cos�? GeV,
the basic form of the parametrization is the same as
Eqs. (3)–(7) with the exception that the substitution

 E�0 !
3E�0 � 7 sec�?

10
(9)

is made before E�0 is passed to Eqs. (3)–(7). The substi-
tution in Eq. (9) is just another phenomenological tool to
achieve good fits with experimental data.

The value of cos�? is sometimes calculated using a
simple geometrical extrapolation assuming that the altitude
of the first interaction is known a priori. The present work
takes a different approach by using a more complicated
extrapolation method described in Ref. [16] that shows
how cos�? can be extracted from an integral equation by
equating interaction length X��� � X�0�. In essence the
formula below taken from Ref. [16] parametrizes the nu-
merical solution of the integral equation:

 cos�? �

�����������������������������������������������������
x2 � p2

1 � p2xp3 � p4xp5

1� p2
1 � p2 � p4

s
; (10)

where x 
 cos�, p1 � 0:102 573, p2 � �0:068 287, p3 �
0:958 633, p4 � 0:040 725 3, and p5 � 0:817 285. The
terms involving cos� in Eq. (3) must be replaced by
cos�? for consistency. Equation (7) is protected against
division by zero because cos�? � 0:103 458 for cos� � 0
according to Eq. (10). The modified Gaisser parametriza-
tion is based on the world data set and hence represents an
average of the global sea-level muon distribution. The
geomagnetic field affects only the low energy spectrum,
typically below 2 GeV for integrated muon intensity [17]
and approximately less than 20 GeV for vertical muon
intensity [18]. The east-west effect is also shown to be
negligible at ground level [19] by careful simulations. For
the purpose of calculating the muon overburden deep
underground, geomagnetic effects can be ignored because
low energy sea-level muons will not survive through rock
by default. In essence, the present parametrization is com-
posed of the union of 3 segments: E�0 >
�100= cos�?� GeV (the standard Gaisser formula),
�1= cos�?�<E�0 � �100= cos�?� GeV (Eqs. (4)–(7)),
and E�0 � �1= cos�?� GeV (Eq. (9)). Figure 1 illustrates
the quality of the fits between the modified Gaisser formula
and experimental data. The goodness of fit tends to degrade
only at very large angles (� > 85�). The worst disagree-
ment between experimental data and the parametrization in
those cases is about 40%. However the worst case scenario
of the 40% disagreement occurs only at low energy (E�0 <
10 GeV) and a relatively small sector at large angles (� >
85�) so that the integrated spectrum is dominated by the
very accurate parts of the parametrization at smaller an-
gles. Finally it should be emphasized that the modifications
to the low energy part of the standard Gaisser formula
outlined in Eqs. (4)–(7) and (9) will not have any signifi-
cant impact on the simulations of deep underground ex-
periments. Nevertheless an accurate description of the low
energy part of the sea-level muon distribution is important
for calculating the muon overburden for sites situated at
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shallow depths such as the near sites of the Double Chooz
and Daya Bay experiments.

C. Modeling physical observables

Directional intensity at depth h is obtained by integrat-
ing the Gaisser parametrization and the muon survival
probability over the initial muon energy E�0 at the surface
as

 I��X; cos�?;�� �
Z 1

0
dE�0P�E�0; X; �

?;��

�
dN�0�E�0; cos�?�

dE�0d�
: (11)

The probability function P�E�0; X; �?;�� defines the sur-
vival probability of a muon with initial energy E�0 travers-
ing a slant depth X from the zenith angle �? and the
azimuthal angle �. It is emphasized that the symbol I�
as used in this paper has a different meaning than I� in
Ref. [20] in that the latter refers to a differential muon
intensity containing a probability distribution function
P�E�; E�0; X; �

?;�� which is related to P�E�0; X; �
?;��

as per

 P�E�0; X; �?;�� 

Z
dE�P�E�; E�0; X; �?;��: (12)

In Ref. [20], 2� 107 muons with energies from 0.1 up to
1000 TeV were propagated through 15 km w.e. of rock.
The values of P�E�; E�0; X� were stored and then inte-
grated numerically using an equation similar to Eq. (11) to
obtain energy and angular distributions at any particular
depth. This work takes a different approach by evaluating
P�E�0; X; �

?;�� in situ in the Monte Carlo integration.
This approach requires a smaller number of simulated

events (typically 5� 106) and is more versatile when
applied to arbitrary hill profiles when P�E�0; X; �

?;��
must be reevaluated every time the (x, y)-coordinates are
changed. In principle the transport of muons from the
surface to a point underground and vice versa are equiva-
lent as far as the calculation of energy loss is concerned.
The most important requirement of the present method is
the uniform generation of E�0, �, and � as shown in the
appendix. An arbitrary energy dependent observable
O��E�� can be estimated as

 hO��X;cos�?;��i�
1

I��X;cos�?;��

�
Z 1

0
dE�0

dN�0�E�0;cos�?�

dE�0d�

�
Z 1

0
dE�O��E��P�E�;E�0;X;�

?;��:

(13)

The bracketed quantity on the left-hand-side of Eq. (13)
represents the average of O�. The bracket will be dropped
from now on for the sake of simplicity unless ambiguities
arise due to the choice of symbols. With Eqs. (11) and (13),
vertical intensity and average energy are

 Iv��h� �
Z 1

0
dE�0P�E�0; h; �?

� 0; ��
dN�0�E�0; cos�? � 1�

dE�0d�
; (14)

 

Ev��h� �
1

Iv��h�

Z 1
0
dE�0

dN�0�E�0; cos�? � 1�

dE�0d�

�
Z 1

0
dE�E�P�E�; E�0; h; �? � 0; ��: (15)

There are many different ways to implement Eqs. (14) and
(15) numerically. The appendix describes an efficient and
accurate Monte Carlo method. Simulated values of Iv��h�
beneath a flat surface are compared against experimental
and simulated data in Figs. 2. The results obtained by using
the modified Gaisser parametrization incorporating
Eqs. (4)–(7) at low energy agrees with experimental data
more closely than those using the standard Gaisser parame-
trization only. Figure 3 shows the consistency between
simulated and experimental data at shallow depths. (The
interpretation of Fig. 3 will be discussed more fully in the
appendix.) The integrated muon intensity and average
energy are

 J� �
Z

�
d�

Z 1
0
dE�0P�E�0; X; �?;��

�
dN�0�E�0; cos�?�

dE�0d�
; (16)
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E
µ2.

7 dN
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E
µdΩ

θ = 0°
θ = 60°
θ = 75°
θ = 87°

FIG. 1 (color online). Fits of the modified Gaisser parametri-
zation to experimental data in the low energy regime between
� � 0 and � � 87�. The experimental data are taken from
Refs. [8,28–38]. The modified Gaisser parametrization is given
by Eqs. (3)–(7), (9), and (10).
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 hE�i �
1

J�

Z
S
d�

Z 1
0
dE�0

dN�0�E�0; cos�?�

dE�0d�

�
Z 1

0
dE�E�P�E�; E�0; X; �?;��: (17)

J� and hE�i in Eqs. (16) and (17) are functions of the
location of the point of sampling underneath a topographic

profile. The arguments of these functions, namely, the
coordinates of the point of sampling, are understood and
therefore not displayed explicitly. The brackets around E�
on the left-hand side of Eq. (17) are dropped in the follow-
ing text whenever the reference to average muon energy is
clear from the context of the discussion. Integrated inten-
sity can be computed in a similar way as vertical intensity.
The only difference is that the depth X is now a function of
� and�. In the case of a flat surface, the relation takes on a
simple form X � h= cos�. In the case of an arbitrary hill
profile, there is no longer any simple relationship among X,
�, and �.

The key of the present numerical method is uniform
generation of integration variables which can be achieved
in reliable ways through various uniform generation algo-
rithms such as the CERNLIB routine RANLUX. The logic
of the method is relatively simple so that there is little
ambiguity of its correctness. All these observations lead to
the conclusion that MUSIC is sufficiently accurate over the
relevant range of muon energy. Simulated integrated muon
intensity and average energy are compared against pub-
lished simulations in Table I.

III. PREPARING THE CALCULATION

A. Digital maps

The starting point of a muon simulation over an arbitrary
hill profile is the digital map of the surrounding topology.
The accuracy of a digital map directly affects the accuracy
of the calculation so that a detailed knowledge of the hill
profile is important. According to a contour map published
in Ref. [21], KamLAND is separated from Super-K by

0.01 0.1 1
h (km.w.e.)

0

0.5

1

1.5

I µv  M
C
 / 

I µv  E
X

Crouch (EX)

Crookes and Rastin (EX)
Bergamasco et al. (EX)

Stockel (EX)

Castagnoli et al (EX)

Avan and Avan (EX)
Clay and Van Gemert (EX)

Wilson (EX)

FIG. 3. Ratio of simulated vertical muon intensity Iv��h�MC

over the experimental vertical muon intensity Iv��h�EX versus
shallow depth h beneath a flat surface in standard rock. The
experimental data of the flat surface overburden are taken from
Refs. [8,39]. The number of simulated events per data point in
this figure is N � 106. The simulated data are generated from the
modified Gaisser parametrization incorporating Eqs. (4)–(7).

TABLE I. Integrated muon intensity J� and energy E� versus
vertical depth h from a flat surface in standard rock. Results
labeled ‘‘Sheffield’’ are taken from Ref. [20] that uses the
original Gaisser parametrization and MUSIC. Results labeled
‘‘KSU’’ present this work using the modified Gaisser parame-
trization in Eqs. (4)–(7) and MUSIC. The initial muon energy for
vertical depth �300 � h � 2000� mwe is �0:106<E�0 �

106� GeV and for �2000< h � 10000� mwe is �0:106<E�0 �

107� GeV. The number of simulated events is 106.

Sheffield KSU Sheffield KSU
h (mwe) J� (cm�2 s�1) J� (cm�2 s�1) E� (GeV) E� (GeV)

500 1:70� 10�5 1:71� 10�5 97 97
1000 2:20� 10�6 2:21� 10�6 157 158
2000 1:81� 10�7 1:81� 10�7 236 236
3000 2:94� 10�8 2:95� 10�8 285 284
4000 6:33� 10�9 6:34� 10�9 316 313
5000 1:58� 10�9 1:57� 10�9 337 339
6000 4:30� 10�10 4:21� 10�10 351 345
7000 1:24� 10�10 1:26� 10�10 361 365
8000 3:73� 10�11 3:61� 10�11 369 356
9000 1:15� 10�11 1:14� 10�11 375 373
10 000 3:65� 10�12 3:61� 10�12 380 363

0.01 0.1 1 10 100
h (km.w.e.)

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01
I µv  (

cm
-2

 s
-1

 s
r-1

)
Crouch (EX)

Baksan (EX)
LVD (EX)

MARCO (EX)
Frejus (EX)

Crookes and Rastin (EX)

Bergamasco et al. (EX)

Stockel (EX)

Castagnoli et al (EX)

Avan and Avan (EX)

Randall and Hazen (EX)
Clay and Van Gemert (EX)

Wilson (EX)
Kudryavtsev (MC)

Present work (MC)

FIG. 2 (color online). Average vertical muon intensity Iv��h�
versus vertical depth h beneath a flat surface in standard rock.
Experimental and simulated data are labeled by EX and MC,
respectively. The experimental data of the flat surface over-
burden are taken from Refs. [8,39] and the simulated data by
Kudryavtsev et al. from Ref. [20]. The number of simulated
events per data point in this figure is N � 106. The set of
simulated data labeled as ‘‘Present work’’ is generated from
the modified Gaisser parametrization of the surface muon inten-
sity in Eqs. (4)–(7).
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187 m and its bearing is N66.6E with respect of Super-K.
The top of the Super-K tank and the bottom of the
KamLAND tank are situated at 350 m above sea level.
Both sites are almost directly underneath the peak of
Ikenoyama at 1.35 km. Because of their proximity, both
sites have very similar muon energy and flux. However the
sizes of the two detectors are vastly different so that their
muon rates scale accordingly. The digital map of the
Ikenoyama mountain profile around Super-K is extracted
from a code used by M. Nakahata originally to calculate
the muon background for Super-K. The Super-K digital
map sets its origin at the location of the detector and
parametrizes coordinates in terms of (�, �, h). This par-
ticular format does not allow a simple coordinate trans-
formation of the origin from Super-K to KamLAND. As a
result, the digital map of KamLAND is constructed inde-
pendently from a contour map for this work. In order to
guarantee a sufficient solid angle coverage for the simula-
tion, both digital maps cover circular areas of radius
3950 m. The topological map of CHOOZ is generated
from a 2D contour map using a shareware called
3DField [22]. A visualization of the digital map over
the Ardennes Mountains is shown in Fig. 4. 3DField has
the option of generating an ASCII data file containing the
(x, y, z) coordinates of the latticized hill profile. One side of
the CHOOZ detector is beneath a steep hill so that a large
range of the solid angle coverage is parametrized by a
relatively small set of lattice points. In order to increase
the density of lattice points over the steep section of the
Ardennes hill profile, another digital map is created over a

smaller area around the detector. At the end, both digital
maps are spliced together to form one single digital map so
that the entire solid angle coverage is represented more
evenly.

B. Detector geometry

The calculation of the average muon rate depends on the
details of the detector geometry. For Super-K, the parame-
ters that define the geometry of the cylindrical tank are
L0 � 41:40 m and R0 � 19:65 m. An inner volume is
defined to eliminate the simulations of very small muon
track lengths inside the detector geometry that do not
intersect the active region of the detector. The choice of
the inner volume is not critical for the calculation of muon
rate inside the outer tank Rt�. For the purpose of this work,
the inner volume used in the simulation of Rt� is also the
inner detector volume of Super-K whose dimensions are
L � 36:20 m and R � 16:90 m. The inner and outer tanks
of Super-K have almost the same aspect ratios so that the
muon rate inside the inner tank Ri� can be obtained simply
by scaling Rt� according to the ratio of the physical areas
A0 of the two tanks. The geometry of the cylindrical tank at
KamLAND is defined by L0 � 19:68 m and R0 � 9:50 m.
The inner spherical volume of KamLAND for the purpose
of this simulation is taken to be the area bounded by the
buffer region with R � 8:25 m. For the simulation of the
muon rate inside the KamLAND detector volume, a sphere
of radius R0 � 6:50 m is used. In the case of CHOOZ, the
cylindrical tank has the dimensions of L0 � 5:5 m and
R0 � 2:75 m. The inner detector is filled with Gd-loaded
liquid scintillator and has the shape of a short cylinder with
hemispherical end caps. Muon rate inside the Gd-loaded
region is not simulated in the present work.

C. Rock composition

Chemical composition of the rock affects a MUSIC
simulation in that two out of three cross section files
need to be calculated with specific rock data a priori.
Table II gives the chemical composition of the
Ikenoyama and Ardennes rock. The average atomic num-
ber and weight are hZi � 10:13 and hAi � 20:42 for the
Ikenoyama rock and hZi � 11:8 and hAi � 24:1 for the
Ardennes rock. Hydrogen composition is 2.2% for
Ikenoyama and negligible for Ardennes. The rock density
and the radiative length are � � 2:70 g=cm3 and � �
25:966 g=cm2 for Ikenoyama and � � 2:81 g=cm3 and
� � 23:3 g=cm2 for Ardennes, respectively. The present
simulation for CHOOZ takes the approximate chemical
composition and the average rock density [23] as inputs.
The Ardennes Mountains has a complicated rock density
profile with a layer of dense rock (3:1 g=cm3) [24] on the
northeast sector.

In principle complex geological profiles can be incorpo-
rated into the MUSIC simulation by a stratified approach in

FIG. 4 (color online). A visualization of the 3D topological
profile of the Ardennes Mountains over the CHOOZ site gen-
erated by 3DField from a 2D contour map.
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which a simulation is segmented according to regions of
different densities, average atomic numbers hZi, average
atomic masses hAi, and radiation lengths. Although the
stratified approach is possible, it may not be easily
achieved in practice. Aside from the computational chal-
lenge of simulating a complex geological profile, informa-
tion of the geological profile obtained by geological
surveys may not be generated with sufficient details to
support a realistic simulation in the first place.
Fortunately the stratified approach can be avoided in
many cases. If hZi and hAi are constant and only density
varies with depth, the mean density should give the same
average muon energy and flux as those generated from
stratified densities. Varying densities may affect the pro-
files of angular distributions as in the CHOOZ case shown
in Sec. IV. Radiation length affects only the lateral dis-
placement, which is not under investigation in this paper.
Small changes in hZi and hAi (up to 10%) should not
seriously affect the muon flux as long as the mean values
of all layers are found accurately. This work does not
attempt to simulate the detailed geological profile of the
Ardennes Mountains. It is shown in Sec. IV that the
simulated results due to the simplification of the
Ardennes geological profile are consistent with the pre-
vious CHOOZ measurements within errors and that simu-
lated results of a uniform Ikenoyama mountain profile
agree with experimental data.

IV. RESULTS AND DISCUSSIONS

A. Average muon rate

The calculation of muon rate depends on the effective
area of the detector. The basic strategy of calculating the

effective area A is to multiply the physical area A0 with the
ensemble average of the inner products of randomly gen-
erated unit vectors r̂i pointing from an inner volume and
the unit normal vectors r̂i0 pointing away from the outer
surface. In this case, the ensemble average also constrains
the pseudosurvival probability of muons hPi that will be
defined more precisely by Eq. (A14) in the appendix.
Figure 5 visualizes how the inner products are done. An
intuitive way to think about the effective area �A is

 A �
A0hPi
N

XN
i�1

r̂i � r̂0i: (18)

In the case of a cylindrical detector, the physical area is
A0 � 	R2

0 � 2	R0L0. Similarly A0 � 4	R2
0 for a spheri-

cal detector and so on. If Eq. (18) is used, the average muon
rate R� is simply

 R� � J�A: (19)

The average muon flux J� is always sampled at the center
of the detector volume in this work. Although the macro-
scopic strategy defined by Eqs. (18) and (19) gives reason-
able results, a microscopic strategy to compute the muon
rate is considered more accurate, namely

TABLE II. Chemical composition of the Ikenoyama and
Ardennes rock in elemental percentage. The Ardennes rock
composition is the average of several samples. The CHOOZ
rock data are approximate values only. Details are documented in
an internal note [23].

Ikenoyama Ardennes
Chemical formula % %

SiO2 60.70 58
TiO2 0.31
Al2O3 17.39 19
Fe2O3 1.10
FeO 1.22 17
MnO 0.15
MgO 0.93 4
CaO 6.00
Na2O 6.42
K2O 3.47 2
P2O5 0.18
H2O 0.97
S 0.01
CO2 0.96

r r

L

R

R

L

0

0

0

r
0

r

FIG. 5. A sketch of a vertical cylindrical detector. The inner
volume is indicated by dotted lines which is taken to be cylin-
drical for Super-K and CHOOZ but spherical for KamLAND.
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 R� �
Z
dA � r̂

Z
�
d�

Z 1
0
dE�0P�E�0; X; �

?;��

�
dN�0�E�0; cos�?�

dE�0d�
; (20)

where dA is a differential area element along the detector
wall and r̂ is a unit vector along the muon line of sight.
Both are functions of position along the detector wall,
cos�? and �. The appendix gives a numerical implemen-
tation of Eq. (20).

Table III summarizes the main results in terms of aver-
age muon energy, flux, and rate. The muon rate in the outer
tank of Super-K generated by the present method is some-
where between the experimental values published in
Refs. [2,3]. The 3 Hz muon rate quoted in Ref. [4] is
most likely a rounded figure. It is not clear if the 1.88 Hz
muon rate in Ref. [1] refers to the inner detector volume
only. If so, it would agree with the simulated result very
closely. The muon rate at Kamiokande is usually quoted as
0.44 Hz [25]. Since KamLAND is slightly larger than
Kamiokande, the muon rate should be scaled according
to the ratio of the physical areas A0 of the two tanks which
becomes approximately 0.5 Hz. The unofficial measured
rates on the KamLAND outer detector and the balloon are
0.75 and 0.21 Hz, respectively. They differ from the simu-
lated results by about 10% and 17%, respectively. The
official measured muon rate in the spherical buffer region
of radius R0 � 8:25 m is 0.34 Hz [26] and the simulated
result is 0.396 Hz (14% difference). The muon flux of
0:4 m�2 s�1 quoted by CHOOZ [24] is smaller than the
simulated exact result by about 35%, which is attributable
to the single digit of precision of the quoted rate and the
approximated geology used in our simulation. The errors in
the simulated results in Table III are a combination of the
systematic error from map making and the statistical error
from the Monte Carlo simulation. The systematic error of
the mountain profile coming from the calculation of the
scale that relates physical distance on the contour map to
the relative distance on the digital map is taken to be 0.5%.
The systematic errors of E�, J�, and R� are calculated by
varying the slant depth X by 0.5% before passing it to
MUSIC. The statistical variance is calculated in the usual
way by varying the random seed.

B. Energy and angular distributions

The energy distribution dJ�=dE� in Fig. 6 is defined by
the formula

 J� ’
Z 1

0
dE�

dJ�
dE�

; (21)

and has the unit of GeV�1 cm�2 s�1. Angular and double
differential distributions can also be defined in similar
ways. The appendix describes numerical implementations
for various types of distributions. Figure 6 plots the cosmic
muon energy distributions at Super-K, KamLAND, and
CHOOZ. The purpose of the figure is to show the global
properties of the energy distributions of various experi-
ments. Although the distributions look smooth on the log-
log scale, the fluctuations in the low energy regime (E� <
1 GeV) will become more apparent on the semilog scale.
Fortunately the fluctuation in the low energy part of the
spectrum on the log scale is suppressed by the smallness of
the Jacobian that contains a factor of E� so that the
accuracy of the calculations of the average muon energy
E� and flux J� are not affected. If the energy distribution
of stopping muons is needed, generation of E�0 and cos�

TABLE III. Average muon energy E�, muon flux J�, the muon rate inside the tank Rt�, and the
muon rate inside the inner detector volume Ri� for Super-K, KamLAND, and CHOOZ. The inner
detector of Super-K is a cylinder and that of KamLAND is a balloon. The muon rate inside the
CHOOZ inner detector is not simulated.

Site E� (GeV) J� (cm�2 s�1) Rt� (Hz) Ri� (Hz)

Super-K 271 2 �1:48 0:04� � 10�7 2:438 0:004 1:828 0:003
KamLAND 268 2 �1:70 0:05� � 10�7 0:676 0:001 0:246 0:001
CHOOZ 60:6 0:4 �6:12 0:07� � 10�5 30:5 0:2 � � �

0.1 1 10 100 1000 10000 1e+05 1e+06
Eµ (GeV)
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1e-20
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CHOOZ       (60.6 GeV)
Super-K       (271 GeV)
KamLAND  (268 GeV)

FIG. 6 (color online). Integrated muon intensity distribution at
Super-K, KamLAND, and CHOOZ. The number of energy bins
is M � 500. The total number of simulated events is 5� 106.
The average muon energies of the three sites are quoted in the
legend.
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according to the surface muon distribution is
recommended.

Figures 7–9 illustrate the angular distributions of
muons. Experience shows that 5� 106 simulated events
are generally adequate to generate reasonably good quality
distributions in most cases. The polar angle � in the rele-
vant plots is defined to be the zenith angle consistent with
Eqs. (2) and (3). The azimuthal angle � is set to zero when
the final muon travels from east to west. The momentum of
the final muon is opposite to the line of sight connecting the
detector and the muon and is defined by � and �. The only
exception to the present definition of � and � is Fig. 7
because the Super-K digital map uses a different conven-
tion. Figure 10 compares the cos� and � distributions
between simulations and an experiment at KamLAND.
Figure 11 compares the � and � distributions between
simulations and a cosmic ray experiment done on the
CHOOZ site in 1994. The experiment consists of four 1�
1 m2 Resistive Plate Chambers (RPC) plates separated
from each other by 20 cm. The simulation of the experi-

ment defines a muon event as the coincidence of any two of
the RPC plates being triggered. The difference between the
simulated and the experimental � distributions can be
explained by the fact that a significant number of the
muons coming from the steep section of the Ardennes
hill profile cannot be detected by a muon tracker composed
of top and bottom horizontal plates only. In order to
measure the muons coming from large zenith angles, addi-
tional trackers are needed on the sides. The remaining
small differences between the simulated and experimental
results and the aberrations presumably arising from the
variation in geology described in Ref. [24] are not simu-
lated in this work. The difference between the simulated
and experimental dJ=d� for 0<�< 150� in Fig. 11 is
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FIG. 7. Angular distribution of final muons at Super-K. The
total number of simulated events is 5� 106. The Super-K digital
map defines � � 0 to be along the northerly axis and the sense
of rotation to be clockwise.
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FIG. 8. Angular distribution of final muons at KamLAND. The
total number of simulated events is 5� 106.
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FIG. 9. Angular distribution of final muons at CHOOZ. The
total number of simulated events is 5� 106.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cosθ

0

1e-07

2e-07

3e-07

4e-07

dJ
 / 

dc
os

θ 
 (c

m
-2

 s-1
)

Present
KamLAND Muon Fitter
KamLAND Modified MUSUN

0 50 100 150 200 250 300 350
φ

0

1e-08

2e-08

3e-08

4e-08

5e-08

dJ
 / 

dφ
  (

cm
-2

 s-1
)

FIG. 10 (color online). Comparisons of the cos� and � dis-
tributions of final muons at KamLAND. The total number of
simulated events of the present MUSIC simulation is 5� 106.
The muon fitter results [40] represent actual experimental data.
The modified MUSUN simulation [41] is a standard rock calcu-
lation while the present simulation is an exact calculation based
on the Ikenoyama rock composition. Both the muon fitter and
modified MUSUN results are rescaled from arbitrary units to fit
the present results.
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consistent with an unpublished result in an internal note of
the CHOOZ collaboration. Notwithstanding the lack of
detailed treatment of smaller features, a macroscopic pic-
ture emerges by the way of a qualitative comparison in the
performance of two types of muon trackers represented by
the horizontal plate cosmic ray experiment on the CHOOZ
site and the muon veto system of KamLAND. The simu-
lated cos� and � distributions agree well with KamLAND
experimental data because the muon tracker system of
KamLAND has full sensitivity over the entire range of
the hemispherical solid angle. The disagreement between

the exact simulation of the � distribution and the experi-
mental data measured by horizontal plates of the CHOOZ
cosmic ray experiment in Fig. 11 shows that the contribu-
tion of muon flux from the sides cannot be neglected in the
case of a detector located underneath a hilly topology. The
obvious exception to this claim will be the case where a
detector is situated underneath a flat surface so that the
slant depth grows with sec�.

Figures 12 and 13 plot the average muon energy versus �
and � for KamLAND and CHOOZ, respectively. It is
noted that the differential flux in Figs. 10 and 11 tends to
vary inversely with the average muon energy E� per angle
in Figs. 12 and 13. This anticorrelation is intuitive in that
average muon energy generally increases with slant depth
while muon intensity decreases with slant depth.

V. CONCLUSION

The described method integrates MUSIC, a modified
Gaisser parametrization of the sea-level muon spectrum,
and a uniform sampling algorithm for the surface topogra-
phy. The method is efficient, robust, and portable. Given
sufficiently accurate geological data, the method is capable
in principle of predicting muon rates and mean energies
within a few percent accuracy for depths less than
2.5 km w.e., as indicated by the error estimates in
Table III. In practice, simulations performed using simpli-
fied geology assuming uniform rock composition lie within
10%	 20% of observed rates published by Super-
Kamiokande and KamLAND, and within 35% of the pub-
lished flux at the geologically more complex CHOOZ site.
Although muon simulations for any arbitrary hill profile
have already been done many times by other researchers
previously, there are very few complete documents approx-
imating a pedagogical introduction to the numerical
method itself. Although muon rates can be measured in
an experiment, muon energy is difficult to measure so that
knowledge of the average muon energy depends on simu-
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FIG. 12. Average muon energy E� versus � and � at
KamLAND. The total number of simulated events is 5� 106.
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tions of final muons at CHOOZ. The total number of simulated
events of the present MUSIC simulation is 5� 106. ‘‘Simulated
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FIG. 13. Average muon energy E� versus � and � at CHOOZ.
The total number of simulated events is 5� 106.
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lation. For this reason, the reliability of the numerical
method is very important. In applications such as the
estimation of muon background in reactor �13 experiments,
the method of uniform generation of variables can serve as
an additional cross check for accuracy. Although the stan-
dard Gaisser or LVD parametrizations are generally ade-
quate for the simulations of the deep underground
experiments, the modified Gaisser parametrization is in-
dispensable for shallow depth muon simulations.
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APPENDIX: TECHNICAL DETAILS OF THE
NUMERICAL METHOD

The quality of the 3D topological map is crucial for an
accurate calculation of muon overburden. It is usually the
first and the most important step. Care should be taken to
remove the disconnected parts of the mountain profile. If a
ray defined by a specific set of (�, �) passes through
disconnected parts of the mountain geometry resulting in
several different values of slant depth X, the smallest value
of X is used for that particular solid angle.

The range of the energy in the integral goes in principle
from 0 to infinity. It is more advantageous to numerically
integrate over logE�0 instead of E�0. (In this work, log
refers to base 10 logarithm and ln to base e.) On the other
hand, integration over E�0 will give essentially the same
results. The range of numerical integration over muon
energy E�0 is labeled by the lower and upper bounds, El
and Eu, respectively. This work chooses not to change the
variable in such a way to integrate up to E�0 ! 1. More
specifically, the natural cutoff point ought to be a sharp
drop in the muon spectrum which in turn correlates with
the knee of the primary proton spectrum between 1000 and
10 000 TeV. The change in the muon spectrum is 5–10
times lower than that so that a reasonable estimate of the
upper limit is Eu � 106 GeV. As a practical consideration,
it is more computationally efficient to set El not strictly as
the rest mass of muon m� but the minimum muon energy

needed to survive the minimum slant depth of a particular
geographic profile so that CPU time is not wasted in
simulating muons that cannot survive by default.

After the change of variables from E to log�E�, Eq. (11)
is transformed as
 

I��X; cos�?;�� ’ ln10
Z logEu

logEl
d logE�0P�E�0; X; �

?;��

� E�0

dN�0�E�0; cos�?�

dE�0d�
: (A1)

An integral in the Monte Carlo method [27] can be ap-
proximated as

 

Z y2

y1

f�x; y�dyx ’ hf�x; y�i � �y2 � y1�; (A2)

where hf�x; y�i is the average of f�x; y� over y. With
Eqs. (A1) and (A2), Eq. (11) can be calculated numerically
as
 

I��X; cos�?;�� ’
ln10�logEu � logEl�

N

�
X
fig

E�0i
dN�0�E�0i; cos�?i �

dE�0id�
: (A3)

The symbol fig denotes a subset of simulated events cor-
responding to surviving muons. Information of X and� on
the right-hand side of Eq. (A3) are defined as inputs in the
simulation and are not shown formally. The probability
function P�E�0; X; �

?;�� is not explicitly computed in
Eq. (A3) by design. The simplicity of this algorithm trans-
lates to saving in memory. Since the probability function is
not computed explicitly for each combination of E�0, �,
and�, it is essential that the generation of these integration
variables is uniform so that the probability function is
calculated implicitly when the sum is divided by N in
Eq. (A3). As a test of the accuracy of the present method,
it will be shown later that the uniform generation of
integration variables gives exactly the same results as those
calculated by the Gaussian quadrature method in the case
of ground level muons.

Vertical muon intensity and average energy are easily
computed as

 Iv��h�’
ln10�logEu� logEl�

N

X
fig

E�0i
dN�0�E�0i;cos�?i �1�

dE�0id�
;

(A4)

 

Ev��h� ’
ln10�logEu � logEl�

NIv��h�

�
X
fig

E�iE�0i
dN�0�E�0i; cos�?i � 1�

dE�0id�
: (A5)

Vertical muon intensity in standard rock simulated with
Eq. (A4) is compared against experimental data in Figs. 2
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and 3. In reality, standard rock does not exist and is gen-
erally not an exact match of real rock profiles in real
experiments. When measurements are converted from
real rocks to standard rock, there are always some ques-
tions regarding the accuracy of the conversion schemes.
For this reason, Figs. 2 and 3 should not be taken as
absolute tests of the accuracy of MUSIC and the present
integration method but merely a relative point of reference.
Despite the question of the accuracy of the standard rock
experimental data, it is shown in Fig. 3 that the ratios of
calculated and experimental vertical intensity scatter sym-
metrically around unity so that the simulated results are
said to agree with experiments at large. It should be noted
that vertical intensity is merely an approximate test and is
not the central focus of the present work. Integrated inten-
sity on the other hand is really what is needed for the
calculation of muon overburden in realistic calculations.
Integrated muon intensity and average energy can be im-
plemented in a similar way as Eqs. (A4) and (A5),

 J� ’
� ln10�logEu � logEl�

N

X
fig

E�0i
dN�0�E�0i; cos�?i �

dE�0id�
;

(A6)

 E�’
�ln10�logEu� logEl�

NJ��h�

X
fig

E�iE�0i
dN�0�E�0i;cos�?i �

dE�0id�
;

(A7)

where � is the solid angle over the integrated hill profile.
The average muon energy E� can be organized into M �
500 bins along logE�. The subscript j denotes the jth bin.
The numerical implementation of Eq. (21) is

 

dJ�
dE�j

’
�M
N

XN�E�j�
i�1

E�0i

E�j

dN�0�E�0i; cos�?i �

dE�0id�
: (A8)

Information of the survival probability is hidden in N�E�j�
that gives the number of surviving muons in the jth bin. As
a consistency check,

 J� ’
ln10�logEu � logEl�

M

XM
j�1

E�j
dJ��h�

dE�j
(A9)

and

 E� ’
ln10�logEu � logEl�

M~J��h�

XM
i�1

E2
�i

dJ��h�

dE�j
(A10)

must agree with those obtained by Eqs. (A6) and (A7).
Angular and double differential distributions are con-
structed in similar ways. For instance, the cos� distribution
can be constructed as

 

dJ�
d cos�j

�
�

2

M ln10�logEu � logEl�
N

�
XN�cos�j�

i�1

E�0i

dN�0�E�0i; cos�?j �

dE�0id�
: (A11)

The factor �=2 in Eq. (A11) gives the proper normaliza-
tion so that the integration over �1 � cos� � 1 gives the
correct solid angle �. Similarly the � distribution is given
as

 

dJ�
d�j

�
�

2	
M ln10�logEu � logEl�

N

�
XN��j�

i�1

E�0i
dN�0�E�0i; cos�?i �

dE�0id�
: (A12)

In the case of Eq. (A12), the normalization factor is �=2	
so that the integration around 0 � �< 2	 gives the cor-
rect solid angle �. There is a subtlety involving the �
distribution. Since cos� (not �) is uniformly generated in
the present method, uniform binning in � leads to the
wrong distribution. The correct bin width must be inversely
proportional to cos� or, more precisely speaking, equals
M=�N cos��. The factor of 1= cos� exactly cancels the
factor of cos� of the Jacobian so that the � distribution is

 

dJ�
d�j

�
�

	
M ln10�logEu � logEl�

N

�
XN��j�
i�1

E�0i

dN�0�E�0i; cos�?j �

dE�0id�
: (A13)

φ

θ

FIG. 14. An illustration of the binning strategy of slant depth X
in the �-� space. The bars represent regions of the solid angle
corresponding to the edges of a 3D topographical map and are
blocked from the random generation of � and �. The black dots
represent the original lattice sites from a latticized hill profile.
The dotted lines partition the remaining solid angle into regions
of nearest neighbors.
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Double differential distributions of various kinds can be
constructed using the same logic.

Exact calculation of the slant depth X is generally im-
possible for any arbitrary latticized hill profile. Fortunately
simulated energy loss by MUSIC is not very sensitive to
small changes in X so that an approximation can be made.
Figure 14 illustrates the binning strategy of X in the �-�
space. The idea is to partition the solid angle into regions of
nearest neighbors. Each region has the same value of X.
Evenly generated � and� pick out an approximate value of
X in the corresponding nearest neighborhood. There is a
certain amount of computation overhead in preprocessing
the partitions. When the number of simulated events is
sufficiently large, the overhead of partitioning is still
more cost-effective than a real-time search per event.
Because of the irregularity of the hill profile, any given
differential solid angle in the upper hemisphere may tra-
verse disconnected parts of the hill profile. For this reason,
the code must incorporate a mechanism to pick out the
appropriate slant depth X. It can be easily implemented by
simply keeping only the minimum value of X for any given
grid in a latticized �-� space. On ground level, muons do
not need to be propagated by MUSIC so that Eqs. (16) and
(17) can be integrated by Gaussian quadrature and by
setting P�E�0; X; �

?;�� � 1 in the integrand. Figures 15
and 16 and Table IV show that results generated by the
present Monte Carlo method agree exactly with those
calculated by the Gaussian quadrature method.

Assuming that pairs of cos�, � are uniformly generated
N times and that the generation is truly random, the hemi-
spherical � would have been partitioned into N segments
uniformly. In that case dA � r̂ � A0r̂ � r̂0=N so that the
integral of the differential projected surface areas is simply
the sum of the segments corresponding to the surviving
muons. In other words, for any given r̂,

R
dA � r̂ �

A0hPir̂ � r̂0 where hPi is the pseudosurvival probability of

muons. A real survival probability of muons can only be
computed by generating muons according to the sea-level
muon distribution and by propagating them through rock.
In the present method, muons are generated uniformly in
E�0, cos�, and � so that hPi does not have any natural
meaning other than the ratio of the surviving muons to the
generated muons. Naively hPimay be set to the ratio of the
number of surviving muons n to the generated muons N
according to this definition. However a more careful look
reveals that n increases as the muon energy threshold El is
raised in the simulation. The reason is simply that more
highly energetic muons generally have a better chance of
surviving through rock. For this reason, a proper definition
of hPi must be independent of El and is founded to be

 hPi �
n
N

logEu � logEl
logEu � logm�

: (A14)

hPi defined in Eq. (A14) is effectively independent of El
because n varies inversely with logEl. On the other hand, n
decreases when Eu decreases because less highly energetic
muons are generally less likely to survive through rock.
Unfortunately there is no simple way to rescale hPi in this
case. For an accurate calculation of R��h�, it is recom-
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FIG. 15 (color online). Integrated muon flux versus muon
energy on ground level. The angular integration is taken over
the entire hemisphere. Experimental data support the feature that
the energy spectrum for E� < 1 GeV is almost flat [8].
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FIG. 16 (color online). Integrated muon flux versus the zenith
angle on ground level. The energy integration is taken over the
range 0:106–106 GeV. The experimental data are taken from
Refs. [42,43].

TABLE IV. Comparisons of muon flux and average energy on
the ground level. The experimental values of muon flux is taken
from Ref. [28]. The momentum cutoff of the muon flux mea-
surement is 0.35 GeV. The low total energy cutoff of the present
calculations is 0.106 GeV. The quoted experimental value [8] of
vertical muon energy is 4 GeV. The simulated value is 4.19 GeV.

Method J� (cm�2 s�1) E� (GeV)

Monte Carlo 1:91� 10�2 6.92
Gaussian Quadrature 1:90� 10�2 6.95
Experiments �1:90 0:12� � 10�2
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mended that Eu is kept at 106 GeV. With hPi in place,
Eq. (20) can be implemented as

 R� ’
A0hPi� ln10�logEu � logEl�

N

X
fig

r̂i

� r̂0iE�0i
dN�0�E�0i; cos�?i �

dE�0id�
: (A15)

The dot products r̂i � r̂0i are generated randomly inside the
entire detector volume and not just at the center. This

strategy renders a fairer sampling of the detector geometry.
On the other hand, the hill profile is defined with respect to
the origin which is normally set at the center of the detector
because the generation of slant depth X is not easily
managed when the origin moves. Since MUSIC is rela-
tively insensitive to small change in X and the size of the
detector is generally small compared to the mountain
profile, generation of X from the center of the detector is
adequate.
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