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Black holes on Eguchi-Hanson space in five-dimensional Einstein-Maxwell theory
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We construct a pair of black holes on the Eguchi-Hanson space as a solution in the five-dimensional

Einstein-Maxwell theory.
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In this paper, we construct a pair of black holes on the
Eguchi-Hanson space as a solution in the five-dimensional
Einstein-Maxwell theory. The metric and the gauge poten-
tial one-form are given by

ds> = —H*(r, 0)dT? + H(r, f)ds}y, (1)
A = i?Hl(r, 0)dT, )
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H(r,0) =1+ po———; 4
where a and m;(j = 1,2) are constants, 0 = < 7, 0 =
¢ = 2ar/n, (n: natural number) and 0 < ¢y < 27.

Equation (3) is the metric form of the Eguchi-Hanson
space [1]. The Eguchi-Hanson space has a S>-bolt at r = a,
where the Killing vector field d/d¢ vanishes. The function
H(r, ) is a harmonics on the Eguchi-Hanson space (3).

As is seen later, two black holes are located on the north
pole (6 = 0) and the south pole (6 = 7) on the S2-bolt.
The asymptotic behavior of the metric (1) near the spatial
infinity r — oo becomes

2
ds? = —dT? + dr* + %[dﬁz + sin2Gd g
+M$+mﬂwﬂ. 5)

Since the T = const surface has the structure of lens space
L(2n; 1), this solution is asymptotically locally flat. The
Komar mass, Mg,m. and the total electric charge, Q at the
spatial infinity are given by
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where G is the five-dimensional gravitational constant.
In order to clarify the physical properties of the solution,
we introduce the coordinates as follows [2],
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Then, the metric takes the form of
ds* = —H (R, 0)dT? + H(R, 0)ds%y, (8)
with

dsky = VYR, 0)[dR? + R*(d6> + sin20d )]
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where R = (x,y, z) is the position vector on the three-
dimensional Euclid space and R, = (0,0,a), R, =
(0,0, —a). The metric (9) is the Gibbons-Hawking two-
center form of the Eguchi-Hanson space [2,3]. It is mani-
fest in the coordinate that the space has two nut singular-
ities at R = R; where the Killing vector field 9/dys
vanishes.

The function H(R, 6) is the harmonics given by (4) on
the Eguchi-Hanson space in the Gibbons-Hawking coor-
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dinates (9). The harmonics H(R, #) converts nut singular-
ities on the Eguchi-Hanson space to regular hypersurfaces
in the total spacetime. Since each hypersurface R = R;
becomes a Killing horizon with respect to the Killing
vector field 9/9T, and each three-dimensional section of
them with 7 = const has finite area, then the hypersurfaces
R = R; are event horizons.

Since the Kretschmann invariant R,,,\R*"?* has a
finite value on each horizon, we see that the geometry on
the horizons is regular. Even if one of m; (for an example
m,) vanishes, which corresponds to a single black hole and
a naked nut charge with the value a/8, the horizon is
regular. The spacetime is regular in the case of n = 1 but
it has a nut singularity at R = R, in the case of n = 2.

The induced metric on the spatial cross section of the jth
horizon is given by
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dstoion = %[d&2 + sin’0d ¢p? + (dif + cosfdp)?],

(0 =y = 4a/n) (13)

which is the lens space L(n; 1). The geometry near hori-
zons of this solution is similar to the multi-black hole
solutions on the Gibbons-Hawking multi-instanton space
[4], but the asymptotic structures are different. Although
both are asymptotically locally flat, the former is isotropic
in four spatial dimensions while the latter has a compact
dimension as same as Kaluza-Klein black holes discussed
in Refs. [4,5].
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