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We construct a pair of black holes on the Eguchi-Hanson space as a solution in the five-dimensional
Einstein-Maxwell theory.
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In this paper, we construct a pair of black holes on the
Eguchi-Hanson space as a solution in the five-dimensional
Einstein-Maxwell theory. The metric and the gauge poten-
tial one-form are given by
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where a and mj�j � 1; 2� are constants, 0 � ~� � �, 0 �
~� � 2�=n, (n: natural number) and 0 � ~ � 2�.

Equation (3) is the metric form of the Eguchi-Hanson
space [1]. The Eguchi-Hanson space has a S2-bolt at r � a,
where the Killing vector field @=@ ~ vanishes. The function
H�r; ~�� is a harmonics on the Eguchi-Hanson space (3).

As is seen later, two black holes are located on the north
pole (~� � 0) and the south pole (~� � �) on the S2-bolt.
The asymptotic behavior of the metric (1) near the spatial
infinity r! 1 becomes
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Since the T � const surface has the structure of lens space
L�2n; 1�, this solution is asymptotically locally flat. The
Komar mass, MKomar and the total electric charge, Q at the
spatial infinity are given by
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where G is the five-dimensional gravitational constant.
In order to clarify the physical properties of the solution,

we introduce the coordinates as follows [2],
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Then, the metric takes the form of
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with
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where R � �x; y; z� is the position vector on the three-
dimensional Euclid space and R1 � �0; 0; a�, R2 �
�0; 0;�a�. The metric (9) is the Gibbons-Hawking two-
center form of the Eguchi-Hanson space [2,3]. It is mani-
fest in the coordinate that the space has two nut singular-
ities at R � Rj where the Killing vector field @=@ 
vanishes.

The function H�R; �� is the harmonics given by (4) on
the Eguchi-Hanson space in the Gibbons-Hawking coor-
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dinates (9). The harmonics H�R; �� converts nut singular-
ities on the Eguchi-Hanson space to regular hypersurfaces
in the total spacetime. Since each hypersurface R � Rj
becomes a Killing horizon with respect to the Killing
vector field @=@T, and each three-dimensional section of
them with T � const has finite area, then the hypersurfaces
R � Rj are event horizons.

Since the Kretschmann invariant R����R���� has a
finite value on each horizon, we see that the geometry on
the horizons is regular. Even if one of mj (for an example
m2) vanishes, which corresponds to a single black hole and
a naked nut charge with the value a=8, the horizon is
regular. The spacetime is regular in the case of n � 1 but
it has a nut singularity at R � R2 in the case of n 
 2.

The induced metric on the spatial cross section of the jth
horizon is given by

 

ds2
Horizon �

mj

8
�d�2 � sin2�d�2 � �d � cos�d��2	;

�0 �  � 4�=n� (13)

which is the lens space L�n; 1�. The geometry near hori-
zons of this solution is similar to the multi-black hole
solutions on the Gibbons-Hawking multi-instanton space
[4], but the asymptotic structures are different. Although
both are asymptotically locally flat, the former is isotropic
in four spatial dimensions while the latter has a compact
dimension as same as Kaluza-Klein black holes discussed
in Refs. [4,5].
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