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We show that the cosmological constant at late-time places a bound on the entropy of microwave
background radiation deposited in the future event horizon of a given observer, S � S3=4

�0
. This bound is

independent of the energy scale of reheating and the FRW evolution after reheating. We also discuss why
the entropy of microwave background in our observable universe has its present value.
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Recent observations have indicated that the universe is
accelerating, which suggests that the universe might be
being dominated by a dark energy component with state
equation � � p=� <�1=3, see Refs. [1–5] for reviews on
various aspects. The simplest form of dark energy is a
small and positive cosmological constant, which can fit
data very nicely and is phenomenologically one of the most
appealing choices so far. The universe with a cosmological
constant will generally asymptotically approach a dS equi-
librium and any observer in it will eventually be sur-
rounded by an event horizon. This limits the region of
universe accessible to any given observer, see Refs. [6–
10] for some discussions on interesting issues.

Recently, Fischler et al. [11] have pointed out that in a
universe dominated by a positive cosmological constant at
late time there is a bound on the total entropy of radiation
in the entire universe, whose scales like Smax ���3=4

0 ,
where �0 is the value of cosmological constant observed.
This is parametrically smaller than the entropy of dS,
S�0
���1

0 . Further Banks and Fischler [12] argued that
this entropy bound places a upper limit on the total efold-
ings number N tot of inflation that can be described by a
conventional quantum field theory, see also related
Refs. [13]. However, in subsequent discussion in
Ref. [14] based on the covariant entropy bounds [15], see
also Refs. [16], it has been shown that no bound on the total
N tot was found. The reason is that the existence of a
horizon only constrains the entropy visible to a given
observer on any homogeneous spacelike slice to be less
than the area of its interaction with the past light cone of
the observer, but can not restrict the entropy outside of the
causal future of this given observer. However, there is
actually a bound N obs on the efoldings number that will
ever be observable to a given observer at late time [17]. If
the observable universe accelerates forever, the observer
will never see more efoldings number than N obs. Thus
similarly, it may be expected that there should also be a
bound on the entropy of microwave background radiation
deposited in the future event horizon of a given observer. In
this brief report, we will show that this bound is S � S3=4

�0
,

independent of the energy scale of reheating and the FRW
evolution after reheating.

We assume that the inflation ended at some time te. The
efoldings number N corresponding to the present Hubble
scale is given by

 N � ln
�
aehe
akhk

�
� ln

�
aehe
a0h0

�
(1)

where h � _a=a, and the subscript ‘k’ labels the time of
inflation corresponding the present Hubble scale and ‘‘0‘‘
is the present time, In an universe without the future event
horizon, a patient observer would be able to see arbitrarily
far back to inflation, since a0h0 can be made arbitrarily
small at late time. However, the existence of event horizon
1=h0 constrains the size r of the reheating surface visible to
any given observer at late time. Taking (effectively) a0 ’

1=h0, we can obtain this size r � ae ’ h
�1
e eN . Thus in

Planck unit, the entropy S released into this region of the
reheating surface is simply the product of the entropy
density and the volume,

 S ’ �r3 ’ �1=�1���
e h�3

e e3N (2)

where we have assume that the observable universe is filled
with fluid p � �� after reheating and �� �1=�1��� has
been used. We also assume that the reheating after inflation
is perfectly efficient, thus the reheating energy scale �e can
approximately equal to the Hubble scale

�����
he
p

during in-
flation, and also hereafter there are not other reheating
processes bringing a large number of entropy, such as the
decay of some extra productions. During following FRW
evolution, if the observable universe is still dominated by
this kind of fluid, we have �� 1=a3�1���. Thus from (1),
we obtain the efoldings number

 eN �
aehe
a0h0

�

�
�0

�e

�
1=3�1���

�
�e
�0

�
1=2
�

�
�e
�0

�
�1�3��=6�1���

(3)

where �0 ’ �0 has been taken. Thus instituting it into (2),
the entropy in observable universe can be given by

 S ’ ���1�3��=2�1���
0 (4)

Thus it seems that the capacity of store information in the
event horizon at late time only depends on the state equa-
tion of fluid filling it. For the state equation � � 1, such as
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black hole gas [18], S ’ ��1
0 ’ S�0

. For the radiation � �
1=3, the entropy is

 S ’ ��3=4
0 ’ S3=4

�0
(5)

In Ref. [12], it was pointed out that to avoid a big crunch
the total entropy of microwave background radiation in a
system should be bounded from above by (5). However,
here we point out that what (5) bound is only the entropy
deposited in the region of event horizon at late time, which
is accessible to any given observer in future event horizon.
Taking the present observed value of cosmological con-
stant, �0 � 10�123, we have S ’ 1091. This is the maximal
entropy which the microwave background radiation depos-
ited in the event horizon potentially approaches.

We discuss some interesting cases for further arguments
in the following. The observable universe actually consists
of radiation and matter. The energy density of matter will
exceed that of radiation at some time teq. From (1) and (3),
we have

 eN �
aehe
aeqheq

	
aeqheq

a0h0
�

�
�e
�eq

�
1=4
��eq

�0

�
1=6

(6)

where the subscript ‘‘eq‘‘ labels the time of matter-
radiation equality. Thus from (2), we can obtain

 S ’ �3=4
e 	

�
�e
�eq

�
3=4
��eq

�0

�
1=2
=�3=2

e ’ S3=4
�0

�
�0

�eq

�
1=4
� S3=4

�0

(7)

In our observable universe, �0=�e � 10�12, thus we have
S� 1088, which is just the present entropy of microwave
background radiation. This gives a simple explanation why
the entropy of microwave background in our observable
universe is several orders of magnitude lower but not far
lower than the entropy bound (5). The reason is that the
matter-dominated universe only began in the not far past.
The higher the energy density of matter is, the earlier it will
dominate the universe and thus the larger �eq is. Thus the
entropy of microwave background in observable universe
will be lower. The limit case is �eq ’ �e, i.e. the universe
just entered into the matter-dominated phase shortly after
reheating, in which the observable universe will has lowest
radiation entropy deposited in the future event horizon of a
given observer. Whereas the higher the energy density of
radiation is, the smaller �eq will be, thus the higher the
radiation entropy will be. The limit case is �eq ’ �0, i.e.
the radiation still dominated the universe up to date, which
corresponds to saturate the entropy bound (5), i.e. S�
1091.

We may suppose that the observable universe can be
filled with some other fluid after reheating and will be still
dominated by it before entering into the radiation-
dominated phase. This corresponds to

 eN �
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aeq0heq0
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where the subscript ‘eq0’ labels the time of fluid-radiation
equality. Note that at time teq0 the radiation begins to
dominate the universe and have the energy density �eq0 .
Thus we can back to the reheating surface and obtain an
equivalent energy density �r of radiation at the time te
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’
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�
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(9)

Thus instituting (8) and (9) into (2), we can obtain
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This is the same as (7). Thus the intervening of other fluid
phase before the radiation-dominated phase does not affect
our result.

We can also forward the entropy of microwave back-
ground radiation to the future and note that after the time
t0, the observable universe will enter into a dS phase, thus
we have

 eN
0
�

aehe
aeqheq

	
aeqheq

a0h0
	
a0h0

ah0
� eN�N �t� (11)

where (6) has been used and N �t� � h0�t� t0�. We can
see that the comoving Hubble scale ah begins to grow, as in
early inflation, which results in the decrease of the effective
efoldings number N 0, which is the efoldings number
visible to any given observable at late time of t0 [17],
and thus the entropy S of microwave background radiation.
Let us see this case further. Note that at the time tf � t0 �
N =h0, the comoving Hubble scale equals its value at
reheating, thus we have N 0 ’ 0. This means that all
perturbations including very last perturbation generated
during inflation will be pushed back out of the horizon
again. Instituting N 0 at the time tf into (2), we obtain S ’

��3=4
e , in which � � 1=3 has been taken. This is just S3=4

inf
of dS entropy during inflation. Note that

 S� h�3
0 T3 (12)

we can obtain the temperature Tf � h0�
�1=4
e of microwave

background at the time tf. This temperature is still far
larger than the characteristic temperature Th � h0=2� of
event horizon [19]. However, since the observable universe
will accelerate forever, the temperature of microwave
background can be eventually redshift to a point where
T � h0 and the noise of Hawking radiation will begin to
overwhelm the microwave background. From (12), we
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have the eventual radiation entropy S� 1. This means that
after this time it would be impossible to extract any infor-
mation about early universe from the microwave
background.

The above discussions also apply to the case that the
current and future evolution is dominated by phantom, in
which � <�1, and thus a well-defined event horizon
exists. During phantom-dominated the energy density of
phantom is increased with the time. This leads that the
scale of event horizon decreases continuously, and from
(5), thus the value of entropy bound on the microwave
background radiation deposited in the event horizon. This
result is different from the constant entropy bound with the
cosmological constant. The entropy bound varies monoto-
nously makes us able to expect that there should be a
maximal entropy bound, which can be seen as follows.
The phantom-dominated evolution only begins at present,
and its energy density is determined by current observa-
tions and is approximately �0 � 10�123. Thus from (5), we
have the entropy bound S� 1091 on the microwave back-
ground radiation deposited in ‘‘present’’ event horizon.
Now we forward the entropy bound to the future and have

 eN
0
�

aehe
aeqheq

	
aeqheq

a0h0
	
a0h0

ah
� eN�N �t� (13)

where (6) has been used. Reconsidering Eq. (3), we have

 eN �t� �
ah
a0h0

�

�
�

�0

�
�1�3��=6�1���

(14)

where � is the energy density of phantom. We can see that

since � <�1 and � >�0, N �t� is always positive. Thus
instituting N 0 of (13) to (2), we can find that the bound of
entropy on the microwave background radiation deposited
in the event horizon is decreased in the future, and thus the
bound at present is the maximal entropy bound.

In summary, we have shown that the cosmological con-
stant at late-time places a bound on the entropy of micro-
wave background radiation deposited in the future event
horizon of a given observer, S � S3=4

�0
� 1091, which is

independent of the energy scale of reheating and the
FRW evolution after reheating. However, this dose not
means that there is a limit on the total radiation entropy
generated after inflation, since if inflation lasts long
enough, the total entropy may exceed greatly the above
bound. In fact due to the presence of cosmological con-
stant, not all regions of reheating surface lie inside the
causal patch of a given late-time observer, thus the entropy
deposited in the future event horizon of this observer is
only a portion of total entropy, which it is that obeys our
bound. The entropy of microwave background in our ob-
servable universe is S3=4

�0
��0=�eq�

1=4 � 1088 since �0 �

10�12�eq. The reason that it seems not too far lower than
the bound value is that the matter-dominated phase only
began in the not too far past. This work might bring a litter
insight why our observable universe look like so.
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