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Probabilities in the landscape: The decay of nearly flat space
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We discuss aspects of the problem of assigning probabilities in eternal inflation. In particular, we
investigate a recent suggestion that the lowest energy de Sitter vacuum in the landscape is effectively
stable. The associated proposal for probabilities would relegate lower energy vacua to unlikely excursions
of a high entropy system. We note that it would also imply that the string theory landscape is
experimentally ruled out. However, we extensively analyze the structure of the space of Coleman-De
Luccia solutions, and we present analytic arguments, as well as numerical evidence, that the decay rate
varies continuously as the false vacuum energy goes through zero. Hence, low-energy de Sitter vacua do
not become anomalously stable; negative and zero-cosmological constant regions cannot be neglected.
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L. INTRODUCTION

In any theory with more than one metastable or stable
vacuum, the question arises with what probability certain
low-energy physics phenomena will be observed. It is not
enough to count vacua [1-3] with the specified property
and fold in anthropic constraints, because the cosmological
evolution may favor some vacua over others. Whether and
how inflationary expansion factors, decay rates, and initial
conditions affect the probability to be in a given vacuum is
a major challenge in theoretical cosmology. Even once
string theory and its vacuum structure [1,4—24], or “land-
scape” [25], are fully understood, the theory will become
predictive only if this problem is solved.

At the core of the problem is the phenomenon of eternal
inflation. In a global description, an infinite number of
infinitely large regions containing each vacuum are pro-
duced, after unlimited volume expansion of the preceding
vacua. Elegant proposals to regulate these infinities have
been advanced (see Ref. [26] for a recent review, and
Ref. [27] for an early discussion), but so far no prescription
stands out uniquely, and each has some counterintuitive
properties.’
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"For example, recent proposals [28,29], when applied to a
landscape consisting of two de Sitter vacua, would rate them
equally likely even if their cosmological constants (and thus their
entropy) differ by an enormous factor. In an older proposal [30],
all metastable vacua (including, presumably, our own) would
have vanishing probability if any stable vacuum exists [28].
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Proposals for probabilities, and indeed the phenomenon
of eternal inflation itself, are usually formulated in terms of
a global, semiclassical geometry. In a separate publication
[31], it will be argued that such a description does not exist.
Independently of this point, however, one has reason to be
sceptical of any simultaneous description of regions that
are forever causally separated. In the context of black hole
formation and evaporation, it is impossible to reconcile a
global description with quantum mechanical unitarity and
linearity [32]. A good theory should be capable of describ-
ing any one observer’s experience, for example, an ob-
server inside the black hole, or an observer remaining
forever outside. A description of two causally disconnected
observers at once, however, does not correspond to any
feasible experiment, and if attempted, leads to contradic-
tions. Adaptations of this lesson to the cosmological hori-
zon of de Sitter space include Refs. [25,33—-39].

This suggests that eternal inflation should be reformu-
lated in terms of a single causally connected region, or
causal diamond [36]. (A causal diamond is the overlap of
the causal past of g with the causal future of p, where p and
g are any two points on a worldline. The maximal area on
the boundary of a causal diamond is an upper bound on the
entropy in the region it encloses [33,40].) Perhaps a com-
pelling definition of probabilities can be given in this
observer-centered language.

This program is straightforward to implement for a
potential landscape whose lowest point has positive vac-
uum energy. Because the entire system has finite entropyj, it
will probe its whole phase space over and over, and the
relative probabilities are easy to obtain. Under unitary
ergodic evolution, the relative amount of time spent in a
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given vacuum, and thus its relative probability, is propor-
tional to the number of states it contains, N;. (We neglect
anthropic factors in this discussion.)

The entropy a de Sitter vacuum is given by the area of its
cosmological horizon: S = A;/4, where A; = 127/A;.
Hence,

N =exp(37/A,) (1

for a vacuum with cosmological constant A;. The lowest
vacuum has the largest entropy and can be thought of as a
highly degenerate ground state for the landscape. Its ex-
citations correspond to less entropic configurations, such as
a nonempty de Sitter space. The other vacua are also
merely particular excitations of the lowest vacuum.

While a landscape with only positive energy vacua is
pleasantly simple, it is also experimentally ruled out.
Dyson, Kleban, and Susskind [39] showed on statistical
grounds that our universe cannot have arisen from the
unitary, ergodic evolution of a completely stable de Sitter
spacetime. Their analysis can be adapted to any landscape
whose lowest point has positive vacuum energy, with the
same conclusion. Unless one of the assumptions (unitarity,
ergodicity) breaks down, this implies that the true land-
scape contains vacua with nonpositive cosmological
constant.

Indeed, the string theory landscape is expected to con-
tain valleys with negative cosmological constant as well as
supersymmetric regions with vanishing vacuum energy
[4]. The latter pose a significant challenge for a causal
definition of probabilities, in that they tend to attract all of
the probability, at least according to very simple probabil-
ity measures one might propose.” (This is reminiscent of
the difficulties with the global prescription of Ref. [45],
where the probability has support only on nonpositive
vacua.)

To see this, consider two very simple proposals. First, let
us suppose that the probability for a given vacuum is still
proportional to the amount of time one can spend in it. This
probability measure has support only for vanishing cosmo-
logical constant. This is because all the de Sitter vacua
decay after a finite time, and all the vacua with negative
cosmological constant suffer collapse into a big crunch
after a finite time of order |A;|~!/2. The A = 0 regions,
however, are open Friedmann-Robertson-Walker (FRW)
universes that live forever, so they dominate.

Second, suppose that the probability of each vacuum is
set by the maximum entropy. More precisely, suppose it is
proportional to the number of quantum states that can exist
within a causal diamond contained in a corresponding
region. The maximum entropy is set by the largest area

*For the same reason, they also promise to admit precise
physical observables [41-44].
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on the boundary of the causal diamond [36], which goes
like an inverse power of the cosmological constant. In
particular, one finds that this area is finite for de Sitter
vacua (because of the cosmological horizon), as well as for
negative energy vacua (because of their finite lifetime). On
the other hand, the causal diamonds in open FRW regions
with vanishing cosmological constant can become arbi-
trarily large, so they dominate.

This would seem to suggest that a more refined proba-
bility measure is required. Banks and Johnson [46] have
recently proposed a different approach, in which the de-
scription of the full string theory landscape would be quite
similar to that of the above toy landscape with only positive
energy vacua. The lowest positive energy vacuum would
play the role of a degenerate ground state in which the
system spends most of its time.”

In support of this proposal, Banks and Johnson presented
numerical and analytic arguments suggesting that very
low-energy de Sitter vacua are anomalously long-lived.
That is, a vacuum with A,,,; much smaller than the barrier
height would be significantly more stable than a zero-
cosmological constant vacuum obtained by shifting the
entire potential down by the tiny amount Ag,,;. More
precisely, the lifetime of the A,,; vacuum would diverge
as Agnan approaches zero from above, but would become
finite again when Ag,,; = 0.

We feel that the Banks-Johnson proposal does not re-
move the difficulties with A = 0 vacua, whose entropy
and lifetime can be arbitrarily large. Moreover, the pro-
posal involves ad hoc assumptions that contradict
semiclassical results in a regime where the latter are ex-
pected to be valid. This includes the unavailability of vacua
with small negative cosmological constant, and the ability
of negative energy vacua to “decay back up” to the puta-
tive de Sitter ground state so as to establish detailed
balance.

But if these obstacles could be overcome, the Banks-
Johnson proposal would in fact rule out the string
theory landscape. (This was not noted in Ref. [46].)
This is because the arguments of Dyson, Kleban, and
Susskind [39] would then apply, and the universe we ob-
serve would be overwhelmingly unlikely to arise
dynamically.

In any case, the suggestion that low-energy de Sitter
vacua are anomalously stable is of independent interest and
warrants careful investigation. It is a radical claim in that it
conflicts with locality. When a bubble of true vacuum
appears it is typically of microphysical size, and one would
not expect it to matter whether the universe has a cosmo-
logical horizon out at, say, 10* Mpc. Yet, according to
Ref. [46], it matters a lot: the addition of a small amount

? Another discussion of the Banks-Johnson proposal can be
found in Ref. [47].
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of vacuum energy (the smaller, the better) would drasti-
cally suppress the decay of flat space.”

In this paper we find that the decay rate is continuous as
the false vacuum energy passes through zero.” Hence the
low-energy vacua are not anomalously long-lived, i.e., not
much longer lived than the flat space vacua they would be
shifted into.

Depending on the detailed shape of the potential, a A =
0 vacuum can be completely stable. Then continuity de-
mands that the decay of a false de Sitter vacuum related by
a shift of the potential become arbitrarily suppressed as the
false vacuum energy approaches zero. (The numerical data
presented in Ref. [46] actually pertain to this case and thus
did not support the conclusions drawn there.) Thus, our
results do not exclude the possibility of extremely long-
lived de Sitter vacua (up t0 10gtgecay ~ A~ 1). What we rule
out is that they will generically be far more stable than the
flat space vacua obtained by shifting the potential down.

It may be that the A = 0 vacua in the landscape are
necessarily supersymmetric. (Why else would the contri-
butions to the cosmological constant cancel precisely?)
Then they would all be stable. However, this does not
automatically imply that the low-energy de Sitter vacua
have lifetimes comparable to the recurrence time, since it is
not clear in which sense those vacua are close to super-
symmetric. In the real landscape, we do not get to shift the
potential continuously. A low-energy de Sitter vacuum
may be very far from a supersymmetric region in field
space.

The observation of Banks and Johnson stands that the
decay of de Sitter space is exponentially suppressed while
negative energy regions meet their demise in polynomial
time. The potential significance of this asymmetry remains
to be explored. It would be premature to conclude, how-
ever, that negative energy vacua can simply be neglected.
In any case, a more immediate challenge is that the A = 0
vacua appear to dominate, both in terms of entropy and in
terms of their lifetime. This is problematic because we do
not appear to live in one.

“Banks and Johnson suggested a holographic explanation of
the alleged discontinuity. For small positive A, the false vacuum
has enormous entropy due to the cosmological horizon. The
argument is that the decay is entropically suppressed, because all
the horizon entropy would be destroyed by the decay. No such
contribution to the entropy is present at A = 0, so there should
be no entropic suppression of the transition to a lower vacuum.
However, it is not clear to us how adding entropy should stabilize
a system. The cosmological horizon is far away when the bubble
first forms, and will only be destroyed once the bubble has
expanded far enough. Indeed, the same logic would imply that
the decay of flat space could be suppressed by adding enormous
entropy to faraway regions (which can be done by adding a huge
black hole, or with arbitrarily small backreaction using
radiation).

>This was discovered independently by A. Aguirre, T. Banks,
and M. Johnson, whose results appear simultaneously with this
paper.
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This paper is structured as follows. In Sec. II we review
the instanton calculus describing the decay of a false
vacuum in the presence of gravity. In Sec. III, we demon-
strate the continuity of the decay rate. The key ingredient
in our argument is to show and exploit that singular solu-
tions nearby the regular instantons behave continuously as
the false vacuum energy is taken to zero, unlike the regular
instanton geometry itself.

In Sec. IV we give a thorough analysis of the space of
solutions to the Coleman-De Luccia equations, depending
on the initial value of the field, and on the energy of the
false vacuum. We now also explore regions where the latter
is far from zero. In Sec. V we present numerical evidence
supporting our analytical results.

II. COLEMAN-DE LUCCIA TUNNELING

In this section, we briefly review the decay of a false
vacuum, following the analysis of Coleman and De Luccia
[48]. (For earlier work that neglects effects of gravity, see
Refs. [49,50].) We set up notation, mostly following Banks
and Johnson [46].

Consider a scalar field ¢ with potential V(¢). We as-
sume that V has two local minima, at ¢y and ¢y, with
V(¢g) > V(). Examples are shown in Figs. 4 and 5
below. Without loss of generality, we take the top of the
barrier to be at ¢ = 0 and the true vacuum at ¢ > 0.

Let us assume that initially the field is in the false
vacuum throughout space: ¢ = ¢g. Classically, it would
remain there forever. Quantum mechanically, it may be
possible for it to lower its energy by tunneling through the
barrier towards the true vacuum. The path integral for this
process can be approximated by a regular Euclidean solu-
tion, or instanton.

The most symmetric (and, presumably, dominant) non-
trivial Euclidean solution is SO(4) invariant, with metric

ds® = di® + p(1)2dQ2. )

Here d()3 is the metric on the unit three-sphere; we will
think of the parameter ¢ as Euclidean time. Thus the
instanton is described by two functions ¢(z) and p(7).
The equations of motion are Euclidean versions of the
FRW equations for a closed universe with a scalar field:

_ dar
3IM3,

p= pld? + V(g)] 3)

b+ 3§¢3 — Vi), @)

where an overdot (prime) denotes differentiation with re-
spect to ¢ (¢). They obey the constraint
P2

- 3%] oG- v] 5)

p?—1

Thus, the scalar field behaves like a particle moving in the
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U(9)
U(o)

[
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FIG. 1. The Euclidean potentials we are interested in range
from that shown in (a) to that in (b).

Euclidean potential U = —V (see Fig. 1), with friction
proportional to p/p.

There are compact and noncompact solutions.
Noncompact solutions have one pole (a value of ¢, conven-
tionally taken to be zero, at which p vanishes), and have
the topology of R*. Compact instantons have two poles
and have the topology of a four-sphere. For compact
solutions, p, and thus the friction, eventually becomes
negative.

At any pole, continuity of the field gradient requires

=0 (at p=0). (6)

Moreover, the absence of a conical singularity requires the
boundary condition

(at p = 0). (7N

At the first pole, from which the equations are integrated,
this is imposed as a boundary condition. For compact
solutions, the constraint Eq. (5) guarantees that Eq. (7)
will automatically be satisfied at the second pole, as long as
it has been ensured that the scalar field energy

lpl =1

12
E=7—V(¢) ®)

remains bounded. For compact solutions, Eq. (7) implies
divergent antifriction at the far pole.

Let us first consider the case where the false vacuum has
zero or negative energy: V(¢g) = 0. Decay is mediated by
an instanton that is asymptotic to the background, i.e., to
Euclidean flat or anti-de Sitter (AdS) space. Hence, the
instanton must be noncompact, with ¢ — ¢y for p — oo.
It must contain a bubble of true vacuum: ¢ >0 at p = 0.
As we shall discuss in more detail below, it is by no means
automatic that such an instanton exists. If it does not, the
false vacuum is stable. If it does, then the rate of decay per
unit volume is given by

I ~ exp[ —(Singe — Sbg)]- &)

Here, Sjy is the Euclidean action of the instanton, and Sy,
is the action of the background solution. (This is the
solution corresponding to ¢(f) = ¢p for all ¢, ie.,
Euclidean flat or AdS space.)
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The action is given by
s= [agg - Mgy Lwgr v vy a0
167 2 '
On shell, this becomes simply

S = - ]d“x\/gv((z;). (11)

The energy obeys
E=-3242 (12)
p

Since p >0 for noncompact solutions, it is clear that
energy will be lost to friction. Hence, the scalar must start
out, at p =0, at some value ¢, where the Euclidean
potential is higher than in the true vacuum: U(¢g) >
U(ét). A suitable point may or may not exist. By the
same token, it is clear that there is never an instanton
describing the formation of bubbles of false vacuum in a
true vacuum with nonpositive energy.

Now let us turn to the case where the false vacuum is de
Sitter space: V(¢p) > 0. (The above equations for the
action and the energy still stand.) In this case the back-
ground action in Eq. (9) is finite, and tunneling is always
allowed. (If all else fails, the Hawking-Moss instanton,
¢ = 0, describes tunneling to the top of the barrier [51];
see also Ref. [52].) However, if the background action
dominates over the instanton action, tunneling will be
extremely suppressed: logl” ~ S, corresponding to a life-
time of order the Poincaré recurrence time in the back-
ground de Sitter space.

The instanton, in this case, will be compact and will not
reach either ¢t or ¢y exactly. As we will discuss in more
detail in Sec. IV, there can be several such instantons. We
will be most interested in one-pass instantons, which cross
the barrier precisely once. An example (type I) is an
instanton that resembles the de Sitter four-sphere back-
ground solution except in a small region containing a
bubble of true vacuum. Then the action difference results
from the bubble region alone, and the rate will not depend
strongly on the background cosmological constant.
Another example (type II) is an instanton that does not
spend much time near ¢p. Then the background action
dominates, and tunneling is suppressed by the inverse
background cosmological constant in the exponent.®

°If both vacua have positive energy, then tunneling is possible
in both directions, mediated by the same instanton. The differ-
ence in rates comes entirely from the different background
actions that must be subtracted depending on the direction of
the process. From Eq. (9) one finds that I';/T"} ~ exp(St — Sg).
The action of Euclidian de Sitter space is minus the entropy (S =
—3&). Thus, this result agrees with statistical expectations, as
discussed in the introduction. Unless the two vacuum energies
are very similar, the upward decay is an example of a highly
suppressed process where the background action dominates.
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In the following we will investigate how the tunneling
rate depends on overall shifts of the potential. We write

V() = Vo(¢) + Vg, 13)

where Vy(¢g) = 0. The additive constant Vi shifts the
entire potential up or down, with Vi being the false vacuum
energy.

Although we will explore the parameter space quite
broadly, we are interested mainly in confirming the con-
tinuity of the rate as the false vacuum energy passes
through zero. For potentials V that permit the decay of
flat space, we will find that the addition of a small cosmo-
logical constant Vi does not change the rate much, leading
to a type I decay. If flat space is stable, then the addition of
a small cosmological constant leads to a highly suppressed,
type II decay of the resulting de Sitter space. These results
express the continuity of the decay rate.

In the next section we develop analytical arguments in
support of these assertions. Global properties of the solu-
tion space will be discussed in Sec. IV. The final section
contains numerical evidence.

III. CONTINUITY OF THE DECAY RATE OF
NEARLY FLAT SPACE

In this section, we present our argument that the decay
rate is continuous as the potential is shifted by a constant
and the false vacuum energy approaches zero from above
(Vg = 0). Our argument combines a number of intermedi-
ate results, which will also be useful in later sections.
Hence we will structure this section by developing indi-
vidual results in separate subsections.

We will rely heavily on the properties of singular solu-
tions. Hence, from here on, when we say ‘“‘solutions,” this
includes singular solutions, i.e., integrals of the equations
of motion that run into a singularity. We will write explic-
itly “singular solutions” or ‘“‘regular solutions™ to refer
specifically to one of these classes. “Instanton” means
“regular solution.” When we say ‘“‘compact,” we mean
that the radius approaches a second zero, independently of
whether it does so in a singular or regular way. Throughout
the paper, we use the term “‘generic’’ in the technical sense;
namely, a feature is generic if it occurs in an open set of
moduli space. In other words, generic means ‘‘unchanged
by infinitesimal perturbations.”

A. Solutions are generically compact, and all singular
solutions are compact

It is important to our method that solutions are generi-
cally compact, so we will give a careful argument. By
construction, all of our solutions start with regular initial
conditions at p = 0; then we evolve in Euclidean time to
find the full solution. We claim that generically p returns to
0; in particular, it will do so for all singular solutions.

For the sake of this argument, we assume that outside the
region of interest the Euclidean potential is negative every-
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where and has no extrema, and also that it stays finite
everywhere. Recall that we are assuming that the local
minimum in the Euclidean potential is negative, and that
the potential has no other extrema.

There are five ways one might imagine that the radius p
can fail to return to zero:

(1) p could remain finite and the solution could remain

smooth as t — 0.

(2) Evolution could stop at a singularity at finite p.

(3) p could diverge at finite .

(4) p could asymptotically approach infinity as ¢ — oo.

(5) p can be unbounded and have no limit as ¢ — 0.’

We will see that possibilities (1), (2), (3), and (5) are
forbidden by the equations of motion, while possibility (4)
occurs nongenerically. An example of option (4) is the
usual instanton which mediates the decay of a false non-
de Sitter vacuum.

To see that possibility (1) is forbidden, we focus on the
evolution of the Hubble parameter, H = p/p. Combining
the FRW Egs. (3) gives

H = —4nMy2¢* — 1/p% (14)

The right side is negative semidefinite, so H can only
decrease.

We argue by contradiction. Suppose there exists a maxi-
mum radius p,,,. Then H is bounded above by —1/p2,.
This implies that H — —o0 as t — 0. Now

p(t) = fo “ar o) = fo "ap(H().  (15)

By assumption, p(7) stays finite, and it must be positive
because it is the radius of the 3-spheres. Since we have just
shown that H diverges to negative infinity and by assump-
tion p(¢) is finite and positive, the integral diverges. This
contradicts our assumption that p remains finite.

Possibility (2) is a singularity at finite p. To achieve a
singularity at finite p, we would need p and/or ¢ to
diverge. We choose the singularity to occur at + = 0 and
characterize the divergent behavior of p and ¢ there. In
order for p to diverge without p diverging, we need p ~ #”
for 0 > p > —1. The FRW equation is

8w @?
2 —1= -V . 16
p orz,” [ > (cﬁ)} (16)
By assumption, V is finite everywhere and the singularity
forms at finite p. Keeping just the singular terms the
equation becomes

8 ;
22 2 42 17
P o, ¢, (17
implying that ¢ diverges in the same way as p, ¢ ~ 7.

"We thank the referee for pointing out this possibility, and
sketching how to rule it out.
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Now the equation of motion for ¢, keeping divergent
terms, is

{z;+3£¢3=0. (18)

With our assumptions so far, the first term diverges as t”~ !,
while the second term diverges as >”. Since we require 0 >
p > —1, the two terms diverge as different powers of ¢ and
the equation cannot be solved.

Possibility (3) is forbidden because

p(t) = plty) exp( f H(z’)dr'). (19)

By Eq. (14), H is monotonically decreasing. Thus, if p and
H are finite at some time £, then p cannot diverge in finite
time.

Possibility (5) is that p can be unbounded and have no
limit as ¢ — oo0; in other words, that the radius oscillates
with growing amplitude. We can exclude this possibility
using the results above. Since H is monotonically decreas-
ing, if it becomes negative it must stay negative. Now
consider the evolution of p, as given by Eq. (19). There
are two possibilities: H can stay nonnegative as t — 00, or
it can become negative. If H stays nonnegative, then p(z) is
a nondecreasing function, so it cannot oscillate. If H
becomes negative, then p(¢) is a nonincreasing function
after the time that H becomes negative; since p is positive
by assumption, in this case p(f) is bounded.

This leaves only possibility (4), a regular solution in
which p — oo. This is not forbidden, but as we will now
show, it is nongeneric, as it requires infinite fine-tuning of
the initial conditions. The basic idea is that if the radius p is
to approach infinity, then the field will have to asymptoti-
cally approach one of the vacua so as to provide a resting
place with negative cosmological constant. Since the field
must come to rest at a local maximum of the Euclidean
potential, this requires infinite tuning.

To show that the field must approach a vacuum, let us
recall that H is negative semidefinite and H must remain
nonnegative for a noncompact solution. Hence, H must
approach zero as p — oo. Further, Eq. (14) indicates that
H— 0 requires ¢ — 0. Using this information, the
Friedmann equation (5) becomes, as p — o,

87

H> = ——>V(¢), 20
iz V(@ 0)
which requires the potential V to be negative.
Finally, recall that the equation of motion for ¢ is

é + 3§¢% — Vi(g). 1)

We have already established that ¢» — 0, so we can ignore
the second term. In order for ¢ to remain zero, we need
¢ — 0,50 V'(¢p) — 0. Hence the field approaches a critical
point of the potential. Since we also showed that V < 0 as
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p — oo, this means that ¢ asymptotes to one of the vacua.
(As discussed in the next section, this is necessarily the
false vacuum, though this is not crucial here.)

Now it is easy to argue that this solution is nongeneric.
Approaching the top of a hill as p — oo is highly unstable.
An infinitesimal perturbation of the starting point will
cause the field to overshoot or undershoot the top of the
hill, leading to a compact singular solution.

This completes our argument that compact solutions are
generic. We have also seen that noncompact solutions are
necessarily regular. Hence, all singular solutions are
compact.

B. Noncompact regular solutions are one-pass

Noncompact solutions have no antifriction; as shown
above, H = 0 throughout the solution. Since there is no
antifriction, the energy can only decrease. If the field starts
near the false vacuum, it has no hope of achieving the true
vacuum, which is at a higher Euclidean energy. If it starts
near the true vacuum, it cannot have a turning point be-
cause a turning point requires £ < Ug < Ur, so the field
will never have enough energy to ascend to the top of either
vacuum.

To summarize, the only possible noncompact solution is
a one-pass, regular solution with the field near the true
vacuum at the origin and asymptoting to the true vacuum at
infinity.

For oddly shaped potentials, there may even be more
than one such solution. Such potentials can retain their odd
properties under small deformations, so using our technical
definition we cannot call them nongeneric.

C. The field escapes to oo at the singularity

We showed above that all singular solutions are com-
pact, with the singularity developing as the second zero of
p is approached. It follows that the behavior of the fields
near the singularity is universal. In particular, the field ¢
escapes in the direction indicated by the values of ¢
sufficiently close to the second pole.

To show this, recall that the potential is finite every-
where. We write the equations of motion, keeping only
terms which will diverge near the pole,

¢ +3Hdp =0, (22)

H? = 47My2 % + 1/p. (23)

To find the divergent behavior, we assume that ¢ and p are
both power-law in 7. We find

a(t) = A", $(1)=B/1, (24)
where we have taken the pole to be at r = 0. Note that ¢
remains of constant sign, as advertised. The field value ¢
diverges logarithmically.
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D. Across a regular compact solution, the number of
passes generically changes by one.

Consider perturbing the starting point of a compact
instanton. If the perturbation is very small, then the new
solution is virtually unchanged for a long time. But we
know that near the opposite pole the field must blow up.
This is because the new solution will fail to approach the
pole with just the right conditions to achieve ¢ = 0 at the
pole, and diverging antifriction will magnify the mistake.

Generically, perturbing the starting point in opposite
directions will result in opposite runaway of the field at
the far pole. A perturbation in one direction will result in ¢
reaching zero already for finite (small) p. Then the field
changes direction, and the singular behavior of Eq. (24)
will push it off to infinity. Hence, it will have one additional
pass compared to the regular solution.

Under a perturbation of the starting point in the other
direction, ¢ will not reach the zero that it reached for the
unperturbed instanton at the far pole. The divergence will
push it off to infinity with no additional pass compared to
the regular solution. Hence, the number of passes changes
by one across a regular compact solutions.

Things are more complicated for noncompact instan-
tons. Because there is no antifriction, we cannot appeal
to the universal divergent behavior of Eq. (24). Hence, the
details of the potential can be important. There is no
general rule about how the number of oscillations changes
across a noncompact instanton. Indeed, we will provide
analytic and numerical evidence that jumps can be by more
than one oscillation.

Going in the other direction, we expect that if two
nearby starting points ¢; and ¢, result in singular solu-
tions with different number of passes p; and p,, there will
be at least one regular solution with starting point between
¢, and ¢,. However, we do not prove this rigorously.

E. The decay rate is continuous near Vy = 0

What makes it hard to rule out a discontinuity in the
tunneling rate at Vg = 0 is the fact that the regular instan-
ton does change form: for Vi > 0 it is compact, while for
Vr = 0 it is noncompact. As a result, doing perturbation
theory in Vg around the point Vi = 0 is confusing. We
circumvent this problem by perturbing the singular solu-
tions near the instanton.

There are two cases. We defer the case where flat space
is stable, and begin with the more interesting case where it
can decay. Thus, we assume that there exists a noncompact
instanton mediating the decay at Vi = 0. We want to prove
the existence of an instanton for infinitesimal positive Vg
whose action scales with the de Sitter radius in the false
vacuum.

Consider perturbing the starting point of the Vg =0
instanton by a small amount 6¢. The instanton itself is a
solution in which the field starts near the true vacuum at
p =0 and approaches the false vacuum as p — oo.
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Generically, perturbing the starting point in one direction
will cause the field to overshoot the false vacuum, leading
to a singular one-pass solution, while perturbing the start-
ing point in the other direction will cause the field to
undershoot the false vacuum, resulting in a singular solu-
tion with at least two passes.8 The instanton is at the
boundary between the singular one-pass overshooting so-
lution and the singular multipass undershooting solution.

So there is the regular Vi = 0 instanton, with starting
point ¢, and on either side of it there are singular solu-
tions with starting points ¢y * 8¢. The regular instanton
arrives at the false vacuum at ¢ = co. The overshooting
solution arrives at the false vacuum too soon. However, the
time when it does goes to infinity as 6 — 0. Similarly, the
undershooting solution reaches its turning point (¢» = 0) at
a time which goes to infinity as d¢ — 0.

Now let us ask what happens to the singular solutions if
we increase Vg while leaving the starting point fixed. This
is a perturbation of the potential rather than of the initial
value. If Vg is very small, then the undershooting solution
will still undershoot and the overshooting solution will still
overshoot. By the results of Sec. III D, between these two
singular solutions must lie at least one regular compact
instanton.

Having demonstrated the existence of an instanton, we
will now argue that the associated rate of decay changes
continuously as Vg is increased away from zero. We have
noted that the time at which the singular solutions at Vg =
0 hit the singularity can be made arbitrarily large by
choosing the perturbation d¢ to be small. By continuity
of the singular solutions and by interpolation, this implies
that a regular instanton exists at positive Vg whose size
increases without bound as Vg — 0. Continuity and inter-
polation also imply that the size of the true vacuum bubble
is roughly the same both for the singular and regular
solutions, and both at Vg = 0 and infinitesimal positive
VE. Hence the Vi > 0 singular solutions will spend all but a
fixed amount of their time near the false vacuum’ before
over or undershooting. Therefore, the regular Vg > 0 in-
stanton will be virtually identical to the background de
Sitter space over a volume that diverges as Vg — 0, differ-
ing only in a “‘bubble volume’’ that remains finite as Vg —
0. Hence, we expect the Vi > 0 decay rate to be compa-
rable to the Vg = 0 decay rate.

In the case where flat space is stable, continuity simply
means that the decay rate should vanish as Vg — 0. The
assumption of stability requires that any compact regular
solution at some infinitesimal Vg > 0 is deformed into a
regular solution that is still compact, with finite action, at
Vg = 0. Meanwhile, the background instanton action di-

80ne might imagine a situation where perturbing the starting
point in either direction has the same effect, say undershoot. This
is conceivable, but it is requires the first-order change to acci-
dentally be zero at the instanton, which is nongeneric.

°In fact, exponentially close.
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verges as Vr — 0. By Eq. (9), the decay rate approaches
zZero.

IV. THE CDL SOLUTION SPACE

A. Classification and diagrams

In this section, we use the results derived above to
develop a full picture of the Coleman-De Luccia solution
space. We will be interested in how regular solutions can
appear or disappear as the false vacuum energy Vf is varied
beyond the infinitesimal neighborhood of Vg = 0. We
continue to distinguish the two important cases discussed
above: whether tunneling is allowed at Vg = 0 or not.

For each of these cases, we have picked a simple poten-
tial V. Figures 2 and 3 show solutions as a function of the
starting point ¢, and the parameter Vi.'© More compli-
cated diagrams are possible for different potentials. Our
goal here is to analyze what appear to be the two simplest
situations. Their structure is surprisingly rich. Here we will
analytically explain the features they show; in the follow-
ing section, we will confirm them numerically.

Recall that the top of the barrier (the minimum of the
Euclidean potential U) has been chosen to reside at ¢ = 0.
As long as U(0) < 0, a generic starting point (Vg, ¢) will
yield a singular solution. We classify each starting point by
how many times the field passes through the local mini-
mum of the Euclidean potential before escaping to infinity,
the number of passes. These two-dimensional sets of points
will be separated by one-dimensional lines corresponding
to the regular solutions.

Note that in these diagrams a regular compact solution
with an odd number of passes is represented by two points
in the diagram, because either pole could be considered the
starting point. All other solutions, in particular, all singular
solutions, are represented by one point, the value of the
field at the regular pole.

The fact that we can define the number of passes on a
space consisting of the starting point and Vg, as sketched in
the diagrams, immediately tells us that regular solutions
cannot simply disappear as we dial V; they must annihi-
late with other regular solutions in a consistent way. For
example, a fairly general phenomenon is the following. As
VE is increased, raising the potential up to higher cosmo-
logical constant, some instantons disappear, annihilating at
¢ = 0. What is happening is that near the bottom of the
Euclidean potential well there is a characteristic frequency
of oscillation which is independent of Vg. There is also a
characteristic de Sitter time given by the size of the in-
stanton with the field sitting at the bottom— the Hawking-
Moss instanton. Increasing Vi decreases the de Sitter time,
so there is no longer enough time to have as many oscil-
lations. In the figure, one can see the regions with multiple

'OThis diagrammatic technique was explained to us by Matthew
Kleban; see Batra and Kleban, to appear.
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6(0)

FIG. 2. A diagram showing solutions with starting point ¢(0)
at the regular pole, in a potential shifted vertically by V. The
numbers indicate the number of passes for each solution before
the field escapes to infinity. The lines divide regions with differ-
ent numbers of passes and represent regular solutions. In this
example, tunneling is allowed for Vi = 0. The instanton of
interest is the thick line. For positive Vg, the instanton is
compact, and the part of the line at negative ¢(0) represents
the same solution, thinking of the opposite pole as the starting
point. For Vg = 0, the instanton becomes noncompact so there is
only one origin of polar coordinates.

oscillations disappearing one by one as Vg grows until
eventually only the Hawking-Moss instanton is left (the
vertical line at ¢ = 0).

In our figures, the numbers increase monotonically to-
wards ¢ = 0 for fixed Vg, meaning that starting points

VE

6(0)

FIG. 3. Here, tunneling is forbidden for Vi = 0. The single-
pass instanton is the thick line; for a given Vg, there are two
values of ¢(0) which represent the field values at the two poles.
For negative Vi the instanton remains compact, so it no longer
mediates decay.
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closer to the minimum allow more oscillations. This is a
common situation, but as described by Hackworth and
Weinberg [53], more interesting possibilities are not diffi-
cult to arrange.

Our method is extremely useful in constraining the
presence and location of regular solutions, and it general-
izes to a variety of situations. For example, one could
consider a bigger family of deformations rather than sim-
ply shifts of the potential. In other words, one could
include any number of parameters on the same footing as
Vg in the analysis. In the region of parameter space where
regular solutions are nongeneric, our method should apply.
We consider a space in which one axis sets the initial
condition ¢(0) and the other axes represent the values of
the parameters. The number of passes is a well-defined
function on this space. As above, regular solutions generi-
cally appear at the boundaries where the number of passes
changes.

B. Differences between the diagrams

Now let us discuss the differences between Figs. 2 and 3.
When tunneling is forbidden at Vi = 0 (Fig. 3), nothing
dramatic happens to the regular single-pass instanton as
Ve — 0. That it remains compact may be seen by noting
that at Vg = O there are two regular single-pass solution
points, one at positive ¢ and one at negative ¢. These two
points are really the same solution; either pole of the sphere
can be considered the starting point. For Vi = 0 our regu-
lar solutions persist, but since they are compact they do not
describe tunneling.

In contrast, Fig. 2 describes a situation where tunneling
is allowed at Vi = 0. This figure may look more fine-tuned
than the one which does not allow tunneling, because
various lines meet right at Vg = 0. However, this behavior
is required, based on the results of the previous section
showing that the regular instanton is getting very large as
Vg — 0. The false vacuum pole of the one-pass instanton
(on the left of the diagram) gets closer and closer to the
extremum. This allows the field to remain near the false
vacuum for a very long time, resulting in a big instanton
that looks mostly like the background false vacuum de
Sitter solution. (This behavior results in the singular one-
pass region on the left side of the diagram getting squeezed
away and disappearing in the limit.)

Also, on the right side of Fig. 2, the regular one- and
two-pass solutions must approach each other as Vg — 0,
squeezing the singular two-pass region. The two-pass in-
stanton [54] is a Euclidean solution which is symmetric
about the equator, so ¢ = 0 at the equator. For very large
instantons, two-pass solutions require ¢ to be zero at the
equator, while one-pass solutions require ¢ to be miniscule
at the equator so that it will be zero at the opposite pole. As
Vg — 0 and the instanton gets very large, the distinction
between these two conditions goes away and the instantons
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merge, becoming the single-pass noncompact instanton for
Ve=0.

Our diagrammatic method demonstrates other surprising
properties of the Euclidean solutions. For example, when
tunneling is allowed, then a solution which starts extremely
close to the false vacuum will pass the origin twice before
escaping to infinity, while if tunneling is not allowed it will
only pass the origin once, and escape to the opposite side.
There is no obvious reason this property is related to
tunneling, but our diagram suggests it is the case and we
have verified this numerically for some potentials.

C. Starting close to ¢» = 0

Let us explain another notable feature of our figures: The
number of oscillations at small amplitude decreases as the
cosmological constant increases.

For any value of the parameters, there is a trivial solution
where the field just sits at the local minimum of the
Euclidean potential, the Hawking-Moss instanton. Since
we assume that this point has positive vacuum energy
(U(0) < 0), the geometry is a four-sphere. For sufficiently
small perturbations about this instanton, we can compute
analytically the number of passes. Because the field probes
only the immediate neighborhood of its minimum, the
Euclidean potential can be approximated as a simple har-
monic oscillator in this limit. Also, the geometry can be
taken to be just the Hawking-Moss instanton, since correc-
tions to the geometry due to oscillations of the field are
quadratic in the amplitude of the oscillations.

The Hawking-Moss instanton is

ds*> = d* + p(1)*dQ3 (25)
with
1
p(t) = — sin(H?). (26)
Hy
Here H, is the Hubble constant determined by the value of

the potential at the Hawking-Moss instanton,

8w
H2 = —V(0). 27
F = VO @7
Small oscillations are then governed by the equation
¢ + 3Hy cot(Hyt)p = —U"(0)¢b. (28)

Defining the dimensionless variable 7 = H,t, the equation

takes the form of the eigenvalue equation for the Laplacian

on a four-sphere, '’

U’ (0)
H3

é + 3cot(Dp = — o, (29)

where ¢ is now the derivative with respect to 7. The
quantity U"(0)/H3 plays the role of the eigenvalue.

""Once again, we thank Matt Kleban for pointing this out.
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Regular solutions exist only if the eigenvalue is of the
form n(n + 3) for a positive integer n. These solutions are
spherical harmonics which are homogeneous on the three-
sphere. They have n zeroes, so for our purposes they are
n-pass solutions. Of course the approximation we are using
is only valid for infinitesimal oscillations, so the physical
statement is that as we shift the potential, infinitesimal-
amplitude regular solutions only exist at special values.
This is consistent with our general rule that regular solu-
tions are nongeneric.

The number of passes will change as we shift the poten-
tial; H, changes if we add a constant Vi to the potential,
while U”(0) is unaffected. Recall that we denote the ver-
tical shift of the potential by Vg, so even though these
solutions do not care about the value of the energy in the
false vacuum, in our notation we say that infinitesimal-
amplitude solutions exist at special values of V. Between
values of V allowing a regular solution with n passes and a
regular solution with n + 1 passes, the singular solutions
have n + 1 passes. So for singular solutions the number of
passes is given by the smallest integer n such that

U (O)
H}

n(n +3) > (30)

For sufficiently large positive Vg, it is clear from the
formula that the number of passes will be n = 1. This
happens because the Hubble time for the Hawking-Moss
instanton becomes short compared to the period of the
harmonic oscillator.

Once again, we see that regular solutions exist at the
boundary between singular solutions with different num-
bers of passes. As explained by Gratton and Turok [55], the
number of passes is equal to the number of negative modes
for perturbations around the Hawking-Moss solution. (The
number of negative modes is important for the interpreta-
tion of the instanton, but in this paper we are mainly
interested in the structure of the solution space.)

D. Behavior as the maximum of the potential
approaches V = 0

So far, we have assumed that the maximum of the
potential (the Hawking-Moss point) has positive energy:
V(0) > 0. What happens if we allow V(0) = 0? This cor-
responds to the local minimum of the Euclidean potential
moving up to U = 0. The results are dramatic. We can no
longer argue that solutions are generically compact, or
generically singular, because there is a new possible
asymptotic behavior: the field can asymptotically approach
¢ = 0 while the geometry continues to grow (p — o0).
This is possible because the potential is now zero at the
minimum, so asymptotically flat solutions are possible.

Furthermore, this asymptotic behavior is stable under
small perturbations, since the field approaches a local
minimum of the Euclidean potential. So generic initial
conditions can result in a noncompact, regular solution.
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Specifically, all starting points with Euclidean potential
energy less than Ug, the Euclidean potential of the false
vacuum, lead to this asymptotically flat behavior; depend-
ing on parameters, a somewhat bigger set of starting points
leads to asymptotically flat solutions. In fact, for the po-
tentials we will consider numerically any starting point
between ¢p and ¢ will lead to a noncompact solution
with ¢ — 0.

To see that this is reasonable, recall the FRW equation

,_ 8w ﬁ 1
H 3M%1[ +U(¢)}+p2. 31

2

As long as the field does not escape the region of interest,
H cannot go to zero except at p = o because the
Euclidean potential U is nonnegative in this region. If H
cannot go to zero then it cannot become negative, so no
antifriction is available. So solutions starting with energy
less than Ug have no hope of escaping because no antifric-
tion is available until after they escape, and they would
need to gain energy in order to escape. Solutions beginning
near the true vacuum, with more potential energy than Uk,
can hope to overshoot on the first pass, but whether this is
possible depends on parameters.

There must be a dramatic signal of this lurking non-
compactness as the maximum of the potential approaches
zero from above. One place we can see this is in our
formula for small oscillations around the Hawking-Moss
solution. Note that in this limit the Hubble constant H, of
the Hawking-Moss instanton approaches zero because the
cosmological constant of the Hawking-Moss solution is
approaching zero. According to our formula Eq. (30) the
number of passes approaches infinity as Hy— 0. The
reason is that as Hy — 0 the Hubble time goes to infinity
while the period of the harmonic oscillator stays fixed, so
there is time for an infinite number of oscillations.

We have thus discovered an accumulation point, with an
infinite number of regular solutions appearing at Hy — 0.
This is shown schematically in Figs. 2 and 3, and will also
appear in our numerical data.

E. Starting close to the vacua

Here we explain the behavior seen in both Figs. 2 and 3
for starting points very close to the false vacuum. We will
also be able to explain some aspects of the behavior just to
the left of the regular single-pass instanton and just to the
right of the true vacuum. Note in the diagrams that the
number of passes is one for solutions whose starting point
is just to the right of the false vacuum as long as Vg > 0.
However, as Vg becomes more negative the number of
passes increases.

It is clear that the number of passes must be one for Vg
positive. The reason is that there is a regular compact
solution with the field sitting on the false vacuum—just
the usual false vacuum de Sitter solution. Also, starting
points to the left of the false vacuum must lead to zero
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passes by our assumptions about the potential. Since the
number of passes must change by one across a compact
regular solution, starting points just to the right of the false
vacuum must lead to one-pass solutions.

This logic no longer holds once Vi = 0. There is still a
regular solution where the field sits on top of the false
vacuum forever, represented by the vertical line in the
diagram, but this solution is now noncompact. We have
no general rules about how the number of passes can
change across a noncompact regular solution.

To see that starting points just to the right of the false
vacuum might result in a large number of passes for Vg
negative, imagine a situation where Vg is very negative so
that both vacua are at very negative cosmological constant.
(Note that we are no longer interested in the limit of the
previous section where the Hawking-Moss solution be-
comes noncompact; here we assume that it is compact.)
If the field starts very close to the false vacuum, it will sit
there a long time before beginning to oscillate, so that it
essentially begins to oscillate at large p compared to all
other scales.

Recalling Eq. (14), the change in the Hubble parameter
is given by

AH = — [ (ArMp2d* + 1/p?)dt. (32)

We ignore the second term because we are at large p. The
change in H over one oscillation, given by the above
formula, is determined by the potential. It is basically
constant as we shift the potential vertically. Now before
the field starts oscillating the Hubble parameter is positive,
and its magnitude is determined by the cosmological con-
stant at the false vacuum, so its magnitude is large for
Ve < 0. As aresult, one oscillation of the field produces a
small change in AH/H.

We have shown in Sec. III A that any solution, singular
or nonsingular, starting near the false vacuum must be
compact. Since the solution must be compact, H must
become negative. But since one oscillation leads to a small
change in AH/H, it will take many oscillations before H
can become negative. Further, the field experiences no
antifriction as long as H = 0, so it is guaranteed to keep
oscillating until H becomes negative.

Once H becomes negative, more oscillations are neces-
sary before the field can escape (recall that generically the
field escapes to *o0), because the magnitude of H is
bounded below by the vacuum energy,

2o 87T

H- =
3M3,

U(¢). (33)

Another way to think about it is that the field has lost
energy to Hubble friction during its oscillations, and it
must undergo more oscillations during the phase of anti-
friction to recover enough energy to approach one of the
vacua. These two points of view are related by the FRW
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equation in the limit p — oo,

8

H? =
3M3,

E, (34)

where E = Eq")z + U(¢) is the Euclidean energy of the
field.

Generically, the field will not return precisely to one of
the vacua after these oscillations; it will escape with the
radius is still extremely large.

To summarize, for starting points just to the right of the
false vacuum, the generic solution consists of a very large
region where the field is essentially in the false vacuum.
When the field begins to oscillate there may be a large
number of oscillations at large p, after which the field
escapes and the radius returns to zero. The field generically
escapes at large radius.

Since there is a separation in scales between the size of
the false vacuum region and the characteristic period of
oscillation, these solutions should be well captured by the
thin-wall approximation. The thin-wall approximation will
allow us to make more concrete statements about the
number of passes.'? In order to capture the potentially
large number of oscillations, we slightly generalize the
thin-wall approximation: we allow ourselves to stack mul-
tiple domain walls on top of each other, each domain wall
representing one pass.

We want to construct, within the thin-wall approxima-
tion, a solution (singular or nonsingular) which has the
features described above. It should have a regular pole
surrounded by an enormous false vacuum region sur-
rounded by a stack of domain walls at infinity. On the other
side of the stack of domain walls, the radius should de-
crease back to zero. We want to allow solutions with a
singularity at one pole as usual. Within the thin-wall
approximation, the only possible singularity is a conical
deficit. With a conical deficit, the metric becomes

ds* = d* + f?p(1)*dQ3, (35)

where p(f) takes the usual Euclidean AdS form, p(r) =
Rsinh(¢/R), and f > 0. (For f =1 there is no conical
deficit or excess.)

To summarize, we are seeking a thin-wall solution
which has a regular pole surrounded by an enormous false
vacuum region. The false vacuum region is surrounded by
a stack of domain walls. On the other side of the domain
walls, we can have a region of true or false vacuum which
generically has a conical deficit. We expect that the thin-
wall solution is a good representation of the full solution in
the false vacuum; we also expect it to capture correctly the
number of field oscillations required before the field has
enough energy to escape. However, as mentioned above the
field generically escapes at large radius, and after this point

'>We emphasize that nowhere else in this paper do we appeal to
a thin-wall limit.
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it is not near either of the vacua, so the thin-wall approxi-
mation must be wrong. Nevertheless, the thin-wall ap-
proximation should be a good one for predicting the
number of oscillations.

The Israel junction condition relates the jump in extrin-
sic curvature across the stack of domain walls to the
tension. For the situation we are considering, in which
the radius decreases as we move away from the domain
wall in either direction, it is

T 1
bt |t —=no, (36
\/(f 1p) R \/(fzp)2 R

where R; and R, are the AdS radii on either side of the
wall, f; and f, are related to the conical deficits, o is
proportional to the tension of one domain wall, and 7 is the
number of domain walls in the stack. The left side of the
equation is bounded below by 1/R; + 1/R,. Since the first
pole is nonsingular by construction, we set f; = 1.

1. Vanishing false vacuum energy

We first consider the special case where the false vac-
uum has zero cosmological constant, Rg = . Above, we
claimed that if the false vacuum has very negative cosmo-
logical constant, the number of passes (the number of
domain walls in the thin-wall approximation) will be large.
On the other hand, if the false vacuum has zero-
cosmological constant we will see that one or two domain
walls is sufficient. The simplest solution would be a large
region of false vacuum, one domain wall at large radius,
and a region of true vacuum on the other side. In this case
the left side of Eq. (36) is bounded below by 1/Ry. If the
tension is big enough, o > 1/Ry, a solution exists. In this
case, for sufficiently large p, we can always solve the
junction condition for the conical deficit parameter f.

On the other hand, if o < 1/Ry, no solution exists. In
this case, we will need two domain walls to solve the
junction condition. With an even number of domain walls
we have false vacuum on both sides. The junction condi-
tion becomes

=20. 37

1 1

— 4+ —

P fp
This equation can be solved for any tension o, because the
left side can take any value. For fixed sufficiently large p
we can again solve for f.

So we need one domain wall if ¢ > 1/R; and two
domain walls if o < 1/Ry; but o < 1/Ry is precisely the
condition that the false vacuum can decay. Equivalently, it
is the condition that a noncompact regular instanton exists.
The conclusion is that if tunneling is forbidden (Fig. 3),
starting points just to the right of the false vacuum have one
pass, while if tunneling is allowed (Fig. 2) they have two
passes.
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Another way to understand that two domain walls are
required when tunneling is allowed is to note that
Euclidean AdS space has finite extrinsic curvature at in-
finity. Hence, joining an AdS region to a flat region across a
three-sphere requires a jump in the extrinsic curvature that
remains finite even as the location of the domain wall p
goes to infinity. If tunneling is allowed, the tension is too
small to account for this finite change.

Now let us move to the right part of Fig. 2. We can infer
the behavior of solutions which start just to the left of the
single-pass noncompact instanton, that is, solutions which
barely undershoot the false vacuum. The regular single-
pass instanton achieves the false vacuum at very large p; a
slightly undershooting solution will spend a long time
close to the false vacuum before falling back. Since we
have just analyzed solutions which spend a long time and
grow to large radius near the false vacuum, the subsequent
evolution will be the same.

In the thin-wall approximation, the equivalent statement
is that the single-pass instanton and the pure false vacuum
solution have the same asymptotics, so we can replace the
false vacuum region in our previous solution by the single-
pass regular instanton. The conclusion is that a solution
starting just to the left of the regular instanton will have one
more pass than a solution which starts just to the right of
the false vacuum. This explains why the number of passes
jumps from one to three across the regular instanton.

2. Negative false vacuum energy

Next, let us consider the lower part of Figs. 2 and 3, the
region with Vg < 0. Again we focus on starting points just
to the right of the false vacuum. Now it is no longer clear
that we can have a solution with two domain walls, because
even the false vacuum has finite extrinsic curvature as p —
o0; as we argued below Eq. (32) a large number of domain
walls may be necessary. Two types of solutions are pos-
sible: with an even number of domain walls, we have false
vacuum on both sides, and for a solution to exist we need

1/Rg + 1/Ry < no, n even. (38)

For an odd number of domain walls, we have true vacuum
on one side, and for a solution to exist we need

1/Rg + 1/Ry < no, n odd. (39)

The minimum number of passes is determined by the
smallest number n of domain walls such that one of the
inequalities is satisfied. It is clear that as Vi becomes more
negative the required number of passes n becomes larger.
This is reflected in both diagrams.

Additionally, if tunneling is allowed for a given Vg = 0,
then the minimum number of passes always occurs for n
even. This is because the condition that tunneling is al-
lowed is 1/Ry —1/Rp<o. When this is satisfied,
Eq. (38) is always satisfied for smaller n than Eq. (39).
The result is that along the left side of the diagram, all
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numbers should be even for Vi = 0 as long as tunneling is
allowed.

Let us move to the right of the figures. As in the Vg = 0
case, we parlay our results about solutions starting near the
false vacuum into information about starting points just to
the left of the single-pass regular instanton. Once again the
number of passes just to the left of the noncompact in-
stanton should be one greater than the number of passes for
a starting point just to the right of the false vacuum for
fixed Vg. Hence, if tunneling is allowed, only odd numbers
should appear immediately to the left of the regular
instanton.

On the other hand, if tunneling is forbidden then as we
dial Vi the number of passes n near the false vacuum will
change by one at a time, though there will be much more
parameter space where the number is even.

NUMERICAL EVIDENCE
A. Method

In order to exhibit the features discussed in the previous
sections, we turn to numerical solutions of the Coleman-De
Luccia (CDL) instanton Eqgs. (3).

Following Ref. [46], we rescale the physical quantities
to yield dimensionless variables. The potential for ¢ can be
written

V(g) = ptv(x), (40)
where
x=¢/M. 41

Here, M is the scale over which the potential has nontrivial
features, and w* is a characteristic energy density. We
assume that u << M = Mp, where Mp, is the Planck scale.
The two mass scales have been extracted so that v is a
function that can be approximated as a polynomial with
coefficients of order one.

We employ the same quartic potential used in Ref. [46],
which takes the form

v(x) = f(x) = (1 + 2)f (xp), (42)
where
b X2
f(x):Z_T_E' (43)

The function f(x) has two negative local minima at xp and
xp, with f(xg) > f(x1), and a local maximum at x = 0.
The potential v(x) share these properties.

The adjustable parameter z allows us to tune the false
vacuum energy by shifting the entire potential with v(xg) o
z. Thus, z plays the role of the shift Vi in the previous
sections. In particular, the interesting limit Vi — O corre-
sponds to z — 0. (Note that f(xg) <0, so z>0 corre-
sponds to Vg > 0.)
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FIG. 4 (color online).
and z = {1,0, —1}.

A graph of the potential v(x) for b = 1,

The parameter b, which we take to be strictly positive,
controls both the width xt — xp and relative heights of the
vacua v(xg) — v(xy). Figures 4 and 5 show plots of v(x) of
b =1 and 0.3, respectively, for various values of z.

The radius and time can also be made dimensionless by
rescaling by appropriate powers of the mass scales w and
M:

2
mop
=2F 44
r==r (44)
2
mt
=T 45
ST M 43)
M
€= . (46)
VBMp,

We have also defined a dimensionless quantity € control-
ling the strength of gravity. For € < 1, gravity has a
negligible effect on the decay rate, but when € is of order
one, gravity can be important. For example, it can com-
pletely suppress the decay of flat space.

z

N

025 ¢

X
.—0.25 »

-0.5 ¢
-0.75 ¢

1}

FIG. 5 (color online).
0.3, and z = {1,0, —1}.

A graph of the potential v(x) for b =
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Let us rewrite the Euclidean CDL Egs. (3) and (5) in
terms of these dimensionless variables:

i=—er[x* + v(x)] 47

i+3 5= 0/(x), (48)
r

2
R |
7 er[2

v (49)
where an overdot (prime) denotes differentiation with re-
spect to s (x).

Using Mathematica, we numerically integrate these
equations with initial boundary conditions

70) =1, r(0) =0, (50)

x(0) =0, x(0) = x S
to yield functions r(s) and x(s). The initial position x,
along with z, b, and € form a set of four adjustable
parameters on which the solutions depend.

By numerically constructing many solutions, both sin-
gular and regular, for a variety of parameters, we will be
able to verify the assertions made in Secs. III and IV. For
generic choices of parameters, the numerical integration
produces compact singular solutions where the field x(s)
inevitably escapes to =00, as explained in Sec. III C. For
regular compact solutions, the unbounded antifriction as
r — 0 makes the numerics difficult to control near the far
pole. By tuning x,, however, regular solutions can be very
well approximated. The range of r over which x(s) can be
made to remain near xp or xg before rolling off to *oo is
limited only by the tuning of x, and calculational precision.

Noncompact solutions can likewise be approximated by
fine-tuning x,. In accordance with the arguments of
Sec. III, these are necessarily regular one-pass solutions
starting at the true vacuum and asymptoting to the false
vacuum. As with the approximately regular compact solu-
tions, the inevitable result of imperfect tuning of x; is that
x(s) eventually either over or undershoots xp, leading to a
singularity. However, with sufficient tuning, we can obtain
a large (in s) region where 7 = 1 and reach a large maxi-
mum 7 before the singularity.

B. The decay of nearly flat space

Our first goal is to confirm the result of Sec. III that the
decay rate is continuous as z — 0.

As was pointed out in Ref. [48], for certain potentials a
seemingly metastable Minkowski space (z = 0) can be
stabilized by gravitational effects. To exhibit this effect,
we tune € which controls the strength of gravitational
corrections. Keeping b = 1 fixed, we find a critical value
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of € = .35. Below this value, the z = 0 one-pass solution is
noncompact, implying the instanton corresponds to an
actual decay of Minkowski space. Above the critical value,
the regular one-pass solution is compact at z =0 and
therefore does not represent decay. A similar transition
occurs when varying b for fixed e. For fixed € = 0.6, for
example, the z = 0 regular one-pass solutions are compact
below b = (.74 and noncompact above this value.

We now turn to the question discussed in Sec. III: the
behavior of compact, regular one-pass z > 0 solutions in
the limit where z — 0. The asserted continuity of the decay
rate translates into different behavior, depending on
whether the false vacuuum at z = 0 is stable or not. We
chose € = 0.6, b = 0.3 to study the stable case and € =
0.6, b = 1 for the unstable case.

For each case, we probed the z — 0 limit by numerically
computing a family of regular single-pass solutions with
z ={1,0.1, 0.01, 0}. The stable case is shown in Fig. 6. As
expected, the family of compact solutions smoothly ap-
proaches the compact z = 0 solution. This is the behavior
anticipated in Sec. III.

In the unstable case, the compact z > 0 solutions dra-
matically grow in size as z — 0, as shown in Fig. 7. For
7= 0.1 we lack the numerical precision to follow the
solution all the way to the far pole at s > 30 because the
corresponding dS spheres are growing so large. For z =
0.1 at least the equator where 7 = 0 at s = 22 is still within
our computational range. We can clearly infer, though, that
as z — 0 the compact instantons are growing so as to reach
infinite size in the limit. The z = 0.01 and z = 0 solutions
are virtually indistinguishable. Again, this supports the
behavior anticipated in Sec. IIL.

In summary, our analytic argument that the decay rate is
continuous is borne out by the numerical evidence.

r[s]
107

2.5 5 7.5 10 125 15

FIG. 6 (color online). This graph shows a family of one-pass
solutions with » = 0.3, € = 0.6, and z = {1,0.1,0.01, 0}. As
z— 0, these compact solutions smoothly approach the z =0
solution, which for this value of (b, €) is also compact. The
decay of flat space is forbidden. This reproduces the results of
[46].
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r[s]
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FIG. 7 (color online). This graph shows a family of one-pass
solutions with b = 1, e = 0.6, and z = {1, 0.1, 0.01, 0}. As z —
0, these compact solutions smoothly approach a noncompact z =
0 solution. Flat space decays.

C. Plots of the solution space

Our next numerical goal is to verify the broader analysis
of the CDL solution space provided in Sec. I'V. For fixed
€ = 0.6, we considered the two important cases b = 1 (flat
space decays) and 0.3 (flat space is stable). For each case,
we computed the number of passes for 10° solutions with
z € [—1,9] and xy € [xg, xt]. The resolution is approxi-
mately 8x, ~ 1072 and 6z ~ 1072

The results are shown in Figs. 8 and 9.

The number of passes for each region is labeled. The
curves demarcating the boundaries between regions with
different numbers of passes are the locations of the regular
solutions.

To better access features near xg and xp, we also ran 10°
points close to each edge for each value of b, with expo-
nentially decreasing step size in x; as the edge was ap-
proached. Our resolution was then & log(x,) ~ 10~ and
8z ~ 1072, The magnified edges of Fig. 8 are shown in
Figs. 10 and 11. The magnified edges of Fig. 9 are shown in
Figs. 12 and 13.

D. Discussion

A number of important features predicted in Figs. 2 and
3 are reproduced numerically in Figs. 8§ and 9. As we
argued in Sec. III D, when crossing any regular compact
solution, the number of passes should jump by one. This
can be seen in Figs. 8 and 9. It can also be seen that curves
representing noncompact solutions separate singular re-
gions whose number of passes differ by as much as seven.

Another notable feature of the z — O limit in the un-
stable case (Fig. 2) was the merging of solutions as z — 0.
As explained in Sec. IV B, the regular one and two-pass
solutions on the right merge into each other at z = 0, as do
the zero and one-pass solutions on the left. This was the
most obvious feature distinguishing the unstable from the
stable diagram (Fig. 3).
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z
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0.5
¥

7

FIG. 8 (color online). The (xg, z) solution space for b = 1 and
€ = 0.6. This numerical plot reproduces the general features of
Fig. 2. Here, tunneling is allowed at z = 0. The numbers 0 to 7
denote the number of passes for solutions in a given region. The
curves at the boundaries between regions are regular solutions.
The vertical lines are the trivial solutions at xt and xg, and the
thick line is the single-pass instanton. The Hawking-Moss solu-
tion (a vertical line at x = 0) is hidden by the axis. Features near
x1 and xg are not well-resolved; see Figs. 10 and 11.

z
4 L
1
0 0
2t
2
1 L
3
S e B *o
‘ 7 i \6 ‘

FIG. 9 (color online). The (x(, z) solution space for b = 0.3
and € = 0.6. This numerical plot reproduces the general features
of Fig. 3. Tunneling is not allowed at z = 0. The numbers O to 7
denote the number of passes for solutions in a given region, and
the curves represent both regular solutions and the boundaries
between regions. The vertical lines are the trivial solutions at xy
and xg, and the thick line is the single-pass instanton. Features
near xp and xg are not well resolved; see Figs. 12 and 13.
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FIG. 10 (color online). A close-up of the lower-left corner
Fig. 8 (tunneling allowed at z = 0), showing the numerically
computed (xy, z) solution space with b = 1 and € = 0.6. The
thick one-pass curve is nearly vertical and is merging with the xg
solution. Although we expect that they meet at z = 0, our limited
precision makes them appear to merge at higher z.

This merger can be roughly made out in our numerical
plot for the unstable case, Fig. 8; and it is notably absent in
the stable plot, Fig. 9. This is best seen in the refined plots
for the left and right edge; note how the thick line passes

0.75}
05 0

3 0.25}

X0

145 1475 15 1525 155 1575 1.6 11625

-0.75+¢

FIG. 11 (color online). A close-up of the lower-right corner of
Fig. 8 (tunneling allowed at z = 0) showing the numerically
computed (xy, z) solution space with b =1 and € = 0.6. The
regular one (thick line) and two-pass solutions merge as z
decreases. Because of our limited precision, they appear to
meet at z = 0.3 rather than at z = 0 as expected.

PHYSICAL REVIEW D 74, 046008 (2006)

-0.75
[ 7

FIG. 12 (color online). A close-up of the lower-left corner of
Fig. 9 (tunneling forbidden at z = 0) showing the numerically
computed (x, z) solution space with b = 0.3 and € = 0.6. One
can see that the one-pass regular solution passes through z = 0
without merging.

15
6

through z = 0 in Figs. 12 and 13). This supports our argu-
ments in Sec. IV B.

However, neither Fig. 8, nor its refinements, Figs. 10 or
11, are able to show that the merger takes place exactly at
z = 0. The curves become so close together that even at

0.4

0210

X0

1.13 1.135 1.14 1.145 1.15 T35 1.16

\5/\'0'8 I

7 6 {
FIG. 13 (color online). A close-up of the lower-right corner of
Fig. 9 (tunneling forbidden at z = 0) showing the numerically
computed (xy, z) solution space with b = 0.3 and e = 0.6.

Again, one can see that the one-pass regular solution passes
through z = 0 without merging.
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z= 0.1, a resolution of 8xy ~ 107" is insufficient to
detect the region between them.

The plots also confirm the estimate in Sec. IV C for the
number of oscillations for solutions near x, = 0: The
regular solution with the largest number of passes at a
given z > —1 is given by the largest integer n satisfying
Eq. (30), which in dimensionless variables is

[v"(0)]

nin+3)< Zo(0)

(52)

For example, in the b = 1 case, at z = 1 the right-hand
side of Eq. (52) is 18.3 which yields n = 3. From Fig. §, we
can see the curve of regular three-pass solutions crosses the
origin just above z = 1. Below it, in particular, at z = 1
near x = 0, are singular three-pass solutions.

Confirming a prediction from Sec. IV D, the regular
solution curves begin to pile up when z — —1, in both
Figs. 8 and 9. Ultimately, the resolution is insufficient to
detect every transition between constant-pass regions. As
z— —1 the number of oscillations increases rapidly, the
amplitude decreases, and the size of the solutions grow
very large, s > 1. For example, when b = 1, z = 0.99,

PHYSICAL REVIEW D 74, 046008 (2006)

and |x, — xt| = 1073, x(s) oscillates for so long around
the Hawking-Moss solution, that the numerical precision is
insufficient to follow the solution back to r = 0, and
instead errors build up and lead to a singularity at s ~ 130.

The plots also connect with the discussion in Sec. IV. For
7 < 0, the regular solutions appear to merge in pairs before
reaching xg or xt. However, we can resolve the two curves,
and, when we zoom in on the edges by plotting Figs. 10 and
12 logarithmically in xy — xg or in Figs. 11 and 13 loga-
rithmically in x — x,, we can see the curves reach xg or xp
at separate points.
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