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We derive the equation for the quasinormal modes corresponding to the scalar excitation of a black hole
moving away in the fifth dimension. This geometry is the AdS/CFT dual of a boost-invariant expanding
perfect fluid in N � 4 SUSY Yang-Mills theory at large proper-time. On the gauge-theory side, the
dominant solution of the equation describes the decay back to equilibrium of a scalar excitation of the
perfect fluid. Its characteristic proper-time can be interpreted as a thermalization time of the perfect fluid,
which is a universal (and numerically small) constant in units of the unique scale of the problem. This may
provide a new insight on the short thermalization-time puzzle encountered in heavy-ion collision
phenomenology. A nontrivial scaling behavior in proper-time is obtained which can be interpreted in
terms of a slowly varying adiabatic approximation.
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I. THERMALIZATION RESPONSE-TIME AND
BLACK-HOLE QUASINORMAL MODES

In a recent paper [1], we have shown that the AdS/CFT
dual of an expanding relativistic thermal and perfect fluid
in N � 4 SUSY Yang-Mills (SYM) theory can be iden-
tified as a black hole (BH) moving away in the fifth
dimension [2]. In the above paper, a holographic renor-
malization procedure [3] using Fefferman-Graham coordi-
nates [4] allowed to construct the gravity duals of a
continuous 1-parametric set of 4-d stress-energy tensors
of the gauge theory containing among others the duals of
the free streaming and perfect-fluid cases. Interestingly, the
corresponding family of geometries was shown to possess
singularities except only for the latter case, which happens
to be a BH moving away in the fifth dimension. This
correspondence was shown to be valid at asymptotic
proper-times, independently of initial conditions provided
boost-invariance is preserved. This gives an AdS/CFT
physical criterion for the emergence of perfect-fluid be-
havior at large proper times.

Starting from this correspondence, it is interesting to
study the stability properties of this BH system, since it can
bring a physical insight on the typical relaxation proper-
times of the relativistic thermal and perfect fluid, which
does not appear reachable from a direct strong coupling
computation in the N � 4 SYM field theory. As was done
in the static BH case [5] in order to calculate the decay time
of an excitation of the system, one computes the quasinor-
mal modes (QNM) of the Einstein equations linearized
around the background geometry. In particular the calcu-
lation of the QNM’s corresponding to a scalar excitation
canonically coupled to the metric in the gravitational dual

configuration [5–8] may give an evaluation of the thermal-
ization time of the dual gauge field-theoretic strongly-
coupled system after a small deviation from equilibrium.

In the present paper, our aim is to extend the analysis
from the static case to the black hole moving off in the fifth
dimension, deriving the equation and making the evalu-
ation of the corresponding QNM’s in order to estimate the
thermalization decay proper-time of the relativistically
expanding perfect fluid in the N � 4 SYM field theory.

The plan of our study is the following. In Sec. II, we
shall (re)derive the QNM equation for the static BH using
now the Fefferman-Graham coordinates. In Sec. III we
derive the QNM equation for the gravitational dual of the
expanding perfect fluid and give its solutions both in the
minimally coupled scalar case and for transverse tensor
perturbations. In Sec. IV, we discuss the features of our
results and their possible physical relevance for the ther-
malization puzzle of the QCD quark-gluon plasma in
heavy-ion collisions. We conclude and give an outlook.

II. QUASINORMAL MODES OF A STATIC BLACK
HOLE IN FEFFERMAN-GRAHAM COORDINATES

Quasinormal modes (QNM’s) formally define the re-
sponse of a black-hole state to small perturbations, for
instance due to a scalar-field excitation canonically
coupled to the metric, with incoming (absorbing) boundary
condition at the BH horizon. The main observation is that
the resulting frequencies become complex and hence the
perturbations are expected to die out exponentially [9].

Quasinormal frequencies have been calculated for nu-
merous examples of static black holes in various numbers
of dimensions, in particular, for the static planar AdS black
hole which is the dual geometry to N � 4 SYM theory at
nonzero temperature. In this section we shall rederive the
known results using the Fefferman-Graham coordinates
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which are suitable for the extension to the relevant non-
static case. As already mentioned [1], the expanding ge-
ometry has a simple form when directly written in these
coordinates.

In Fefferman-Graham coordinates the metric of a 5-d
planar BH has the form:

 ds2 �
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where �t; ~x� are the boundary coordinates, z is the fifth one,
and z0 is the location of the horizon in the bulk.

Quasinormal modes for a scalar perturbation of a black
hole are obtained by solving the wave equation for a
massless scalar field
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where gij is the metric tensor and g its determinant in the
background geometry (1), assuming purely incoming
boundary conditions at the horizon z � z0 and Dirichlet
conditions at the boundary (see e.g. [8]).

Inserting Eq. (1) into (2), the equation for a scalar field
(with zero transverse momentum) has then the form:
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A separation of variables

 ��t; z� � ei!t��z� (4)

leads to the ordinary differential equation
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Note that, by a change of variable

 z=z0 � tanh1=4�4z��; (6)

the equation takes the canonical form
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from which one can determine the quasinormal frequencies
!.

In fact, by a further change of variable

 ~z �
�1� �z=z0�

2�2

1� �z=z0�
4 � 1� 2

tanh1=2�4z��
1� tanh�4z��

; (8)

one shows that this equation can be put in the form of the
Heun equation
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which was obtained [6] starting with the conventional BH
metric. The QNM solution of (9) dominant at large-time
(i.e. with smallest imaginary part) is found to be
!static=�T � 3:1194� 2:74667i [6].

III. QUASINORMAL MODES FOR THE BOOST-
INVARIANT BLACK-HOLE GEOMETRY

In this section we derive the equation for a scalar field in
the background corresponding to the asymptotic expanding
perfect-fluid geometry. The geometry has the form [1,10]:

 ds2�
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where xi�1;2 are the transverse coordinates, while the
proper-time � and rapidity y are related to the longitudinal
coordinates through t � � coshy and x3 � � sinhy. v is a
scaling variable

 v �
z

�1=3
: (11)

To this background metric let us couple a scalar field
which depends only on the proper-time �, and on z.
Equation (2) takes the form:
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Since the metric (10) has a simple dependence on the
variable v let us rewrite the above equation in terms of �
and v. The matrix of differentials is

 @z ! ���1=3�@v; @� ! @� �
1

3
���4=3�@v: (13)

Since the perfect-fluid geometry is valid in our problem
only at large proper-time, in the scaling limit v � const
and �! 1 we may consistently neglect the nondiagonal
contribution in (13). Thus, the QNM calculation preserves
the specific scaling property in �=z3 � 1=v3 of the perfect-
fluid solution of the AdS/CFT correspondence. The result-
ing equation takes the form:
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which has some similarity with the one for the static black
hole, once substituting variables �t; z� ! ��; v�, see (3).
The noticeable difference is the additional ��2=3 factor,
which leads to a nontrivial scaling in the (proper)time
dependence.
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Performing a separation of variables ���; v� �
f�����v� we get two decoupled equations. An important
point is however to notice that the equation for the
�-dependence is no longer a plane wave as in (4) but is
determined by the equation

 @2
�f��� � �!

2���2=3�f���; (15)

whose solutions are linear combinations of the Bessel
functions
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In the large � behavior, the region of validity of the perfect-
fluid geometry being asymptotic, the relevant behavior of
the Bessel functions is

 f��� � �1=6e�3=2�i!�2=3
; (17)

to be compared with the plane waves (4) of the static case.
We will comment on the physical interpretation of (17) in
the next section.

The resulting �-independent factorized equation reads
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which, strikingly enough, is formally the same ordinary
differential equation for the �-independent part as Eq. (5)
for the static black hole but with v playing the role of z.
Hence we get the same profile functions � of the quasi-
normal modes and their eigenfrequencies !. However the
variables in the perfect-fluid case v and � are different from
the z and t variables relevant for the static black hole.
Indeed, restoring the z and � dependence of the evolving
solution ��v�f��� gives rise to a rather intricate spacetime
dependence.

It is also interesting to derive the quasinormal modes for
perturbations of the metric which on the gauge-theory side
correspond to perturbations of the energy-momentum ten-
sor. Of particular interest are perturbations of the compo-
nent Tx1x2

. Physically their exponential decay can be
interpreted as transverse isotropization of the asymptotic
hydrodynamic expansion of the plasma. On the gravity side
they are interesting since, as shown in [11] for general
static cases, their equation of motion is identical to the
scalar one. In particular let us consider the metric compo-
nent gx1x2

and form the quantity

 gx1
x2
� z2e�c�v;z�gx1x2

; ec�v;z� � 1� v4 (19)

where c�v; z� is the solution [1] found for the transverse
component of the boost-invariant perfect-fluid metric (see
Eq. (10)).

We have shown that in the case of the moving black hole,
in the large � limit, the quantity gx1

x2
also satisfies the scalar

equation of motion.
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where the proper-time dependence has been separated out
in the same manner as for the scalar. Consequently this
mode of the metric has the same set of quasinormal
frequencies.

IV. CONCLUSION, DISCUSSION AND OUTLOOK

Let us summarize our results. We consider the problem
of computing the response proper-time of an expanding
relativistic and boost-invariant N � 4 SYM perfect fluid,
after a scalar excitation off thermodynamic equilibrium. In
the dual gravitational geometry, which corresponds to a
black-hole moving away in the fifth dimension, the char-
acteristic proper-time is related to the frequency !c with
the smallest imaginary part among quasinormal modes.

We derived the corresponding equations in the scalar
and the transverse tensor channel. The resulting equations
factorize into two decoupled equations defining, respec-
tively, the explicit proper-time and scaling variable depen-
dence of the modes. As in the static case, we find that the
quasinormal frequencies have imaginary parts which cor-
respond to exponential decay of perturbations towards the
(expanding) equilibrium state. While formally the equation
defining the frequencies has the same functional form as in
the static case, they correspond to quite different variables,
namely, the proper time � and the scaling variable v �
z=�1=3.

The profile of the solution is given as a function of the
scaling variable v, ��v�, which obeys the same equations
as ��z� in the static case. By contrast with the plane waves
of the static case however, the frequencies are related to
Bessel functions

���
�
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3
2!�

2=3� ! �1=6e�3=2�i!�2=3
,

hence leading to a nontrivial scaling in proper-time.
These results can be interpreted as follows. The tem-

perature for the expanding perfect fluid is known to behave
like T � ��1=3 [12], which is consistent through the AdS/
CFT correspondence with the evolving black-hole solution
of [1]. In order to understand the nontrivial scaling in
proper time (17), we note that the static quasinormal
freqencies are proportional to the temperature i.e.
!static�T� � � 
 T, where � is a constant. In the expanding
case we can consider an adiabatic approximation assuming
that locally the temperature is fixed. Hence a plane-wave
dependence

 ei!static�T�
� � ei�T� � ei��
2=3

(21)

will give the scaling in �2=3 seen in the overall solution.
This adiabatic approximation deserves further study.

A similar discussion is valid for transverse perturbations
of the metric. It would be interesting to extend the analysis
to generic metric perturbations.
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On a theoretical ground, a comment is in order about the
well-known calculation of the viscosity to entropy ratio
[13] in the static BH configuration. Quasinormal modes
and viscosity calculation correspond both to poles of spe-
cific retarded Green functions for a scalar (for QNM’s) and
metric (for viscosity) deformation using Fourier transforms
in the time variable t. This is the case for the static case,
due to the plane-wave solution (4).

The difference between the scalar QNM’s and viscosity
(shear channel) is that the corresponding poles do not go to
zero at small transverse momentum contrary to the viscos-
ity case [8]. This is expected, since viscosity is a hydro-
dynamic excitation surviving at large-time scales, while
normal QNM’s lead to an exponential fall-off, at least
within an AdS space. This is the origin of the finite ‘‘ther-
malization response-time’’ obtained for the scalar
equation.

Now turning to the expanding geometry in proper-time,
viscosity remains an interesting issue for future work, since
it is not clear whether one can use the method of Fourier-
transformed retarded Green functions to evaluate it, since
the Fourier transforms seem not to be directly relevant for
the proper-time dependence. An adiabatic approximation
could help with this problem. We postpone this analysis for
future work.

In a phenomenological perspective, it is instructive to
make a parallel between our calculation in the framework
of the N � 4 SYM fluid, and the problems discussed
about the thermalization proper-time of a QCD plasma
formed in a heavy-ion collision at high energy (see [14]
and references therein). Indeed, there are some indication
that this typical proper-time is rather short, which is diffi-
cult to explain in terms of initial conditions dominated by a
weak-coupling state, and thus with high viscosity and a-
priori long thermalization time.

In [1], we have shown that the gauge/gravity correspon-
dence was selecting the perfect-fluid solution at large
proper-times. Since it seems that the model of a QCD

perfect fluid could be favored by the phenomenological
analyses, it is perhaps not completely unrealistic to look for
some physical lessons of our present results. The main
point is the rather strong stability of the asymptotic solu-
tion, since the response-time to a scalar excitation is short
in terms of proper time. Combining Eq. (17) with the
numerical value of the dominant QNM leads to a proper-
time damping of the form

 exp
�
�

3

2

 2:7466 
 �2=3

�
(22)

in the units where the horizon is fixed at z0 � ��1=3.
If these estimates would be also approximately valid for

QCD, at least in the hypothesis of a deconfined phase for
which the supersymmetric degrees of freedom would not
play a major rôle, this can lead to a new point-of-view on
the thermalization problem. Indeed, the stable, strongly
interacting state represented by the perfect gauge fluid,
could act as an ‘‘attractor’’ during the proper-time evolu-
tion of a collision with QCD plasma formation, such as for
heavy-ion collisions. This would give a typical nonpertur-
bative mechanism, a priori complementary to those related
to the initial perturbative conditions. It would be interest-
ing to see how one could merge the two ends of the
evolution, the perturbative with the nonperturbative ones.
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