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We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random
lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops
(similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to
N � 1, as expected from their interpretation in the 1=N expansion as super Yang-Mills.
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I. INTRODUCTION

Strings were introduced originally for hadrons and iden-
tified as bound states of gluons and quarks. Unfortunately,
a suitable hadronic string theory serving that purpose has
not been constructed. This led to the reinterpretation of the
known strings as fundamental strings describing gluons
and quarks, leptons, gravitons, etc. The fundamental
(super)strings are critically (10)26 dimensional, which
contradicts expectations from QCD, since confinement
has critical dimension 4. There are methods called ‘‘com-
pactification’’ to eliminate the extra dimensions, but this
leads to the landscape problem of string theory. (Of course,
there are two calculable string theories in 4D: strings with
N � 2 worldsheet supersymmetry [1] and twistor super-
strings [2]. But the N � 2 superstring has vanishing S
matrices [3], while the twistor string is not a real string
and cannot describe physics off shell.)

Replacing the worldsheet by the random lattice is an-
other approach to string quantization, which directly ex-
presses the string as a bound state of underlying particles
[4], giving a more precise correlation between the second
quantization of field theories and the first quantization of
string theory. The lattice is irregular, corresponding to the
curvature of the worldsheet, and is identified with a
Feynman diagram; the functional integration over world-
sheet metrics is the sum over diagrams [5]. Presently, only
the bosonic lattice string is really understood in this for-
malism. The usual 1

2 �@X�
2 term becomes 1

2 �xi � xj�
2,

which produces a propagator e�x
2=2 between the two ver-

tices at i and j. The 1=N expansion associates the faces of
the worldsheet polyhedra with the U�N� indices of the
scalar field [6]. A modification of the random lattice to
incorporate standard propagators describes an asymptoti-
cally free theory, ‘‘wrong-sign’’ �4 in 4D [7].

In the present paper, we consider random lattices for
superstring theory. We will find that general considerations
restrict the choice of string formulations and lattice quan-
tizations; these lattices also introduce new kinds of
Feynman rules not yet derived from second quantization

of particle theory. We begin with a brief review of the
bosonic string on the random lattice in the next section. We
then discuss the issues involved in putting fermions on the
lattice in a way appropriate to describe superstrings. In the
following section we describe the formalism best suited to
these considerations—the type IIB superstring in the infi-
nite ghost pyramid formulation [8], which was introduced
for covariant quantization of the superstring. Several ex-
amples and general results for both tree and loop diagrams
are calculated. The next section describes contributions
corresponding to the string measure. In the conclusions
we discuss future directions for this lattice superstring. In
the appendix we analyze the lattice rules for the Green-
Schwarz action of the superstring without gauge fixing.

II. BOSONIC LATTICE STRING REVIEW

To find the action of the bosonic string on a lattice, we
notice that a lattice requires a scale, while conformal
invariance includes scale invariance. So the conformal
invariance of the worldsheet must be broken. The simplest
scale-variant and coordinate-invariant property of the
worldsheet is its area, so an area term with coefficient
(cosmological constant) � is added into the string action.
Furthermore, a term containing the string coupling con-
stant should be included: In string theory, the power of the
coupling constant is counted by the integral of the world-
sheet curvature R. So totally, the worldsheet action is
 

S �
I d2�

2�
�������
�g
p

�
1

�0
gmn

1

2
�@mX � @nX� ��� �ln��

1

2
R
�
:

(1)

On the random lattice, this action can be written as
 

S1 �
1

�0
X
hiji

1

2
�xi � xj�

2 ��
X
i

1� ln�
�X

i

1�
X
hiji

�
X
J

1
�
;

(2)

where j are vertices, hiji the links (edges), and J the
plaquets (faces, planar loops) of the lattice.

The underlying field theory can be found by identifying
the worldsheet lattice with a position-space Feynman dia-
gram. The vertices and links of the lattice correspond to
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vertices and propagators of the Feynman diagram, respec-
tively. Also, we associate the 1=N expansion to the faces of
the worldsheet polyhedra. The area term (counting the
number of vertices) on the random lattice gives the cou-
pling constant factor for each vertex in the Feynman dia-
gram, and the worldsheet curvature term (classifying the
topology) gives the string coupling 1=N of the topological
expansion. Thus the action of the n-point interaction scalar
field is

 S2 � N tr
Z dDx

�2��0�D=2

�
1

2
�e��

0�=2��G
1

n
�n
�

(3)

with

 G � e��;
1

N
� �: (4)

The Gaussian propagator e��
0�=2 leads to Gaussian

behavior of fixed-angle scattering, conflicting with the
power-law behavior in hadronic physics. To find ordinary
Feynman diagrams, with 1=p2 propagators instead of the
Gaussians in the usual strings, we use the Schwinger
parametrization of the propagator

 

1
1
2p

2 �
Z 1

0
d�e��p

2=2: (5)

Then the Feynman diagram of a scalar field with nonder-
ivative interactions can be written as

 

Z
dx0idpijd�ije

�
P
hiji

��ijp2
ij=2�i�xi�xj��pij�

; (6)

where i, j label vertices including those connected to
external lines, and dx0i integrations are over all vertices
except them.

We now look for continuum actions that will reproduce
the above conventional Feynman diagrams when the
worldsheet is replaced with a random lattice. The way to
construct a continuum action from a random lattice action
is to consider a regular square (‘‘flat’’ worldsheet) lattice,
and covariantize with respect to the worldsheet metric. In
the (worldsheet) continuum limit of (6), � must become a
symmetric worldsheet tensor. Since on a regular square
lattice there are two propagators per vertex, the continuum
� then has only two components at any point on the
worldsheet and must be a traceless tensor. So by simply
setting ��� � 0, the continuum action is then
 

S �
Z d2�

2�
�������
�g
p

�
iP	 � e

m

@mX�

1

2
�		P
 � P
 ��

� �ln��
1

2
R
�
; (7)

where the ‘‘zweibein’’ is defined by gmn � �e��me
�
n�. It

implies, on the lattice, that the propagators (links) are
(worldsheet) lightlike and the model defined by this theory
has only 4-point vertices with 4 lightlike propagators. Thus
the scalar field action is

 S2 � N tr
Z dDx

�2��0�D=2

�
�

1

4
����G

1

4
�4

�
: (8)

This action gives an asymptotically free theory, wrong-sign
�4 theory in 4D.

III. FERMIONS

There are two related problems with putting fermions on
a random lattice: (1) fermion doubling, for worldsheet
spinors, which is a problem even for regular lattices (as
in lattice QCD) [9], and (2) the absence of an unambiguous
way to define chiral (left- and right-propagating) fields on a
2D random lattice, since ‘‘left’’ and ‘‘right’’ have no clear
meanings.

The first problem exists only for worldsheet supersym-
metry, but can be resolved for N � 2 supersymmetry by
‘‘twisting’’: redefining (local) Lorentz weights by adding
to them (local) U�1� weights, so the worldsheet spinors
become tensors. (Such an approach for regular lattices is
called ‘‘Kähler-Dirac fermions’’ [10], where the relevant
symmetries are global.)

The second problem can be resolved by requiring world-
sheet parity invariance. Then all 2D Levi-Civita tensors
can be eliminated, in favor of making any ‘‘pseudotensors’’
into tensors by absorbing the Levi-Civita tensors into them:
For example, a pseudoscalar becomes a second-rank anti-
symmetric tensor (2-form). This restriction on superstrings
limits us to type IIB for spacetime supersymmetric formu-
lations, and N � �2; 2� for worldsheet supersymmetric
formulations. (For simplicity, we restrict ourselves to
closed strings. Open strings require independent constitu-
ent fields for the boundary and bulk of the worldsheet: e.g.,
in QCD, quarks live on the boundary and gluons in the
bulk.)

Let us first consider free chiral actions. After twisting (if
necessary), each such term will be of the form

 A��...�@�B�...�;

where A has one more� than B has�’s, accompanied by a
similar term related by parity (� $ �). (There might also
be overall signs in the parity transformation, but these can
be eliminated by field redefinition.) Each parity doublet
then can be identified easily as a totally symmetric, trace-
less tensor, with an action

 Amn...p@mBn...p:

(The symmetric and antisymmetric combinations of a �
with a � would give 2D metric and Levi-Civita tensor,
respectively.)
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The only exception is the scalar, paired with a pseudo-
scalar (no indices on B). In that case the sum of left and
right B’s is the scalar, while the difference becomes a 2-
form, with action

 Am�@mB� @nBmn�:

This is actually the most interesting case, since on a lattice
only a scalar is located at a vertex. For random lattice
quantization, this means that only a scalar can be a coor-
dinate of the constituent field. For example, a vector is
identified with a ‘‘link’’ (propagator), and thus is identified
as a momentum, as for the bosonic string, where we have a
term Pm@mX in first-order formulation. But in this case, we
also have a 2-form, which is identified with a loop.

The closest analog for the bosonic string is loop mo-
mentum: In a Feynman diagram, if we Fourier transform to
introduce momenta in addition to coordinates, varying
(integrating over) the coordinates (to eliminate them) im-
poses momentum conservation at the vertices; solving
these conditions replaces the original momenta, defined
on each propagator, with loop momenta, defined on each
loop. (This is related to the identity P� V � L� 1, where
the�1 represents the remaining unsolved total momentum
conservation constraint.) The corresponding statement in
the language of the continuum worldsheet is T duality [11]:
varying X to give @mPm � 0 to get Pm � @nX

mn, where
the 2-form Xmn is the continuum version of loop
momentum.

However, there is some subtlety in the T-duality trans-
formation with respect to zero modes: In the random lattice
case, this arises when one replaces momenta on external
lines with loop momenta, where there is no corresponding
loop. This can be done in a peculiar way by solving also the
total momentum conservation constraint by writing the
external momenta as differences between ‘‘external-line
loop momenta,’’ so that the sum of the differences adds to
zero: for n external lines, pi � ki � ki�1, kn�1 � k1. This
introduces a translational invariance in loop momenta that
is T dual to that for the usual spacetime coordinates. In the
continuum worldsheet, these new zero modes are identified
with the winding modes of the string; but for dimensions
that are not compactified there are no winding modes, so
the interpretation is unclear.

A similar procedure could be applied to the fermion
action, T dualizing the pseudoscalar by using its equation
of motion to replace it by a second scalar of which the
vector is the gradient. This might be a viable alternative
that we will postpone until a way can be found to deal with
the extra zero modes.

Since free actions can be obtained only after gauge
fixing, another alternative would be to avoid gauge fixing
and its consequent ambiguities, since that is one of the
main advantages of lattice approaches. For example, for
the bosonic string the random lattice replaces integration
over the worldsheet metric with summation over Feynman

diagrams, in what is apparently a covariant way (or at least
as close as one can get with discretization). For N � 2
worldsheet supersymmetry, the U�1� symmetry could be
replaced with a compact version, as for regular lattices.
Finally, local supersymmetry does not need to be gauge
fixed, because it squares to ‘‘p2,’’ which is not a true
constraint: The usual particle propagator goes as 1=p2,
not ��p2�, so integration over the Lagrange multipliers
for supersymmetry should simply produce propagator nu-
merators  � p, or at worst extra factors of p2 that can be
canceled by redefinition of the moduli measure. Unfor-
tunately, the N � �2; 2� string has both a left and a right
U�1� symmetry, both gauged by the same worldsheet vec-
tor (so that, as usual, Lagrange multipliers are pure gauge,
up to moduli), and it is difficult to see how to implement a
gauge symmetry whose parameter is a 2-form, since it
would transform a vertex variable into a loop variable
(unless some type of T-duality transformation were imple-
mented). Also, there is a combination of N � �2; 2� super-
symmetries that becomes a scalar after twisting and is
nilpotent, thus leading to vanishing amplitudes without
gauge fixing. Such problems are not encountered for the
Type IIB superstring; we will consider the Green-Schwarz
formulation, without gauge fixing for � symmetry, in the
appendix.

There is a more important reason why gauge fixing is
needed: If we consider the path integral for any amplitude
calculation in any continuum-worldsheet formulation of
any string theory, at all but a finite number of points on
the worldsheet (related to the number of string loops and
external lines) only the free terms in the action are used.
(Nonfree terms are vertex insertions for external lines,
picture-changing operators, contributions from supermo-
duli, worldsheet instantons, etc.) If we then discretize this
same calculation, we see that there are in general no vertex
factors nor propagator numerators in the corresponding
Feynman diagram for an arbitrarily large number of verti-
ces and propagators, with the exception of the relatively
small number of vertices associated with external lines or
string-loop insertions. This suggests that, at least for for-
mulations of string theories that can be quantized on a
random lattice, all such factors should be associated with
either: (1) vertex operators for external lines, or (2) string-
loop variables coming from particle-loop variables not
associated with ‘‘faces’’ of the worldsheet ‘‘polyhedron’’
after applying the 1=N expansion (as seen from the identity
L � F� 2H � 1, where H is the number of ‘‘handles,’’ or
string loops). (However, the action for even the bosonic
string with ordinary propagators for its constituents is not
quadratic; here we consider conventional superstrings,
from which we assume it is possible to generalize to
QCD-like strings with minor modifications.) Thus, the
Feynman rules for the constituent particles should involve
only a free, quadratic, first-quantized action, and no vertex
factors; only vertex operators for external lines should be
nontrivial.
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Of course, if the conformal gauge is not fixed, coupling
to the worldsheet metric makes the action nonquadratic,
but the metric is encoded into the geometry of the random
lattice. In particular, conformal weights are seen in the
string action only in terms with the Lorentz connection,
which is the derivative of the metric. (For bosonized fields,
the conformal weight appears only in R� terms.) In con-
formal gauges such contributions are confined to special
singular points, such as ‘‘interaction points’’ or places
where external lines are attached. We can thus treat such
contributions in the same way as those considered above.
As a result, we treat all fermions as sets of (worldsheet)
vector� scalar� 2-form. This is natural in that it allows
the maximum number of coordinates for the constituent
fields, which is half the number expected from the contin-
uum (unless we were to try converting the 2-forms to
scalars by T duality, as discussed above). Thus, the con-
stituents of the type IIB superstring have the superspace
coordinates of only N � 1 supersymmetry. This is ex-
pected from the 1=N expansion, since a U�N� gauge group
is associated with super Yang-Mills, which does not allow
N � 2. (It also agrees with the AdS/CFT correspondence
[12].)

IV. TYPE IIB SUPERSTRING

The action for the superstring in the infinite ghost pyra-
mid formalism, which is a good starting point for covariant
quantization, can be written as

 S �
Z d2�

2�

�
1

2
�@X � �@X� ��1;A

�@�1;A ��2;A@�2;A
�
;

(9)

where we use a general spinor �A (�A) to indicate the
usual fermionic coordinates (their conjugate momenta) of
superspace, or the infinite pyramid of ghosts (their con-
jugates) in the covariant quantization of the superstring.

To put this action on the lattice, we have to introduce a
worldsheet scalar � and pseudoscalar ~�

 �1;A �
1���
2
p ��A � ~�A�; (10)

 �2;A �
1���
2
p ��A � ~�A�: (11)

Replacing �1 and �2 by � and ~�,

 S �
Z d2�

2�

�
1

2
�@mX � @mX� ��m

A@m�A

��m
A@

n	mn ~�A
�
: (12)

Thus we can replace the worldsheet with a random lattice,

 S �
X
hiji

�
1

2
�xi � xj� � �xi � xj� � �ij;A�
Ai � 


A
j �

�

�
X
hIJi

�IJ;A�~

A
I � ~
AJ �; (13)

where i; j; � � � indicate the vertices, I; J; � � � the (planar)
loops, hiji the links between adjacent vertices, and hIJi the
perpendicular (dual) links between adjacent loops: As
shown in Fig. 1, �IJ � �ij. Then 
i is located at the vertex
i and ~
I at the loop I.

The Feynman rules derived in this way associate ~
 with
only planar loops (faces of the polyhedron), as defined by
the 1=N expansion. However, for field theories of N � N
matrices, such as (super) Yang-Mills, the (global) group
theory is in no way associated with the (super)coordinates.
Thus, ~
 should appear in the same way for any loop of a
Feynman diagram, whether it be planar or nonplanar. This
does not contradict our original assumptions, since the free
action did not determine string-loop factors. The random
lattice approach thus predicts ~
’s as string-loop factors.

For tree diagrams ~
 will not be involved. So for the
n-point tree, the fermionic part of the path integral is

 A �
Z �Y

��

d�A;��

��Y
a

d
Aa

�

�

�Y
i

d
Ai ��xi; 
i�
�
e�A;���


A
��
A� �; (14)

where �, � are general vertices on lattice, a, i internal and
external vertices, respectively.

The simplest example is the 3-point diagram shown in
Fig. 2(a), after integrating out �a1, �a2, and �a3:

i

I

J

j

FIG. 1. Definition of �IJ � �ij with i, j indicating adjacent
vertices and I, J adjacent loops on the lattice.

a

2 3

1

a b

1 4

2 3

)b()a(

FIG. 2. Trees on the lattice. (a) 3-point. (b) 4-point.
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��Y
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A
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��Y
A

�
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A
3 �

�
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Z �Y

A

�
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A
2 �

��Y
A

�
A1 � 

A
3 �

�� Y
i�1;2;3

d
Ai ��xi; 
i�
�
�
Z
d
A��x1; 
���x2; 
���x3; 
�; (15)

where
Q
A is the antisymmetric product of all components.

Another simple example is the 4-point diagram as shown in Fig. 2(b). Integrating out �’s on the links,

 

A �
Z
d
Aad
Ab

� Y
i�1;2;3;4

d
Ai ��xi; 
i�
��Y

A

�
Aa � 
Ab �
��Y

A

�
Aa � 
A1 �
��Y

A

�
Aa � 
A2 �
��Y

A

�
Ab � 

A
3 �

��Y
A

�
Ab � 

A
4 �

�

�
Z
d
A��x1; 
���x2; 
���x3; 
���x4; 
�: (16)

Generalized to any n-point tree graph, integration of�’s on links just gives � functions between the two 
’s at either end
of that link. Then (14) is

 A �
Z �Y

a

d
Aa

��Y
i

d
Ai ��xi; 
i�
�Y
�;�

�
A� � 
A�� �
Z
d

Y
i

��xi; 
�: (17)

Here a, b and i, j are the internal and external points,
respectively, while �, � are any internal or external points
which are linked to each other.

For loops, the path integral of the pseudoscalar ~
 must
be done. For a one-loop n-point function as shown in
Fig. 3, with the spinor index A omitted,

 A �
Z
d~


Y
i

�d�i;i�1d
i��xi; 
i�e�i;i�1�
i�
i�1�e�i;i�1
~
�

�
Z
d~


Y
n

�d
i��xi; 
i��
i � 
i�1 � ~
���xi; 
i��:

(18)

The integration of ~
 just replaces ~
 by ��
n � 
1� every-
where. So (18) is
 

A �
Z Yn�1

i�1

fd
i��xi; 
i���
i � 
i�1� � �
n � 
1��g

/
Z
d


Yn
i�1

��xi; 
�: (19)

For the general case of n loops, we find a result similar to
(19) with all fermion variables contracted to one. This is
not a surprising result if we notice the relation

 P� V � L� 1 or P� L � V � 1; (20)

whereP, V, L are the numbers of propagators, vertices, and
loops. Integration over any �ij on a link will give a �
function of 
i � 
j � ~
I � ~
J. For a diagram with L loops,
integration over ~
’s will eliminate L � functions. Thus we
are left with P� L � V � 1 � functions and V 
’s to be
integrated, which gives (19).

This result has an obvious interpretation in terms of the
zero modes of the Feynman diagram: Remember for the
worldsheet that any scalar (such as each component of 
 or
~
) has 1 zero mode, a constant, for any string diagram,
while any (2-)vector (such as �m) has 2H zero modes (for
H string loops), corresponding to a vector directed around
any loop in 2 ways (e.g., consider the torus). (The vector
Pm does not have true zero modes because of the P2 term,
which results in the usual loop momentum integrals. By
‘‘zero modes’’ we here mean modes in the ‘‘de Rham
cohomology,’’ closed forms modulo exact forms, i.e., har-
monic forms, when those modes are the solutions to the
equations of motion.) A similar result holds for any
Feynman diagram: Instead of using a random lattice ap-
proach, we use a first-quantization approach, where any
Feynman diagram is treated as a one-dimensional space
with a strange topology, and the usual path-integral quan-
tization can be applied [13]. (This is the same sense in
which Betti numbers are defined in graph theory. The
variables of the random lattice, i.e., Feynman diagrams,
return after solving equations of motion.) Scalars and
vectors of the worldsheet and random lattice have natural
generalizations to this 1D space, but 2-forms do not. Then

I

FIG. 3. One-loop n-point function on the lattice.
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(each component of) 
 has 1 zero mode, expressed by the
overall 
 integration at the end. Each � has L zero modes
(for L particle loops; e.g., a 1D torus has 1 zero mode), but
they are killed by the L ~
’s. Since the particle action is 1-
dimensional (the worldline), it is trivial except for the zero
modes, which are now also trivial. (For X, the only non-
trivial part is the integration over the would-be zero modes,
the loop momenta.)

To relate the Feynman diagrams to the string, we must
take into account the 1=N expansion. Then the particle
loops must be divided up into those associated with faces
and those not. Just as the string is derived by summing the
perturbation expansion in Ng2 and not that in the string
coupling 1=N (ignoring subtleties of worldsheet renormal-
ization), the superstring is also derived by integrating over
~
’s associated with faces and not over those associated
with string loops. Since L � F� 2H � 1, that leaves
2H� 1 ~
’s, 2H to kill the string’s � zero modes, less 1
because we have already killed 1 by integrating out ~
’s
zero modes. (On the continuum worldsheet it is more
natural to think of both 
 and ~
 as coordinates, manifesting
N � 2 spacetime supersymmetry.)

A similar approach can be applied to the gauge-fixed,
twistedN � �2; 2�worldsheet supersymmetric formulation
of the superstring [including the bosonic ghosts that are
partners to the fermions, and the fermionic ghosts for
U�1�]. The constituent particles again have half the super-
symmetry, describing an N � 2 spinning particle, and thus
Yang-Mills [14]. Presumably this particle is also self-dual,
as this string is known to be [3].

V. MEASURE CONSIDERATIONS

In the previous section we evaluated the dependence of
general Feynman diagrams on external fermions. This
corresponds to the exponentiated worldsheet-Green-
function contributions to the path integral. In any
Feynman diagram, in addition to dependence on external
momenta and fermions, there are also numerical factors
coming from the usual combinatorics. In the continuum
string these appear as functional determinants. They de-
pend only on the moduli of the worldsheet metric, i.e., the
(conformal) geometry. On the random lattice, the depen-
dence is on the ‘‘geometry’’ of the graph.

The relation between any such combinatoric factors to
string expressions is not obvious, since it requires an
understanding of the continuum limit, which may be non-
perturbative, or at least the identification of which graph
properties will survive in this limit as worldsheet moduli.
However, although the explicit expression for these factors
may be tedious, the general form is easy to describe: In
particular, we can simply compare the fermionic contribu-
tion to the bosonic one and see the analog of cancellation of
their ‘‘partition functions.’’

The only equation is the graphical analog of the world-
sheet ‘‘curl.’’ Such an expression arises, e.g., in solving the

conservation-of-momentum condition that follows from
integrating out X (or xi on the lattice):

 @mP
m � 0) Pm � 	mn@n ~P

as in T duality discussed above, becomes on the lattice

 

X
j

pij � 0) pij �
X
I

cIijkI

for some constants cIij that depend only on the geometry of
the graph, where kI are the usual loop momenta. (This
relation can be made trivial for planar graphs, as pij �
kI � kJ, but functional determinants are rather trivial for
such string-tree graphs anyway.) Clearly the same expres-
sions will result for the fermions upon integrating out �:
 

@m�m � 0) �m � 	mn@n ~�;X
j

�ij � 0) �ij �
X
I

cIij ~�I:

However, we have the same translation for the curl in the ~�
part of the action:

 

Z
�m	nm@n ~�!

X
I;hiji

�ijcIij ~
I:

The surviving terms in the action (except those for external
variables) are then

 

X
IJ

�
1

2
kIMIJkJ � ~�IMIJ

~
J

�
;

where

 MIJ �
X
hiji

cIijcJij

is essentially the worldsheet d’Alembertian defined on
loops. Final integration of the loop momenta and fermions
then yields determinants for this ‘‘kinetic operator’’:

 �detM�4�D=2;

where the 4 � 16=4 for the fermions comes from the usual
1� 2� 3� 4� . . . � 1=4 for the ghost pyramid’s 16-
component spinors. There would be exact cancellation in
D � 10 except for the fact that the random lattice does not
fix worldsheet coordinate invariance, so there is no con-
tribution from corresponding ghosts; that role is played by
integration over the worldsheet metric, which for the ran-
dom lattice means summation over all graphs.

VI. CONCLUSIONS

We have examined the random lattice formulation of the
type IIB superstring in the ghost pyramid formalism. The
constituent particles are functions of the same variables as
in the ghost pyramid formulation of the N � 1 superpar-
ticle (super Yang-Mills). However, a new type of variable
appears in the superparticle Feynman rules, a loop fermion
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analogous to loop momenta, but not resulting from Fourier
transformation of the superparticle coordinates.

The treatment given here should be sufficient for the
‘‘free’’ part (from the continuum point of view) of random
lattice quantization. However, the construction of vertex
insertions for external lines is not obvious, even though our
description already includes internal vertices, for several
reasons: (1) To obtain scattering amplitudes for the usual
string states, one needs vertex operators for fields that are
composite with respect to the constituent fields [color-
singlets with respect to the U�N� of the 1=N expansion].
(2) The rules obtained may be for a background-field
gauge, as expected from a string approach, which has
different external and internal vertices. (3) The ~
’s that
we have derived from the string, but not from particle field
theory, may be the result of manipulations of internal
vertex factors, obscuring their origin. (4) The simple
form of the Feynman rules we have derived may apply
only to the usual superstrings, and QCD-like strings may
require more conventional and more complicated (but
perhaps not too much) vertex factors.

This approach should be useful not only for string
theory, but also for conventional particle field theory. In
particular, it is important to discover how loop fermions
such as ~
 can arise from second quantization. Such rules
could significantly simplify loop calculations in maximally
supersymmetric field theories, as long expected from the
fact that the results of such calculations are much simpler
than in theories with less symmetry.
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APPENDIX: GREEN-SCHWARZ FORMALISM

As in Sec. IV, we introduce a scalar � and pseudoscalar
~�, located at vertices and loops on the lattice, respectively,

 �1;A �
1���
2
p ��A � ~�A�; (A1)

 �2;A �
1���
2
p ��A � ~�A�: (A2)

(For alternative attempts at dealing with Levi-Civita ten-
sors on the worldsheet for Green-Schwarz, see [15].) Then
the action for the type IIB superstring in the Green-
Schwarz action [16] can be expanded in ~� as

 S �
Z d2�

2�
�L0 �L1 �L2 �L3 �L4� (A3)

with

 

L0 �
1
2�@X���@��2;

L1 � 	mn
�
@mX�

1
2��@m�

�
� ���@n ~�� ~��@n��;

L2 � ��@X���@�� � � ~��@ ~��;

L3 � �
1
2	
mn� ~��@m ~�� � � ~��@n����@n ~��;

L4 �
1
2�

~��@ ~��2: (A4)

For tree graphs, terms with ~� will not be involved
because ~�’s are the variables located in loops. Replacing
the worldsheet with the random lattice,

 S0 �
1

2

X
hiji

��x�i � x
�
j � � 
i�

�
j�
2: (A5)

In first-order formalism, it is

 S0 �
X
hiji

�
�

1

2
p2
ij � pij � �xi � xj � 
i�
j�

�
: (A6)

We now use the identity for any function f

 f�x� x0 � 
�
0� � dD
0
f�x� x0��D

0
�
� 
0�; (A7)

where d is the covariant spinor derivative and dD
0

the
antisymmetric product of all its components. Then the
propagator is (with appropriate 2D Wick rotation)

 �ij � e�S0 � e�p
2
ij=2dD

0

i �e
ipij��xi�xj��D

0
�
i � 
j��: (A8)

Except for the Gaussian factor e�p
2=2 instead of 1= 1

2p
2,

this is the same expression that follows from path-integral
quantization [17] of the Casalbuoni-Brink-Schwarz super-
particle action [18] without gauge fixing � symmetry. In
the case D � 3, this result agrees with usual supergraph
rules for the N � 1 scalar multiplet. Thus, except for this
replacement, the Feynman rules for this multiplet agree
with the 3D N � 1 superstring theory obtained by drop-
ping the Wess-Zumino term (WZ) term (and thus avoiding
the need for a �� ~� split). Because of the degeneracy of
3D N � 1 superspace (where 
 has only two components,
so the usual statement that only 1=4 of all 
’s are physical
cannot apply), in that case the WZ term of the usual GS
action is unnecessary for continuum quantization [19].

For one-loop diagrams, only terms with one ~� are
involved,

 L 1 � �2	mn�@mX� �@m����� � �@n��� ~�; (A9)

where we have simplified (A4) by partial integration and
using the identity

 ���
�
A�B�

�
CD� � 0: (A10)

On the random lattice, @X ! xi � xj and @�! 
i � 
j.
The one-loop two-point diagram, as shown in Fig. 4(a),
vanishes. Now consider the one-loop 3-point diagram, as
shown in Fig. 4(b). Defining
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 p̂ �
ij � x�i � x

�
j � 
i�

�
j

(p on shell) we have
 

S1 � �2��p̂ij � p̂ik��
j � 
k� � �p̂jk � p̂ji��
k � 
i�

� �p̂ki � p̂kj��
i � 
j�� � �~
: (A11)

Integration over ~
 gives the amplitude
 

A �
1

3

Z
d
id
jd
kdxidxjdxkdpijdpjkdpki�ij�jk�ki

���xi; 
i���xj; 
j���xk; 
k��; (A12)

where �ij is the propagator in (A8) and
 

� � 2D
0
Y
A

�AB � ��p̂ij � p̂ik��
j � 
k�
B

� �p̂jk � p̂ji��
k � 
i�B � �p̂ki � p̂kj��
i � 
j�B�;

(A13)

where
Q
A is the antisymmetric product of all components

andD0 is the range of the spinor index A. (For 3D,D0 � 2.)
As in the usual supergraph calculations, we then can do

partial integration of all the di’s in each �ij until we are left

with

 e�p
2
ij=2eipij��xi�xj��D

0
�
i � 
j� � �b;ij�

D0 �
i � 
j�;

(A14)

where �b;ij is the bosonic propagator. Let us consider this
procedure for the simple 3D case, with two-component
spinor index A. (We use the conventions of [20], supple-
mented with the anti-Hermitian � matrices fdA; dBg �
�2�AB � @ for comparison with higher dimensions.) After
the partial integration of di’s off �ij,

 A �
1

3

Z
d
id
jd
kdxidxjdxkdpijdpjkdpkiB (A15)

with (using d2 � 1
2d

AdA)

 B � �b;ij�2�
i � 
j���jk�ki�d2
i �i��j�k�

� �jk�d2
i�ki��i�j�k�� �jk�dAi �ki�

� �di;A�i��j�k���jk�ki�i�j�k�d
2
i��

� �jk�dAi �ki��i�j�k�di;A��

� �jk�ki�d
A
i �i��j�k�di;A���: (A16)

For the terms where di’s do not act on �, because 
i � 
j,

 � � 62
Y
A

��AB � �xi � xj��
j � 
k�
B�

� 62 det�� � �xi � xj���2�
j � 
k�: (A17)

Combining the delta function �2�
j � 
k� here with �jk,
we notice

 �2�
j � 
k��jk � �b;jk�
2�
j � 
k�:

The first term in (A17) is then, by noticing det�� � �xi �
xj�� � �xi � xj�2,

 62�b;ij�
2�
i � 
j��b;jk�

2�
j � 
k��ki�d
2
i �i��j�k det��xi � xj���

�
BA�

� 62�b;ij�b;jk�b;ki�
2�
i � 
j��

2�
j � 
k��d
2
i �i��j�k�xi � xj�

2; (A18)

while the second and third terms just vanish by noticing

 �2�
k � 
i�dA;i�ki � �2�
k � 
i�d
2
i�ki � 0:

For the last three terms, we write

 �jk � e�p
2
kj=2d2

k�e
ipkj�xk�xj��2�
k � 
j��

and integrate this d2
k by parts again. For the fourth term, dk’s cannot act on �ki. Thus it is

 �b;ij�b;jk�b;ki�
2�
i � 
j��

2�
j � 
k��i�jd
2
k��kd

2
i�� � �b;ij�b;jk�b;ki�

2�
i � 
j��
2�
j � 
k��i�j�d

2
k�k��d

2
i��:

(A19)

I Ii

(a)

i

j

j k

(b)

FIG. 4. One loop on the lattice. (a) 2-point. (b) 3-point.
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Here we reach the second step by noticing that only
�2�
i � 
j��

2�
j � 
k��d
2
i�� survives because p̂�ij �

d2
i ��x

�
i � x

�
j ��

2�
i � 
j�� and did2
i � @i;��

�
ABd

i
B, d2

i d
2
i �

�@i�2. For the same reason, the fifth term is

 �b;ij�
2�
i � 
j��b;jk�

2�
j � 
k�

� �dAk d
B
i �ki��i�j�k�dk;Adi;B��; (A20)

and the sixth term is
 

�b;ij�
2�
i � 
j��b;jk�

2�
j � 
k��ki�d
A
i �i��j�d

B
k�k�

� �dk;Bdi;A��: (A21)

Then it is easy to find

 d2
i�j
i�
j�
k � 62 det�� � �xj � xk�� � 62�xj � xk�

2

(A22)

and

 �dkDd
i
B��j
i�
j�
k �

1
26

2CBD�xi � xj���xj � xk�
�:

(A23)

So (A19) is

 

62�b;ij�b;jk�b;ki�2�
i � 
j��2�
j � 
k��i�j�d2
k�k�

� �xj � xk�2: (A24)

For (A20), using the familiar relation dCdAd2 �
@��

�
CAd

2 � terms with no d (which may be dropped), it
vanishes because of the factor

 CABCCDCBD�
�
CA � 0: (A25)

It is also easy to evaluate (A21), which is

 

1
2 62�b;ij�b;jk�b;ki�2�
i � 
j��2�
j � 
k�

� �dAi �i��j�dk;A�k��xi � xj� � �xj � xk�: (A26)

Finally,

 

A �
1

3
62
Z
dxidxjdxkdpijdpjkdpkid
�b;ij�b;jk�b;ki

�
�d2�i��j�k�xi � xj�

2 ��i�j�d
2�k��xj � xk�

2

�
1

2
�dA�i��j�dA�k��xi � xj���xj � xk��

�
: (A27)

Generalizing to 10D with 16-component spinor indices, the calculation is pretty much similar. For a vector MAB �

M��
�
AB, using the determinant definition

 detMB
A �

1

16!
	A1���A16	B1���B16

MB1
A1
� � �MB16

A16
� �M2�8 (A28)

the one-loop 3-point amplitude is

 A �
1

3
610

Z
dxidxjdxkdpijdpjkdpkid
�b;ij�b;jk�b;ki

�
�d16�i��j�k��xi � xj�

2�8 ��i�j�d
16�k���xj � xk�

2�8

�
X15

m�1

	A1���A16��dmA1���Am
�i��j�d

16�m
Am�1���A16

�k�Jm�
�
; (A29)

where Jm is the coefficient of �m in det��xk � xj���� � ��xj � xi�����.
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