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An inhomogeneous Kaluza-Klein compactification of a higher dimensional spacetime may give rise to
an effective 4D spacetime with distinct domains having different sizes of the extra dimensions. The
domains are separated by domain walls generated by the extra dimensional scale factor. The scattering of
electromagnetic and massive particle waves at such boundaries is examined here for models without
warping or branes. We consider the limits corresponding to thin (thick) domain walls, i.e., limits where
wavelengths are large (small) in comparison to wall thickness. We also obtain numerical solutions for a
wall of arbitrary thickness and extract the reflection and transmission coefficients as functions of
frequency. Results are obtained which qualitatively resemble those for electroweak domain walls and
other ordinary domain walls for 4D theories.
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I. INTRODUCTION

The possible existence of unseen extra dimensions could
have important implications for the effective four dimen-
sional physics that we observe [1–9]. Different types of
extra dimensional models include nonorbifolded Kaluza-
Klein (KK) compactifications without branes [1,2], brane
world models with large [3] extra dimensions or warped
[4,5] spacetimes, infinite extra dimensions [5,6], and uni-
versal extra dimension models [7,8]. Here, we consider
KK-type models where a higher dimensional spacetime
without branes or warping is compactified to an effective
4D spacetime in an inhomogeneous way, so that a scale
factor b�x�� associated with the extra dimension(s) can
vary with 4D position x�. From a 4D perspective, the scale
factor b then appears as a 4D scalar field with an effective
potential U�b� [10,11]. If this effective potential has differ-
ent minima separated by barriers, the field b can settle into
these different minima at different positions x�. The
boundaries between the different domains then appear as
domain walls in the 4D theory, where the field b�x�� varies
across the wall, generally possessing both gradient and
potential energy densities [10,12]. The ‘‘gravitational
bags’’ of Ref. [13] are described by exact analytical solu-
tions to the field equations of a 6d theory where the extra
two dimensions are compact outside the bag, but become
completely decompactified at the center of the bag (b! 1
as r! 0). Dimension bubbles [12,14,15] are similar non-
topological solitons, but filled with particles and radiation
helping to stabilize the bubble, and having slightly differ-
ent boundary conditions (b! finite as r! 0). Domain
wall networks may give rise to such types of bubbles where
the value of b inside a bubble is different from that outside
the bubble [10,12,14,15]. It is also possible that an evap-
orating black hole may spawn a ‘‘modulus bubble’’ sur-
rounding the black hole [16]. The values of b on different

sides of such a domain wall may both be microscopic, or
not. For example, if b takes values b1 and b2 on different
sides of a wall, we may have a ratio b2=b1 � 10�16 if
�b2=b1�

�1 � lP=lTeV, i.e., one of the values is characteristic
of the Planck scale, lP �M�1

P , and the other is character-
istic of a TeV scale, lTeV � TeV�1 [15]. On the other hand,
it is possible that the value of b becomes macroscopically
large on one side of the wall [10,13].

In the 4D theory that follows from a (brane-free) com-
pactified higher dimensional theory, the field b�x�� couples
to electromagnetic fields in the form of a dielectric func-
tion ". Massive particle fields in the 4D theory have masses
which depend on b; for example, a particle with a mass m5

in a 5D theory gives rise to a (Kaluza-Klein zero mode)
particle with mass m � m5=

���
b
p

in the 4D theory [15].
Therefore, there will be a difference in the way that both
electromagnetic waves and massive particle waves will
propagate in the two different domains, and we might
anticipate a dependence of the amount of transmission
across a dimensional domain boundary which depends
upon the change in the field b and the spatial rate at which
b varies. If, for instance, a massive particle has an energy
E � �p2

1 �m
2
1�

1=2 in a domain region where b � b1, but
across the wall where b � b2 the particle mass ism2 >m1,
then for energies E<m2 the particle will undergo a total
reflection, since it is energetically forbidden in the b2

region. For higher energies, E>m2, we expect a partial
reflection, with reflection and transmission coefficients
depending upon particle energy [17]. However, we may
also anticipate a dependence upon the domain wall width
(as compared to wavelength), as discovered by Everett [18]
in his study of wave transmission across electroweak do-
main walls. Ayala, Jalilian-Marian, McLerran, and Vischer
[19], and Farrar and McIntosh [20] have also examined
wave propagation across electroweak domain walls, ob-
taining energy-dependent reflection and transmission co-
efficients. We obtain results for wave transmission across
dimensional boundaries which qualitatively resemble
some of the basic results obtained by Refs. [18–20] for
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wave transmission across electroweak domain walls. More
specifically, we find that the reflection coefficient depends
upon both b1 and b2, with reflection being enhanced at low
energies, where wavelengths are long in comparison to
wall width (thin wall limit). On the other hand, trans-
mission is enhanced and reflection becomes negligible at
high energies, where wavelengths are short compared to
wall width (thick wall limit). For the thin wall limit we
approximate the wall as a discontinuous boundary, and in
the thick wall limit we consider a slowly varying field
b�x��. Analytical results can be obtained for these limiting
cases. A numerical study is also made for a smooth,
continuous transition region for a range of energies and
wavelengths.

The amount of reflection and transmission of various
modes at a dimensional boundary will generally depend
upon the compactification details. Later, as an example, we
show how the qualitative behavior for the reflection of
electromagnetic fields and massive particles differs for
the RS1 model [4]. Thus, if dimensional boundaries could
be probed experimentally, information about the extra
dimensions could be gathered from the boundary’s
reflectivity.

In Sec. II we present the effective 4D theory that
emerges from the KK reduction of a higher dimensional
theory without warping or branes, and illustrate how the
extra dimensional scale factor b appears as a scalar field in
the 4d theory. The reflection and transmission of electro-
magnetic and massive particle waves from a thin domain
wall is considered in Sec. III, and thick walls are treated in
Sec. IV. Our numerical study for a domain wall of arbitrary
width is presented in Sec. V. Section VI contains a sum-
mary and discussion of results, and expectations concern-
ing scattering from dimensional boundaries in the visible
brane of the RS1 model are mentioned.

II. THE EFFECTIVE 4D THEORY

We consider a D � �4� n� dimensional spacetime hav-
ing n compact extra spatial dimensions. The metric of the
D dimensional spacetime is assumed to take a form

 ds2
D � ~gMNdxMdxN

� ~g���x�dx
�dx� � b2�x���mn�y�dy

mdyn; (1)

where xM � �x�; ym� and M;N � 0; 1; 2; 3; � � � ; D� 1
label all the spacetime coordinates, �; � � 0; 1; 2; 3, label
the 4D coordinates, and m, n label those of the compact
extra space dimensions. The extra dimensional scale factor
is b�x��, which is assumed to be independent of the y
coordinates and the extra dimensional metric �mn�y� de-
pends upon the geometry of the extra dimensional space
and is related to ~gmn�x; y� by ~gmn � b2�mn.

The action for the D dimensional theory is

 SD �
Z
dDx

���������
j~gDj

q �
1

2�2
D

	 ~RD	~gMN
 � 2�
 � ~LD

�
; (2)

where ~gD � det~gMN, ~RD is the Ricci scalar built from ~gMN ,
� is a cosmological constant for the D dimensional space-
time, ~LD is a Lagrangian for the fields in theD dimensions,
�2
D � 8�GD � Vy�

2 � 8�G, where G is the 4D gravita-

tional constant, GD is the D dimensional one, and Vy �R
dny

�������
j�j

p
is the coordinate ‘‘volume’’ of the extra dimen-

sional space. We use a mostly negative metric signature,
diag�~gMN� � ��;�;�; � � � ;��.

To express the action as an effective 4D action, we
borrow the relations used in Ref. [11]:

 

���������
j~gDj

q
� bn

�������
�~g

p �������
j�j

q
; (3)

 

~R	~gMN
 � ~R	~g��
 � b
�2 ~R	�mn
 � 2nb�1 ~g�� ~r� ~r�b

� n�n� 1�b�2 ~g���~r�b��~r�b�; (4)

where the number of extra dimensions n is not to be
confused with the tensor index n and ~R	~g��
 is the Ricci
scalar built from ~g��, etc. The metric ~g�� then acts as a 4D
Jordan frame metric. We define D dimensional and 4D
gravitation constants by 2�2

D � 16�GD and 2�2 � 16�G,
respectively, which are related by

 

1

2�2
�

1

16�G
�

Vy
16�GD

�
Vy

2�2
D

: (5)

Following Ref. [11] we consider compact spaces of extra
dimensions with constant curvature and a curvature pa-
rameter defined by

 k �
~R	�mn

n�n� 1�

: (6)

Integrating over y in the action of (2), we have
 

S �
Z
d4x

�������
�~g

p �
1

2�2	b
n ~R	~g��
 � 2nbn�1 ~g�� ~r� ~r�b

� n�n� 1�bn�2 ~g���~r�b��~r�b�

� n�n� 1�kbn�2
 � bn
�
LD �

�

�2

��
; (7)

where LD � Vy ~LD. We define a 4D Einstein frame metric
g�� by

 ~g �� � b�ng��; ~g�� � bng��;�������
�~g

p
� b�2n �������

�g
p

:
(8)

In terms of the 4D Einstein frame metric the action S in
(7) becomes
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 S �
Z
d4x

�������
�g
p

�
1

2�2

�
R	g��
 �

n�n� 2�

2
b�2g���r�b�

� �r�b� � n�n� 1�kb��n�2�

�
� b�n

�
LD �

�

�2

��
;

(9)

where total derivative terms have been dropped. From the
D dimensional source Lagrangian LD � Vy ~LD we can
define an effective 4D source Lagrangian L4,

 L 4 � b�nLD; (10)

where, again, n is the number of extra dimensions. Notice
that the extra dimensional scale factor b�x� plays the role of
a scalar field in the 4D theory. It will have a corresponding
effective potential U�b� that is constructed from the curva-
ture and cosmological constant terms in (9) along with
terms from L4. When the potential U possesses two or
more minima separated by barriers, domain walls associ-
ated with the scalar field b�x� can appear in the 4D theory.
A domain wall interpolates between two different values of
b1 and b2 on the two sides, and the energy density and
width of the wall are expected to depend on b1 and b2, the
potential U�b�, and how rapidly the field b varies. One can
envision a thin wall where there is a sudden jump between
b1 and b2, a thick wall where b�x� slowly varies, or
intermediate cases where the wall may be considered as
neither thin nor thick.

A. Electromagnetic and scalar boson fields in 4D

We are interested in the propagation of massive particles
and electromagnetic fields through regions where the size
of the extra dimensions, characterized by the scale factor
b�x�, changes. We will focus on the simple case of a free
scalar boson as a prototype of a massive particle, and
thereby neglect particle spin. In this case it is easy to see
how the 4D particle mass m depends upon the field b for
Kaluza-Klein (KK) zero mode bosons. For the electromag-
netic field, it seems natural to adopt a dielectric approach
[14], where the field b�x� gives rise to an effective permit-
tivity "�x�. (Attention is restricted to KK zero modes.)

Electromagnetic field—We write the D � �4� n� di-
mensional Lagrangian for the electromagnetic (EM) fields
as

 L EM � �
1
4

~F0MN ~F0MN � �
1
4~gMA~gNBF0ABF

0
MN;

F0MN � @MA
0
N � @NA

0
M:

(11)

We assume the field b to take a value b0 in the ambient 4D
spacetime, and then define a rescaled gauge field AM �
bn=2

0 A0M. For KK zero modes we assume AM to be inde-
pendent of ym and set Am � 0. In the 4D Einstein frame
LEM becomes LEM � �

1
4b

2nF0��F0�� � �
1
4 �

�b2n=bn0�F
��F��, with F�� � @�A� � @�A�. By (10) the

effective 4D EM Lagrangian is

 L 4;EM � �
1

4

�
b
b0

�
n
F��F�� � �

1

4
"F��F��; (12)

where the effective dielectric function is

 "�x� �
�
b�x�
b0

�
n
: (13)

In ordinary 4D vacuum regions where b � b0, we have
" � 1.

Scalar bosons—For the case of a free scalar boson, we
start with a D dimensional Lagrangian

 L S � ~@M�� ~@M�� V��� � ~gMN@M��@N�� V���:

(14)

For KK zero modes � is independent of ym and LS �

~g��@���@��� V. In terms of the 4D Einstein frame
metric from (8) we then have LS � bng��@���@���
V. From (10) it follows that the effective 4D Lagrangian is

 L 4;S � g��@���@��� b�nV: (15)

Therefore a bosonic particle with a mass �0 in the 4� n
dimensional theory appears as a KK zero mode bosonic
particle with a 4D massm given bym � b�n=2�0. In terms
of the dielectric function " and the massm0 � b�n=2

0 �0 we
can write

 m � "�1=2m0 (16)

with m! m0 as "! 1. The 4D mass decreases in regions
of larger b and ".

III. WAVE PROPAGATION THROUGH THIN
WALLS

We consider here the thin wall limit for EM and particle
waves, i.e., the limit in which the effective wavelengths are
large in comparison to the wall width �, or frequencies are
sufficiently small, ! 1=�. The cases of EM waves and
massive particle waves are considered separately, but in a
similar manner. The transition region where b�x� varies is
idealized as a sharp boundary, i.e., as a planar interface
perpendicular to the x axis.

A. Electromagnetic waves

The effects of a rapidly varying b upon EM wave
propagation was investigated in Ref. [14]. An EM contri-
bution in the form of Eq. (12) to the effective 4d theory can
be treated with a dielectric approach where the dielectric
function, or permittivity ", in a region of space is given by
Eq. (13), where b0 is the value of the extra dimensional
scale factor in a normal region of 4D spacetime. (The
coordinates ym could be rescaled to set b0 � 1, but we
leave its value arbitrary.) The permeability of a region of
space is seen from the Maxwell equations to be � � 1="
so that the index of refraction in a region of space is n �
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�������
"�
p

� 1 and the ‘‘impedance’’ is Z �
����������
�="

p
� 1=" /

b�n, where n is the number of extra dimensions. In
Ref. [14] it was found that at the boundary between two
different constant values of b given by b1 and b2, the
reflection ratio for a plane wave of frequency! is given by

 Aref �
ER
EI
�

1� �ZT=ZI�
1� �ZT=ZI�

�
1� �"I="T�
1� �"I="T�

�
"T � "I
"T � "I

;

(17)

where ZI�T� denotes the value of Z in the incident (trans-
mitting) region, etc. For a reflection coefficient R � A2

ref
we have

 R �

�
"T � "I
"T � "I

�
2
�

�
"2 � "1

"2 � "1

�
2
�

�
"2="1 � 1

"2="1 � 1

�
2
; (18)

with an invariance under the interchange "1 !"2 indicat-
ing the same amount of reflection from either side of the
wall. There is a small amount of reflection for ��"="�2 
1, or �"2="1� � 1, but a large amount of reflection when
either �"2="1� � 1 or �"2="1�  1.

B. Massive particles

We will neglect possible effects due to particle spin and
polarization and therefore examine the reflection and trans-
mission associated with a free scalar boson field described
by Eq. (15) with a potential V � �2

0�
��. The 4D boson

mass m is then given by Eq. (16). We consider the sharp
boundary to be located at x � 0 with " � "1 for x < 0 and
" � "2 for x > 0. The field � satisfies the Klein-Gordon
equation ���m2� � 0 with a jump in m2 at x � 0. An
incident plane wave of energy E � ! described by �0

propagating toward the right is assumed to be incident
from the left (" � "1) on the interface, and a reflected
plane wave �1 is assumed to propagate back toward the
left in this region. A transmitted wave of energy ! is
transmitted in the region where " � "2. The plane wave-
forms are

 ��
�
�0��1 � A0e

i�p1x�!t� �A1e
i��p1x�!t�; �x< 0�

�2 � A2ei�p2x�!t�; �x> 0�

�
;

(19)

where !2 � p2
1 �m

2
1 � p2

2 �m
2
2 with p2

1;2 assumed to be
nonnegative, and

 m2 �

�
m2

1 � "�1
1 m2

0; �x < 0�
m2

2 � "�1
2 m2

0; �x > 0�

�
: (20)

Note that if !<m2, then p2
2 is negative and the wave is

exponentially attenuated in the region x > 0. In other
words, free particles are not kinematically allowed into
the transmitting region when !<m2, resulting in an ef-
fective total reflection.

Requiring continuity of � and �0 � @x� at the bound-
ary x � 0 yields

 

A1

A0
� �

�p2 � p1�

�p2 � p1�
;

A2

A0
�

2p1

�p2 � p1�
;

p1;2 � �!
2 �m2

1;2�
1=2 � 0:

(21)

The x-component of the current density is given by jx �

�i��@x
$
� so that we can define reflection and transmission

coefficients

 R � �
j1

j0
�

�
A1

A0

�
2
�

�
p2 � p1

p2 � p1

�
2
�

�
1� �p1=p2�

1� �p1=p2�

�
2
;

(22)

 T �
j2

j0
�
p2

p1

�
A2

A0

�
2
�

4p1p2

�p1 � p2�
2 �

4p1

�1� �p1=p2��
2 ;

(23)

with R�T � 1. Again, since R and T are symmetric
under the interchange of indices, there is the same amount
of reflection and transmission regardless of which side is
the incident side. There is a small amount of reflection
when ��p=p�2  1 or p2=p1 � 1, i.e., when "2="1 � 1.
On the other hand, there is a large amount of reflection
when either p2=p1  1 or p2=p1 � 1, i.e., when there is a
large difference between "1 and "2 with �"2="1� � 1 or
�"2="1�  1. We therefore get the same qualitative results
for reflection/transmission for both EM waves and particles
at a sharp boundary, or for small frequencies or low en-
ergies, ! 1=� and !>m1;2. For the case where the
particle energy ! is less than the particle mass in the
transmitting region, a free particle is kinematically forbid-
den in that region, with � assumed to be rapidly damped,
so that there is effectively total reflection back into the
incident region.

IV. WAVE PROPAGATION THROUGH THICK
WALLS

In this section we consider the opposite of the thin wall
limit, i.e., the thick wall limit for EM and particle waves
where the variation in b�x� in the transition region is very
gradual. This is equivalent to a limit where wavelengths are
small in comparison to the wall thickness, or frequencies
and energies are high, E � !� 1=�.

A. Electromagnetic waves

For sourceless EM fields the effective Lagrangian is
given by Eqs. (12) and (13), L4;EM � �

1
4"F

��F�� where
the effective permittivity is " � �b=b0�

n with the property
that "! 1 in the normal vacuum. Also, from the Maxwell
field equations we have a permeability � � 1=". These
give rise to an index of refraction n �

�������
"�
p

� 1 and

impedance Z �
����������
�="

p
� 1=". Summarizing,
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 " �
1

�
�

�
b
b0

�
n
; n �

�������
"�
p

� 1; Z �
����
�
"

r
�

1

"
:

(24)

We have the inhomogeneous (from L4;EM) and homoge-
neous (Bianchi identity) Maxwell equations (source-free
case)

 r��"F��� � 0; r�
�F�� � 0; (25)

where the dual tensor is �F�� �
1
2 ���	
F

	
. With our
metric g�� � diag��;�;�;�� we have the field tensors

 F�� �

0 Ex Ey Ez
�Ex 0 �Bz By
�Ey Bz 0 �Bx
�Ez �By Bx 0

0BBB@
1CCCA;

F�� �

0 �Ex �Ey �Ez
Ex 0 �Bz By
Ey Bz 0 �Bx
Ez �By Bx 0

0
BBB@

1
CCCA;

(26)

with Ex � E1, Bx � B1, etc. being the physical fields and
Fij � Fij and we assume a flat 4D spacetime with g�� �
���.

For a simple ansatz we consider waves propagating in
the �x direction and we take " � "�x� to be a smooth,
slowly varying, although somewhat arbitrary, function. We
take the field components Ey�x; t� and Bz�x; t� to be non-
vanishing and complex, in general, with ~H � ~B=� � " ~B.
There is then a nonvanishing Poynting vector

 

~S � Re� ~E� ~H�� � "Re� ~E� ~B��; (27)

with a nonvanishing component Sx. The field Eqs. (25) can
then be written in the form

 

_E� B0 � �0B � 0; E0 � � _B; (28)

where E � Ey, B � Bz, an overdot represents differentia-
tion with respect to t, a prime stands for differentiation
with respect to x, and we have defined � � ln". These
equations can be used to obtain the wave equation

 B00 � �B� �00B� �0B0 � 0: (29)

Approximate solutions—We consider the special case
where the scale factor b�x�, "�x�, and ��x� are very slowly
varying functions of x in a planar domain wall oriented
perpendicular to the x axis. The overall change in " can be
arbitrarily large, but the rate of change must be sufficiently
small for the frequencies under consideration. The mag-
netic field is assumed to be of the form

 B�x; t� � Aei��x�e�i!t; (30)

where the amplitude A is a real constant. The wave Eq. (29)
then gives an equation for the phase function �,

 i�00 ��02 �!2 � �00 � i�0�0 � 0: (31)

Now, for the ordinary case where " � const, or �0 � 0,
the wave eq. for B�x; t� reduces to the ordinary wave
equation, B00 � �B � 0, giving ��x� � �!x, �0 � �!,
�00 � 0. Therefore, for the case of a very slowly changing
� and �0, we, as a first approximation, drop the terms
involving �00 and �00 and approximate �0�0 � �!�0 in
(31), so that it reduces to the approximate equation

 ��0��
2 � !2 � i!�0; �0� � �!

����������������
1� i

�0

!

s
; (32)

i.e., we use �0�0 � �!�0 for the �� solution and use
�0�0 � �!�0 for the �� solution, giving �0� �

!

����������������
1� i

�0

!

s
and �0� � �!

����������������
1� i

�0

!

s
for the two solutions.

We consider frequencies for which j�0=!j  1 so that the
approximate solution is given by

 �0� � �!� i
�0

2
; �j�0j  !�: (33)

Integrating this gives

 ���x� ����x0� � �!�x� x0� �
i
2
	��x� � ��x0�
:

(34)

We choose to set the constants ���x0� � �!x0 so that
the solution simplifies to

 ���x� � �!x�
i
2

ln
�
"�x�
"�x0�

�
� �!x� i ln

�
"
"0

�
1=2
;

(35)

where " � "�x� and "0 � "�x0�. We then have ei�� �

� ""0
��1=2e�i!x and

 B��x; t� � A
�
"
"0

�
�1=2

e�i!xe�i!t: (36)

This describes waves propagating in the �x directions
traveling at the speed of light in vacuum (!=k � 1) with an
effective amplitude A� ""0

��1=2 which varies with x.
From the field Eqs. (28) we have _E� B0 � �0B � 0 so

that, using _E � �i!E and B0� � i�0�B� we obtain the
electric field

 E� � �
i
!
�B0� � �

0B�� �
�
�1� i

�0

2!

�
B�: (37)

The approximate solutions for the EM fields are then

 B��x; t� � Bz;� � A
�
"
"0

�
�1=2

e�i!xe�i!t;

E��x; t� � Ey;� �
�
�1� i

�0

2!

�
A
�
"
"0

�
�1=2

e�i!xe�i!t:

(38)
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Reflection and transmission—The EM energy flow is
indicated by the Poynting vector ~S � Re� ~E� ~H��, with
~H � ~B=� � " ~B, so that

 Sx � "Re� ~E� ~B��x �
"
2
�EyB�z � E�yBz�; (39)

with E� � ��1� i �
0

2!�B�. We have E�B�� � �1�

i �
0

2!�B�B
�
�, E�B�� � ��1� i �

0

2!�B�B
�
�, etc., so that

 E�B
�
� � E

�
�B� � 2B��B�;

E�B�� � E��B� � �2B��B�;
(40)

giving
 

�Sx�� � "Re� ~E� � ~B��� � �"j ~B�j2 � �"
�
A2 "0

"

�
� �"0A2: (41)

The Poynting vector Sx / A2 is therefore x independent,
indicating that no energy is lost by reflection or absorption
by the traveling wave, i.e., within the approximation we
have used, the transmission amplitude is unity and the
reflection amplitude is zero, giving transmission and re-
flection coefficients T � 1, R � 0 for high frequencies
!� j�0j. For a linear approximation of ��x� in a domain
wall of width �, we have �0 � ��� �0�=�x� x0� �
ln�"="0�=� and the condition !� j�0j translates into
!� j ln�"="0�

� j. So, for sufficiently high frequencies the
wall is transparent,

 T � 1; R � 0; !� j�0j �
��������ln�"="0�

�

��������:
(42)

This resembles the situation found for ‘‘ordinary’’ elec-
troweak domain walls separating different electroweak
phases [18–20].

B. Massive particles

We now focus again on ‘‘free’’ scalar bosons obeying the
Klein-Gordon equation (KGE) ���m2�x�� � 0, or

 

����00 �m2�x�� � 0; (43)

where m2�x� � b�n�x��2
0 � "�1�x�m2

0 is a very slowly
varying function of x. We write the scalar field as

 ��x; t� � Aei �x�e�i!t; (44)

where the amplitude A is a real constant,  �x� is a phase

function to be determined, and ! � E �
������������������
p2 �m2

p
is a

fixed, constant energy (although the momentum p and
mass m vary with x, in general). For the case that m �
const, the solutions are � � Ae�ipxe�i!t. For the more
general case, using Eq. (43), the KGE gives an equation for
the phase function

 i 00 �  02 � �!2 �m2� � 0: (45)

Again, for the case that m � const, we have  � �px
with  00 � 0.

Approximate solutions—For slowly varyingm2�x� let us
assume j 00j   02 so that we can drop the  00 term in
Eq. (45). This leaves us with  0 � �!�1�m2=!2�1=2 and
we find that for a sufficiently mildly varying function
m�x� � m0=

���������
"�x�

p
/ b�n=2�x� or at a sufficiently high en-

ergy ! our assumption j 00j   02 is valid, i.e.,

 

�������� 
00

 02

���������
��������mm

0

!3

�������� 1

�1� m2

!2�
3=2
 1: (46)

Since ! � m, this condition will be satisfied when the
first factor on the right hand side is small, i.e., jmm0=!3j �

j nb
0

2b
m2

!3 j & j b
0=b
! j  1. This is satisfied for an arbitrary

function m�x� at a sufficiently high energy !, where
jm0=mj  ! or jb0=bj  !. We have  02 � �!2 �m2�
and can then write, approximately,

  ��x� � �
�
!x�

1

2

Z x

x0

m2

!
dx
�

(47)

and

 ���x; t� � A�e
i ��x�e�i!t: (48)

Reflection and transmission—The current density j� �

i��@�
$

� then gives, approximately,

 jx� � 2A2 0� � �2A2
��!

2 �m2�1=2

� �2A2
�!

�
1�

m2

!2

�
1=2
: (49)

Denoting m��1� � m1 and m��1� � m2, we write the
transmission coefficient as
 

T �
jx2�
jx1�
�

jx��1�
jx���1�

�

�
!2 �m2

2

!2 �m2
1

�
1=2

�

�
1�
�m2

2 �m
2
1�

!2

�
; m2=!2  1: (50)

Therefore, up to small corrections ofO�m2=!2�, we have a
transmission coefficient of unity;

 R � 0; T � 1; !� m; !� jm0=mj:

(51)

From (42) and (51) we conclude that thick walls are
essentially transparent to particle and EM radiation at very
high energies.

V. NUMERICAL RESULTS

We have made a numerical study of the reflection and
transmission of electromagnetic and matter waves at a
dimensional boundary characterized by a smooth, continu-
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ous transition region with a dielectric function "�x� which
tends to a value "! "1 as x! �1 and a value "! "2 as
x! �1. We examined monochromatic waves that solve
the field equations and have used various "1 and "2 values.
From the currents for the waves, the reflection coefficient
R and transmission coefficient T were computed. These
coefficients can then be displayed as functions of ! for
various values of "1 and/or "2. The numerical procedure
that the code is based upon is described in the appendix.

For a simple representation of a smooth transition region
interpolating between "1 at x � �1 and "2 at x � �1,
we take "�x� to be given by the function

 "�x� � C�D tanh
�
x
�

�

�
1

2

�
�"1 � "2� � �"2 � "1� tanh

�
x
�

��
; (52)

where C � �"1 � "2�=2 and D � �"2 � "1�=2. We also
define ��x� � ln"�x�, as before. The parameter � charac-
terizes the width of the domain wall function "�x�.
Dimensioned quantities are rescaled by factors of � to
give dimensionless ones. For example, we have dimen-
sionless quantities (denoted with an overbar)

 �x �
x
�
; �! � !�; �m � m�;

�k � k�; �� �
�
�
�

2�
�k
;

(53)

where k �
�������������������������
!2 �m2�x�

p
is the particle momentum and

! � E is the particle energy. (The equations with dimen-
sionless parameters can be obtained from those with di-
mensioned parameters by simply setting � � 1 and
regarding the dimensioned parameters as dimensionless
ones.)

A. Electromagnetic waves

We write the electric and magnetic fields, respectively,
as E�x; t� � E�x�e�i!t and B�x; t� � B�x�e�i!t, with
E�x� � Ey�x� and B�x� � Bz�x� being complex-valued, in
general. The field equations are given by (28) and lead to
the wave Eq. (29) for B�x; t�. The monochromatic ansatz
leads to the wave equation for B�x�:

 B00 �!2B� �00B� �0B0 � 0; (54)

where again the prime stands for differentiation with re-
spect to x. Using Eq. (28) E�x� is given by E � � i

! �

�B0 � �0B�. From Eq. (39) the x component of the
Poynting vector is

 S � "Re�EB�� �
"
2
�EB� � E�B�: (55)

The wave Eq. (54) is to be solved numerically, subject to
boundary conditions, which are posted in the form of
solutions to the wave equation in the asymptotic regions.

That is, as x! �1, we have �0 ! 0 and solutions for B
and E are left-moving and right-moving plane wave solu-
tions:

 B�x� �
�
ei!x � A1e

i�1e�i!x; x!�1
A2ei�2ei!x; x!�1

�
(56)

and

 E�x� �
�
ei!x � A1ei�1e�i!x; x! �1

A2e
i�2ei!x; x! �1

�
; (57)

where A1 and �1 are the (real) amplitude and phase con-
stant, respectively, for the reflected wave, and A2 and �2

are those for the transmitted wave and the incident fields
are Einc � Binc � ei!x. The EM energy momentum is
conserved with S0 � 0. From Eqs. (55)–(57) we have

 S �
�
Sinc � S���1� � "1�1� A

2
1�; x! �1

S���1� � "2A2
2; x! �1

�
; (58)

where Sinc � "1 is the energy-momentum of the incident
beam, S� � S� Sinc and S� represent the reflected and
transmitted energy-momentum flow, respectively. The so-
lutions should respect the condition S0 � 0, or

 "1�1� A
2
1� � "2A

2
2: (59)

The reflection and transmission coefficients are then
defined by

 R � �
S���1�
Sinc

� A2
1; T �

S���1�
Sinc

�
"2

"1
A2

2:

(60)

The condition given by Eq. (59) then implies that R�
T � 1.

Results obtained for the reflection and transmission co-
efficients, as functions of dimensionless frequency �! �
!�, are illustrated in Fig. 1. These coefficients are mono-
tonic functions and have limiting values that are in agree-
ment with the analytical results obtained earlier for thin
walls (!! 0, �� �), given by Eq. (18), and for thick
walls (!� ��1, � �), given by Eq. (42). From Fig. 1
the reflection is seen to be substantially reduced below its
maximum value around a frequency !� ��1, i.e., �!� 1.
The numerical study indicates that the functions R and T
are invariant under the interchange "1 $ "2, so that the
amount of reflection does not depend on whether the beam
is incident from the left or the right.

B. Massive particles

The boson field obeys the Klein-Gordon equation ���
m2�x�� � 0 and we take ��x; t� � ��x�e�i!t. From
Eq. (16) we have m2�x� � m2

0="�x�, where m0 is a con-
stant. We define a dimensionless mass parameter �m0 �
m0� and set �m0 � 1 for convenience, letting ��1 set a
mass scale. The Klein-Gordon equation for ��x� can then
be written in terms of dimensionless parameters, and takes
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the form

 �00 �
�

�!2 �
1

"�x�

�
� � 0 (61)

or �00�x� � �k2�x���x� � 0, where �m0 � 1 and

 

�k �
�������������������������
�!2 � �m2�x�

q
�

���������������������
�!2 �

1

"�x�

s
: (62)

In the asymptotic regions we have "! "1 as x! �1
and "! "2 as x! �1, so that

 

�k �

8>>>><>>>>:
�k1 �

������������������
�!2 �

1

"1

s
; x! �1

�k2 �

������������������
�!2 �

1

"2

s
; x! �1

9>>>>=>>>>;
(63)

and

 ��x� �
�
�inc ��1 � eik1x � A1e

i�1e�ik1x; x! �1
�2 � A2ei�2eik2x; x! �1

�
:

(64)

The bosonic current density j��x; t� � i��@�
$

� is con-
served, so that j0�x� � 0, where the x component of the
current is

 j�x� � �i����0 ���0�� � 2 Im����0�: (65)

From Eqs. (64) and (65) the asymptotic currents are

 j�
�
j��1� � jinc� j���1� � 2k1�1�A2

1�; x!�1
j��1� � j���1� � 2k2A

2
2; x!�1

�
;

(66)

where j� � �2k1A2
1 is the current of the reflected wave,

j� is the current of the transmitted right-moving wave, and
jinc � 2k1 is the current of the incident beam. We define
the reflection and transmission coefficients as

 R �
�j���1�

jinc
� A2

1; T �
j���1�
jinc

�
k2

k1
A2

2:

(67)

From j0 � 0 it follows that the solutions must satisfy the
condition R�T � 1.

The results for the reflection and transmission coeffi-
cients as functions of frequency �! � !� obtained from the
numerical solutions are shown in Fig. 2. Again, these are
monotonic functions, as expected, and T ! 1 in the high
energy limit where the thick wall approximation becomes
valid [see Eq. (51)] for � �, or �!� 1=". We have
chosen "1 � 1 in Fig. 2, so that k � 0 implies that �! �
1. For �! only a few percent larger than unity, there is an
apparent deviation from the analytical results obtained in
Eqs. (22) and (23) for the thin wall approximation where
we used a sharp boundary. This is understood by writing
the thin wall approximation �� � in terms of �!, i.e.,
1���
"
p � �! 2�

��������������������
1�

1

4�2"

r
. This inequality is hard to sat-

isfy because of the presence of the lower bound, �! � 1 in
the regions where a propagating wave is kinematically
allowed, making the range of �! rather restricted for the
case where " � 1. However, in the limit that �!! 1, (k1 !
0) we numerically determine that R! 1, T ! 0 as im-
plied by Eqs. (22) and (23). Therefore, the analytical thin
wall results are approached in the limit �!! 1, but quickly
deviate somewhat from the thin wall approximation in the
plots of Fig. 2. As with the case of electromagnetic waves,
the numerical study indicates that the functions R and T
are invariant under the interchange "1 $ "2, so that the
amount of reflection is independent of whether the beam is
incident from the left or the right.

FIG. 1. Reflection and transmission coefficients for electro-
magnetic waves. The values for "2 (2, 5, 10, 20, 100) are given
in the figure. In all cases "1 was set equal to 1. Top: Reflection
coefficient R as a function of dimensionless frequency �! � !�.
The coefficient agrees with the theoretical value of R� �! � 0� �

�
"2 � "1

"1 � "2
�2. Bottom: Transmission coefficient as a function of �!.
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VI. SUMMARY AND DISCUSSION

We have considered a situation wherein an inhomoge-
neous compactification of a 4� n dimensional spacetime,
without warping or branes, with n compact extra space
dimensions, gives rise to an effective 4D spacetime with
distinct domains having different sizes of the extra dimen-
sions. From a 4D point of view these domains are separated
by domain walls arising from a 4D scalar field b�x��,
which is also the scale factor for the extra dimensions in
the higher dimensional spacetime. The field b giving rise to
a domain wall takes an asymptotic value of b1 on one side
of the wall and an asymptotic value of b2 on the other side,
so that the domain wall serves as a dimensional boundary.
We have focused on the reflection and transmission of both
electromagnetic waves and massive bosonic particle waves
across such dimensional boundaries. This has been done by
examining the limiting cases of thin (thick) walls, i.e., wall
thicknesses that are small (large) in comparison to the
wavelengths of the propagating waves. A convenient pa-
rameter for describing the sizes of the extra dimensions is
the ‘‘dielectric function’’ "�x� � �b�x�=b0�

n where b takes
an asymptotic, constant value of b0 in a region of ordinary
4D vacuum.

The results we obtain for the reflection and transmission
across dimensional boundaries is qualitatively similar to
those obtained for ordinary domain walls in a 4D theory.
Specifically, we find that at very high energies the bounda-
ries are essentially transparent to EM and particle radia-
tion, while at low energies, the degree of reflectivity can be
quite high if either "2="1 � 1 or "2="1  1, that is, if
there is a dramatic change in the size of the extra dimen-
sions across the boundary. This could be realized, for
example, when the extra dimensions remain microscopi-
cally small in both regions while �b2=b1�

�1 � lP=lTeV,
where lp �M�1

P is the Planck length and lTeV � TeV�1.
For particles with nonzero masses there is a threshold
energy (! � !min, for which k1 or k2 becomes zero) for
propagating waves, with R! 1 as !! !min. Our nu-
merical study substantiates these results for the case of a
domain wall of arbitrary width �, with R and T being
monotonic functions smoothly connecting the thin wall
and thick wall approximations for various wavelengths.

We note, however, that the results obtained here are valid
only for extra dimensional models having compact extra
dimensions without warping or branes. Braneworld models
can exhibit different qualitative behaviors for the reflection
and transmission of massless or massive modes. As an
example, consider the RS1 model [4] consisting of one
extra dimension compactified on an S1=Z2 orbifold. The
background spacetime metric is

 ds2 � e�2krj�jg��dx�dx� � r2d�2; (68)

where �� � � � �, with �x�;�� and �x�;��� identi-
fied. The two 3-branes are located at � � 0 (hidden brane)
and � � � (visible brane). The parameter k is a constant,
e�2krj�j is the warp factor, and r is the radius of the
compactified extra dimension. Let us consider a situation
wherein the radius r becomes a function of x�, correspond-
ing to a case of inhomogeneous compactification. If the
spatial variation of r is mild, we would expect the basic
results obtained from the RS1 model with constant r to be
approximately valid, at least qualitatively. In particular, a
physical particle mass m on the visible brane is related to
the mass parameter m0 appearing in the 5D theory by

 m � e�kr�m0: (69)

Therefore, if r varies with position x, the mass m on the
visible brane is smaller for larger r, i.e., for a larger extra
dimension. This is the same type of basic behavior found
above for our unwarped, brane-free models, and we there-
fore expect the same qualitative type of reflection behavior
for massive particles at a dimensional boundary. The story
is different, however, for electromagnetic fields. To see
this, we write the contribution to the EM fields on the
visible brane as

 Sv �
Z
d4x

����������
�gv
p

�
�

1

4
g�v g��v F�F��

�
; (70)

FIG. 2. Reflection and transmission coefficients for massive
spinless bosons. The values of "2 (1.1, 1.5, 2.0, 5) are given in the
figure except for "2 � 2 which is omitted for visual clarity. In all
cases "1 was set equal to 1. Top: Reflection coefficient R as a
function of dimensionless frequency �! � !�. Numerically we
found R! 1 as �!! 1. Bottom: Transmission coefficient T as
a function of �!.
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where the induced metric on the visible brane is gv;�� �
e�2kr�g��, with g�� the 4d Einstein frame metric. The
visible brane EM action can then be rewritten as

 Sv �
Z
d4x

�������
�g
p

�
�

1

4
F��F��

�
(71)

from which we see an effective dielectric function of unity,
" � 1. We therefore expect no reflection of EM fields from
a dimensional boundary in the visible brane. This qualita-
tive difference in the reflectivity of EM fields at a dimen-
sional boundary could thus serve to distinguish the RS1
braneworld model from one with a brane-free, warp-free
compactified extra dimension. Similarly, the qualitative
and quantitative differences between various extra dimen-
sional models regarding transmission and reflection of
massless and massive modes could help to differentiate
among various models.
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APPENDIX A: NUMERICAL CONSIDERATIONS

Here we discuss some details of the numerical procedure
used to extract solutions for the Klein-Gordon and electro-
magnetic wave equations (see previous section), which can
be written in terms of a dimensionless frequency �! � !�
as

 �00 � �!2�� "�1� � 0; (A1)

 B00 � �0B0 � �00B� �!2B � 0 (A2)

respectively, where " � 1
2 	�"1 � "2� � �"2 � "1� tanh �x


and � � ln". The numerical procedure is essentially the
same for either case. We discuss here our procedure for the
Klein-Gordon equation. We assume complex solutions and
write � � �R � i�I. The real and imaginary parts of �
both independently satisfy Eq. (A1). The function " is
constant far away from the transition region centered at
x � 0. Therefore we assume pure oscillatory solutions in
asymptotic boundary regions far from x � 0. Let �� and
�� be the boundary solutions at the positive and negative x
boundary regions. The boundary solutions must then take
the form

 �� � eik1x � A1e
i�1e�ik1x; (A3)

 �� � A2e
i�2eik2x � A3e

i�3e�ik2x; (A4)

where k �
���������������������
�!2 � "�1

p
. The boundary condition �� rep-

resents our ‘‘initial’’ conditions for the numerical integra-
tion of the differential equations associated with �R and
�I. The second term in Eq. (A3) represents the reflected
wave. Since we are interested in only right-moving waves
at x! �1, we seek solutions where A3 � 0. Thus we
search for solutions that connect �� to�� with A3 � 0. A
two parameter search is needed to meet these conditions.
The parameter space (0<A1 < 1, ��< �1 <�) is
searched for the outgoing wave which has A3 � 0.
Numerically, this condition is met in the following manner:
Eq. (A4) is examined at x � 2n�

k2
and x � �4n�1��

2k2
, where n

is a positive integer large enough so that a pure oscillatory
solution is guaranteed. We then get

 ��R �2n�=k2� � 1 � A2 cos�2 � A3 cos�3; (A5)

 ��I �2n�=k2� � 2 � A2 sin�2 � A3 sin�3; (A6)

 ��R ��4n�� 1�=2k2� � �1 � �A2 sin�2 � A3 sin�3;

(A7)

 ��I ��4n�� 1�=2k2� � �2 � A2 cos�2 � A3 cos�3:

(A8)

After a little rearrangement we arrive at the equations we
use for the numerical search:

 A2 �
1

2

�����������������������������������������������������
�1 � �2�

2 � �2 � �1�
2

q
; (A9)

 A3 �
1

2

�����������������������������������������������������
�1 � �2�

2 � �2 � �1�
2

q
: (A10)

Technically, we found that setting n � 5 and a linear
interpolation to the solutions (A5) and (A6) at the specified
x boundary values were of sufficient numerical accuracy
for our purposes. From Eq. (A10) we see that the numerical
solution must meet the condition that 1 � �2 and 2 �
��1. The reflection and transmission coefficients are then
given by Eq. (67): R � A2

1 and T � k2

k1
A2

2. Each two
parameter search was conducted at a specific value of �!.
Numerical integration of the differential equations for �R
and �I was accomplished using an Adams Pece integrator
in the numerical integration code entitled DE by Shampine
and Gordon [21]. A code was written in FORTRAN and
executed on IUN’s AVIDD-N computer cluster.
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