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The action of Weyl scale invariant p � 2 brane which breaks the target super-Weyl scale symmetry in
the N � 1, D � 4 superspace down to the lower dimensional Weyl symmetry W�1; 2� is derived by the
approach of nonlinear realization. The dual form action for the Weyl scale invariant supersymmetric D2
brane is also constructed. The interactions of localized matter fields on the brane with the Nambu-
Goldstone fields associated with the breaking of the symmetries in the superspace and one spatial
translation directions are obtained through the Cartan one-forms of the Coset structures. The covariant
derivatives for the localized matter fields are also obtained by introducing Weyl gauge field as the
compensating field corresponding to the local scale transformation on the brane world volume.
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I. INTRODUCTION

Nonlinear realization of a compact Lie group can be
realized on the Nambu-Goldstone fields related to the
broken symmetry generators and it becomes linear when
restricted to the given subgroup [1]. In Ref. [2], based on
nonlinear transformation of a spinor field, which played a
role of Goldstino field, the nonlinear realization method
was extended to include fermion like generators. The
resulted degeneracy of vacuum gave rise to spontaneous
broken of supersymmetry. The approach of nonlinear real-
ization of SUSY, besides the Goldstone field,

was generalized to matter fields as well as gauge fields
[3,4], with a formalism of effective couplings to the
Goldstino field. In Ref. [5], one can find applications of
nonlinear realization to branes of M theory, and a general
description is given to derive the dynamics of the branes.
There, it is restricted to group G whose generators can be
divided into two subgroups with one (such as Lorentz
group) is the automorphism group of another (whose gen-
erators associated with (super)spacetime positions). The
transformation of the group G with respect to the coset of
the unbroken automorphism generators group would give
us a description of the embedded submanifold, which has
the dimensions of the coset space of the unbroken auto-
morphism generators group with respect to the unbroken
subgroup.

As presented in [6–10], the approach of nonlinear real-
ization was extensively used to describe the spontaneous
partial breaking of (extended) supersymmetry and con-
struct actions of (super)brane dynamics. On the other
hand, when considering conformal transformation, in
Ref. [11] the dynamics of conformally invariant p-branes
was introduced. In [12,13], it was further extended to
describe Weyl invariant D p-brane and superconformal
supermembrane. It is our purpose of this paper to introduce
a Weyl scale (due to dilatation operator D) invariant p � 2

brane which embedded in the target N � 1, D � 4 super-
space defined by fx�; �; ��g. Considering the unbroken sub-
groupW�1; 2� (Weyl group) of the super-Weyl groupG and
the coset with respect to the unbroken automorphism group
of the unbroken subgroup, the symmetry G can be realized
on the nonlinear transformation of collective coordinates
fields which is a result of acting a group element of G on
the coset representative element �. When applied to brane
theory, it is illustrated that for such a brane that breaks the
supersymmetry and one spatial translation symmetry, its
dynamics is described by the low energy oscillations of the
Nambu-Goldstone modes associated with these broken
symmetries. Accordingly, the invariant action of the brane
can be obtained by using vielbein and connection one
forms on the submanifold after constructing Cartan one-
forms from ��1d�.

In this paper, we start from introducing the super-Weyl
scale group and its automorphism subgroup, then use the
above stated formalism of the nonlinear realization ap-
proach to find the fluctuations modes of Goldstone bosons
(Goldstino fermions) associated with spacetime coordi-
nates (Grassmann coordinates) of the broken symmetry
(supersymmetry). A Weyl scale invariant p � 2 brane
will be given when the target D � 4 superspace fx�; �; ��g

broken down to D � 3 spacetime world volume described
by parameters fx0; x1; x2g in the static gauge with Weyl
scale (dilatation) symmetry kept, which becomes a local
symmetry on the p � 2 brane world volume. The dual
form non-BPS Weyl scale invariant D2 brane supersym-
metric Born-Infeld action is also obtained.

Finally, in addition to the massless Nambu-Goldstone
fields of the p � 2 brane oscillations, we also consider
matter fields degree of freedom localized on the domain
wall brane. The Weyl scale

invariant actions of these matter fields are constructed by
using Weyl gauge field and spin connections. The latter
gives interactions of the matter fields with the Nambu-
Goldstone fields.*Electronic address: liul@physics.purdue.edu
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II. WEYL SCALE INVARIANT p � 2 BRANE

Consider super-Weyl groupG, whose generators include
N � 1, D � 4 super-Poincare generators (P�, M�� two
Weyl spinor supersymmetry chargesQ�, �Q _�) and the Weyl
scale (dilatation) generator D. It has the following (anti)-
commutation relations
 

fQ�; �Q _�g � 2��� _�P�

�M��;M��� � i����M�� � ���M�� � ���M��

� ���M���

�Q�;M��� � i
1

2
�������Q�

� �Q _�;M��� � i
1

2
� �����

_�
_�

�Q _�

(1)

and

 �D;M��� � 0; �D;D� � 0; �D;P�� � �iP�
(2)

 �D;Q�� � �
1

2
iQ�; �D; �Q _�� � �

1

2
i �Q _� (3)

where the dilatation operator D � �ix� @
@x� in

x-representation. From Eqs. (1)–(3), one can find gener-
ators fM��;Dg form a subgroup H0 which is the automor-
phism group of another subgroup, i.e. super spacetime
group by the set of charges of fQ�; �Q _�; P�g. In the case
when the G group symmetry is broken to the 1� 2 dimen-
sional Weyl W�1; 2� symmetry [14], whose unbroken gen-
erators, for example, in the static gauge, are fMij; D; Pig,
where the index i � 0, 1, 2 and the spontaneously broken
automorphism generators are Mi3. In such a case, we have
a two dimensional brane which is embedded in the super-
space and breaks down the target space super-Weyl invari-
ance to a lower dimensional Weyl group symmetry
W�1; 2�. Besides Mi3, the broken generators in superspace
are the generators Q�, �Q _� in the Grassmann coordinate
directions fx�; ��; �� _�g and the translation generator P3

transverse to the brane.
Consider the coset G=H, where H has unbroken anto-

morphism generators fMij; Dg. We hence have a p � 2
brane, which has a W�1; 2� symmetry, moving through
the coset space G=H0 with tangent group H0. It sweeps
out a submanifold that has the dimensions of the coset
space G0=H with tangent group H, where G0 is spanned by
the unbroken automorphism generators fMij; Dg and the
unbroken spacetime generators Pi. Since we will work on a
D � 3 manifold, it is more convenient to express N � 1,
D � 4 super-Weyl algebra in terms ofD � 3 Lorenz group
indices with new defined generators Mm � 1

2"
mnrMnr and

Km � Mm3, where m � 0, 1, 2. In N � 2, D � 3 super-
symmetry theory, there are four supercharges which are the
same number as for N � 1 supersymmetry in D � 4. In

fact, N � 2,D � 3 SUSYalgebra [15–17] can be obtained
by dimensionally reducing N � 1 supersymmetry in four
dimensions. From the D � 3 standpoint the N � 1,D � 4
SUSY algebra is a central-charged extended N � 2
Poincare superalgebra, with one D � 4 translation genera-
tor becomes the central charge generator Z0 [8,10,15].
Taking Z0 � �P3 � �Z, with supercharges Q�, �Q _� be-
comes two complex conjugate spinors Q�, �Q� in three
dimensions, the N � 1, D � 4 Supersymmetry reduces to
N � 2, D � 3 extended Supersymmetry with relations
(See Appendix A for derivation and notations):
 

�Mm;Mn� � �i"mnrMr; �Mm;Kn� � �i"mnrKr;

�Km;Kn� � i"mnrMr �Mm;Pn� � �i"mnrPr;

�Mm; Z� � 0; �Km;Pn� � �i�mnZ;

�Km; Z� � �iPm �Z; P�� � 0; �D; qi� � �
1

2
iqi;

�D; si� � �
1

2
isi fqi; qjg � 2�	mC�ijPm;

fsi; sjg � 2�	mC�ijPm; fqi; sjg � �2iCijP3 (4)

where q, s are extended supercharges in three dimensions.
The unbroken automorphism generators forms group H.
With R symmetry suppressed, an exponential description
of the Coset G=H representative element is

 � � ei

mpmei���
�Z� ��i�
�qi� ��i�
�si�eiu

m�
�Km; (5)

in which variables 
 parameterizes the embedded subma-
nifold described by the p � 2 brane, and ��
�, ��
�, ��
�,
u�
� are the Nambu-Goldstone fields that depend on vari-
ables 
. The dynamics can be constructed about the brane
which describe a broken symmetry in the z, �, �� superspace
coordinates directions and whose long wave length exci-
tation modes are described by these Nambu-Goldstone
fields associated with these broken symmetries. By using
reparameterization invariance, we choose static gauge
xm � 
m for space time coordinates xm lying in directions
of the brane. Then it becomes

 � � eix
mpmei���x�Z� ��i�x�qi� ��i�x�si�eiu

m�x�Km: (6)

The elements of groupG can be decomposed uniquely into
a product form of Coset representative element � and
subgroup element of H. In some neighborhood of the
identity of group G, its element is parameterized as

 g � ei�a
mpm� �
q� ��s�zZ�bmKm��mMm�dD� (7)

Under a right group transformation g, the Coset element �
transforms to �0 � eix

0mpmei��
0�x0�Z� ��0i�x

0�qi� ��0i�x
0�si�eiu

0m�x0�Km

with the following relation

 g� � �0h; (8)

where h stands for the subgroup element. The field ��x�,
which transforms linearly under rigid g transformations,
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i.e. �0�x� � g��x�, could be re-expressed as field ~��x�
through ��1��x� � ~��x� from which the massless
Goldstone mode has been eliminated. Therefore, when
the symmetry group G is broken to subgroup H, from
Eq. (8) one finds that �0�x� � �0 ~�0�x� � g��x� �
g� ~��x� � �0h ~��x�. Then the original G transformations
is rewritten as the transformation depending on ~�0�x� �
h ~��x� under the unbroken subgroup H, which is used as
basic formalism to construct invariant Lagrangian when
considering localized matter fields on the brane [18].
Applying Eqs. (B1)–(B3), it can be found the transforma-
tions of the space coordinates as well as the Nambu-
Goldstone fields induced by the infinitesimal transforma-
tion of group g:
 

x0m � xm � dxm � am � i� �
	m�� ��	m��

��bm � "mnr�nxr;

�0�x0� ���x� � �� � z� d�� �
	0�� �	0��

� bmxm;

�0�x0� � ��x� � ��i � 
i �
1

2
d�i �

i
2
bm�	m��i

�
i
2
�m�	m��i;

�0�x0� � ��x� � ��i � �i �
1

2
d�i �

i
2
bm�	m��i

�
i
2
�m�	m��i;

u0�x0� � u�x� � �um �

�����
u2
p

tanh
�����
u2
p

�
bm �

urbru
m

u2

�

�
urbrum

u2 � "mnr�nur;

(9)

where the linear terms of d represent the Weyl scale trans-
formations of each collective coordinates. The element h is
given by

 h � ei��
mMm��1=2��tanh�

����
u2
p

=2�=�
����
u2
p

=2��bnur"nrmMm�dD�� (10)

From above, it can be found the spacetime coordinates
have a field dependent transformation as a result of the
nonlinear realization of group G. In this case, there are
broken symmetries of Q�, �Q _�, Z and rotation generators
Mm3 related to the z direction. For the breaking symmetry
of spacetime, the only Nambu-Goldstone fields are those
associated to the broken (super)translations [19], and the
superfluous Nambu-Goldstone fields um can be eliminated
by imposing invariant conditions on the Cartan differential
forms [20] (see Eq. (19)).

The G symmetry is represented by transformation prop-
erties of the field ~��x� under the unbroken subgroup H.
Considering incorporation of the dynamics of the field
~��x� with that of the brane, we work on dreibein basis in
the local tangent space of the submanifold swept out by the

p � 2 brane. The interval ds2 � gmndx
mdxn has the form

ds2 � �abdx
adxb in the tangent space, with relations

ds2 � gmndxmdxn � �abemaenbdxmdxn and dxa �
emadxm. The metric tensor is related to the dreibein
through

 gmn � em
aen

b�ab (11)

In the local subgroup H formed by algebra fMij; Dg, under
the scale transformation xm ! x0m � edxm, the interval
transforms as ds2 ! ds02 � e2dds2. In terms of metric
tensor gmn, because ds2 � gmndxmdxn, then it is under-
standing that the metric tensor have a weight 2 under the
Weyl scale transformation, i.e.

 g0mn � e2dgmn: (12)

Conversely, gmn has scale weight�2. Its total infinitesimal
transformation induced by the general coordinate variation
xm ! x0m � xm � dxm � "m�x� is given by

 g0mn � gmn � 2dgmn � �@m"n � @n"m� (13)

where "m�x� � am � i� �
	m�� ��	m�� ��bm �
"mnr�nxr.

In order to construct an invariant action, we can obtain
dreibein and connection one-forms by using Cartan form
��1d�, which is expanded with respect to the G gener-
ators:
 

��1d� � i�!apa � �!qiqi � �!sisi �!ZZ�!
a
kKa

�!a
MMa �!DD� (14)

Under the transformation �! �0, the Cartan forms trans-
form as

 �0�1d�0 � h���1d��h�1 � hdh�1: (15)

It is obvious that all the forms transform homogeneously
under G except the connection one from !a

M which trans-
forms by a shift. These forms are invariant under the global
left action of G on G=H. Under the local right action �!
�0h with h given by Eq. (10), the forms !a transform as
the dreibein on the tangent bundle to G=H, while !a

M
transforms as a connection to this bundle. The Cartan
forms associated with the unbroken spacetime generators
P involve the exterior derivative d which is independent of
the coordinate system used to parameterize the embedded
submanifold and is reparametrization invariant. After
choosing the static gauge 
m � xm, the dreibein em

a is
obtained by expanding spacetime one-forms !a with re-
spect to the coordinate differentials dxm, i.e. !a �
dxmema. The connection one-forms !a

M, on the other
hand, can be used to construct the covariant derivative of
the fields r ~��x� � �d� i!a

M�a � i!D�0� ~��x�, where �a
and �0 are respective representations of the generators Ma

and D with respect to the fields ~��x�. These are the build-
ing blocks that can be used to construct invariant actions
under G. Considering Eqs. (4) and (B4), we have
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!a
M � �cosh

�����
u2

p
� 1�

ubduc
u2 "abc

!a � �dxm � id�	0	m�� id�	0	m�� �
�
m

a � �cosh
�����
u2

p
� 1�

umua

u2

�
� �d�� d�	0�� d�	0��

sinh
�����
u2
p

�����
u2
p ua

!D � 0 (16)

where a � 0, 1, 2. We use a, b, c to represent the tangent spacetime index, and i, j, k to represent 2� 1 general coordinates
in what follows. SinceD is the automorphism generator of the (super)spacetime position group, and from the commutation
relations of Eq. (2), it is found that D is not involved in the Cartan forms here, which is in consistent with !D � 0. The
dreibein
 

ema � �mb � i@m�	0	b�� i@m�	0	b�� �
�
b

a � �cosh
�����
u2

p
� 1�

ubu
a

u2 � �
~Db�� ~Db�	0�� �	0 ~Db��

sinh
�����
u2
p

�����
u2
p ua

�

� Am
b �

�
b

a � �cosh
�����
u2

p
� 1�

ubua

u2 � �
~Db�� ~Db�	

0�� �	0 ~Db��
sinh

�����
u2
p

�����
u2
p ua

�
(17)

has a tangent space index a, which has the transformation
property induced by Eq. (15) in the local tangent space,
with Lb

a the local H representation with vector indices

 e0ma � embLb
a (18)

In Eq. (17), ~Db � A�1m
b @m is the Akulov-Volkov deriva-

tive, defined by Amb � m
b � i@m�	

0	b�� i@m�	
0	b�

[3,4,10]. Imposing the invariant condition !z � 0 on the
covariant derivative, as a result of the inverse Higgs
Mechanism [10,20], the field um can be eliminated by the
following relation

 ub
tanh

�����
u2
p

�����
u2
p � �� ~Db�� ~Db�	0�� �	0 ~Db�� � � ~Db�

(19)

Plugging this into Eq. (17), the dreibein hence has the
simple form
 

em
a � Am

b �

�
b

a�
ubua

u2

�
1

cosh
�����
u2
p � 1

��

� Amb �
�
b

a�
~Db� ~Da�

�D��2

� ����������������������
1�� ~D��2

q
� 1

��
: (20)

The metric tensor becomes

 gmn � emaenb�ab � AmaAnb�ab � @m�@n� (21)

Introduce four dynamic variables X� � �Xa; X3� �
�Xa;��, which are defined as following

 dXa � dxmAm
a

dX3 � �@m�� @m�	
0�� �	0@m��dx

m
(22)

After integrating from both sides, we have

 X0 � x0 � f0��; ��; X1 � x1 � f1��; ��;

X2 � x2 � f2��; ��; X3 � �� F��; ��;
(23)

where f��; ��, F��; �� are functions of ��x�, ��x�, decided

by the integration of Eq. (22). Therefore,in the static gauge

m � xm, by using Eq. (23), the metric tensor in Eq. (21)
now becomes

 gmn � ���
@X�

@
m
@X�

@
n
� ���

@x�

@
m
@x�

@
n
� other terms

(24)

where x� � �x0; x1; x2; ��. Consequently, in contrast with
the normal spacetime induced metric gmn � ���

@x�
@
m

@x�
@
n on

p brane world volume, there are modification terms of the
metric through the functions f��; ��, F��; �� which are
contributed from the Nambu-goldstone fields ��x�, ��x�
corresponding to the broken symmetries in the superspace
coordinates directions (see Eq. (28) for details).

The infinitesimal transformation of dreibein in the local
tangent space is

 em
a � Lem

a � dem
a (25)

with Lema represents the local Lorentz transformation.
The second term is the Weyl scale transformation. Hence,
the world volume has the scale transformation property

 dx3 dete! dx03 dete0 � e3ddx dete: (26)

We introduce the intrinsic metric �mn on this p � 2 brane
manifold. Similarly, it has the Weyl scale transformation
property �mn ! e2d�mn and dx3

�������
j�j

p
! dx03

��������
j�0j

p
�

e3ddx3
�������
j�j

p
. Considering Eq. (24), the action of the Weyl

scale invariant p � 2 brane is then constructed

 I � �T
Z
d3x

�������
j�j

q �
1

3
�mn���@mX�@nX�

�
3=2

(27)

here �mn is the inverse of the metric �mn and � stands for
the determinant of �mn. The auxiliary intrinsic metric
�mn can be eliminated by using its equation of motion.

By using Eq. (22), the action then has an explicit form
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I � �T
Z
d3x

�������
j�j

q �
1

3
�mn���@mX�@nX�

�
3=2

� �T
Z
d3x

����
�
p

�
1

3
�mn��mn � i@n�	

0	m�� i@n�	
0	m�� i@m�	

0	n�� i@m�	
0	n�

� �i@m�	
0	a�� i@m�	

0	a�� � �i@n�	
0	a�� i@n�	

0	a�� � �@m�� @m�	
0�� �	0@m��

� �@n�� @n�	
0�� �	0@n���

�
3=2

(28)

where T stands for the brane tension.

III. WEYL SCALE INVARIANT D2 BRANE

As discussed in Sec. II, we have constructed the Weyl
scale invariant non-BPS p � 2 brane action. In the follow-
ing we derive its dual form, the non-BPS Weyl scale
invariant D2 brane supersymmetric Born-Infeld action.
From Eqs. (19) and (20), we have

 dete � det�ema�

� det
�
Amb �

�
b

a �
ubu

a

u2

�
1

cosh
�����
u2
p � 1

���

� det�Am
b� � det

�
b

a �
ubua

u2

�
1

cosh
�����
u2
p � 1

��

� detA �
1

cosh
�����
u2
p

� detA �
����������������������������������������������������������������������
1� � ~Db�� ~Db�	0�� �	0 ~Db��

q
(29)

By using the Nambu-Goto type p � 2 brane action
�T

R
d3x dete, and considering Eq. (29), it allows us to

introduce a gauge field strength vector Fr [10] by variation
of this action with respect to the field �. It is defined as

 Fr � detA � ua � A�1r
a �

sinh
�����
u2
p

�����
u2
p : (30)

Its equation of motion results the relation @rFr � 0, which
has explicitly U(1) gauge solution An, i.e.

 Fmn � @mAn � @nAm (31)

and Fr is related to Fmn by

 Fr �
1

2
"mnrFmn �

1

2
"mnr�@mAn � @nAm�: (32)

Conversely, Fmn � "mnrF
r. In D � 3 dimension, there is

D� 2 � 1 degree of freedom for the U(1) gauge field An,
which compensates the degree of freedom of field � in
Eq. (29). Therefore, by using Eq. (30), we find

 cosh
�����
u2

p
�

����������������������������
1� sinh2

�����
u2

pq
�

���������������������������������������������
1�

FmAm
bFnAn

a�ab
det2A

s
:

(33)

Introduce the Akulov-Volkov metric field ~gmn, which is
given by

 ~g mn � AmaAnb�ab: (34)

It has the explicit form
 

~gmn � �mn � i@n�	0	m�� i@n�	0	m�� i@m�	0	n�

� i@m�	0	n�� �i@m�	0	a�� i@m�	0	a��

� �i@n�	0	a�� i@n�	0	a��: (35)

After explicitly expanding the following determent, it can
be shown

 det�~gmn � Fmn� � det�~gmn � "mnrF
r�

� det~g� FmFn~gmn � det 2A � cosh2
�����
u2

p
(36)

where ~g � det~gmn, and the last equality is a result of
Eq. (33). Consider the alternative form of Eq. (29)

 dete � detA �
1

cosh
�����
u2
p � detA �

cosh2
�����
u2
p
� sinh2

�����
u2
p

cosh
�����
u2
p

� detA � cosh
�����
u2

p
� detA � sinh

�����
u2

p
tanh

�����
u2

p
;

(37)

by using Eq. (19) and (30) and substituting Eq. (36) into
(37), the resulting expression is
 

dete �
��������������������������������
det�~gmn � Fmn�

q
� Fm�@m�� @m�	0�� �	0@m�� (38)

Introduce an intrinsic tensor field Gmn, which has Weyl
scale transformation property

 Gmn ! e2dGmn: (39)

Hence a spacetime integral of the first part of Eq. (38) has
the classically equivalent Weyl invariant form:

 

Z
d3x

�
~g1=4G1=4

�
1

3
Gmn�~gmn � ~gklFmkFln�

�
3=4
�

(40)

The equation of motion of the intrinsic tensor field Gmn,
which can be derived from Eq. (43), is

 Gmn � ��~gmn � ~gklFmkFln�; (41)
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where � is a constant. The spacetime integral of the
second part of Eq. (38) has the form

 

Z
d3xFm�@m�� @m�	0�� �	0@m��

�
Z
d3xFm�@m�	

0�� �	0@m��

�
Z
d3x

1

2
"mnr�@mAn � @nAm� � �@m�	

0�� �	0@m��:

(42)

In the first equality we use the relation @rF
r � 0 and

integrate by parts to drop the field � term. Consider the
world volume element d3x, which is a tensor density with
weight �1. Therefore d3x

���
~g
p

becomes a scalar quantity.
Since "mnr is also a weight�1 tensor density, we can form
an ordinary contravariant rank three tensor "

mnr��
~g
p . Under the

Weyl scale transformation ~gmn ! e2d~gmn, Eq. (42) hence
keeps invariant.

Considering Eqs. (40) and (42), the dual form action, i.e.
the Weyl scale invariant D2 brane Born-Infeld type action
is then constructed

 I � �T
Z
d3x

�
~g1=4G1=4

�
1

3
Gmn�~gmn � ~gklFmkFln�

�
3=4

�
1

2
"mnr�@mAn � @nAm� � �@m�	

0�� �	0@m��
�
(43)

where Fmn and ~gmn are given by Eq. (31) and (35)
respectively.

IV. LOCALIZED MATTER FIELDS ON THE BRANE

In addition to the massless Nambu-Goldstone fields
��x�, ��x� and ��x� on the brane, there can also be matter
field degrees of freedom localized on the brane. The in-
duced localization of the scalar and fermionic degrees of
freedom on the submanifold were considered in [10] when
the embedded defects spontaneously break the target mani-
fold. In the following model, by using the ingredients of the
Cartan one-forms, we present the actions of the matter
fields as well as interactions with the Nambu-Goldstone
fields. Consider there is different dilatation scale associated
with local spacetime points on the brane, i.e.d is a local
function of spacetime, a Weyl gauge field Bm�x� is intro-
duced as the compensating field in order to keep the whole
action invariant. The action of the Weyl gauge field Bm�x�
interacting with the Nambu-Goldstone fields on the brane
is also constructed.

For the matter degrees of freedom localized on the p �
2 brane, under the unbroken subgroup H, in the tangent
space the matter field M�x� transforms as

 M0�x0� � hM�x� (44)

in which h is given by Eq. (10). The covariant derivative

for the matter field is given through the spin connection and
dilatation one-forms:

 rM�x� � �d� i!a
M�a � i!D�0�M�x�

� �d� i!a
M�a�M�x� (45)

where �a is the representation ofMm corresponding to field
M�x�. When Weyl scale parameter d becomes local func-
tion of spacetime d � d�x�, Eq. (45) will not transform
covariantly under H. A new compensating field Bm (Weyl
gauge field) is introduced [21–24], therefore in component
forms the covariant derivative is written as:

 raM�x� � �e
�1m
a @m � i!a

b�b � Bads�M�x�

� �Da � i!a
b�b � Bads�M�x� (46)

whereDa � e�1m
a @m, the coefficients!a

b is related to spin
connection one-from by !b

M � !a
bdxa, Bm is related to

gauge field Ba in the local tangent space by Bm � em
aBa,

and ds is the scale dimension(weight) of the matter field
M�x�. The variation of the matter field under the groupH is

 M�x� � M0�x0� �M�x� � 0LM�x� � 
0
DM�x�

� i"a � ��a � La�M�x� � id�x� �DM�x� (47)

where 0LM�x� � i"a � ��a � La�M�x� represents variation
under SO(1,2) transformation, the parameter "a decided by
Eq. (10) is a function of � and b. And L is the angular
momentum representation of Mm. The variation of the
scale transformation is

 0DM�x� � M0�x0� �M�x�jD � id�x� �DM�x�

� d�x � @� ds�M�x� (48)

Hence, the general filed representation of the scale operator
is given by

 D � �i�x � @� ds�: (49)

The intrinsic Weyl scale variation of the matter field then
can be written as

 DM�x� � M0�x� �M�x�jD � d�x� � dsM�x�: (50)

From Eq. (18) and (25) one can find the intrinsic infini-
tesimal scale variation of dreibein

 Dema � dema (51)

Therefore the scale dimension for dreibein is 1. Besides, in
2� 1 dimensions, the scalar field has weight ds��� �
�1=2, and the spinor field is ds� � � �1.
Correspondingly, we have

 D� � �
1

2
d�x��; D � D � � �d�x� ; (52)

with scale transformation of the coordinates in the tangent
space

 Dxa � d�x�xa: (53)
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Hence, under D operation the derivative of the matter field
transforms as

 DaM�x� ! D0aM
0�x0� � D0aM

0�Dx�

� e�d�x�e�1m
a @me

d�x�dsM�x�

� e�d�x�ed�x�dse�1m
a �dsd�x�;mM�x� � @mM�x��

(54)

The Weyl gauge covariant derivative then transforms as
 

raM�x� ! r0aM0�x0� � �D0a � i!a
b�b � B0ads�M0�Dx�

� e�d�x�ed�x�ds�Da � dsd�x�;a � i!a
b�b � Bads

� dsd�x�;a�M�x�

� e�d�x�ed�x�dsraM�x� (55)

in which we used D!b
M � 0, therefore D!a

b �
�d�x�!a

b and the Weyl gauge field Bm has the infinitesi-
mal scale transformation property

 DBm�x� � �d�x�;m: (56)

Considering the scalar field localized on the p � 2
brane, since �b��� � 0 and ds��� � �1=2, the Weyl
gauge covariant derivative is then constructed

 ra��x� �
�
e�1m
a @m �

1

2
e�1m
a Bm

�
��x�: (57)

The Lagrangian density of the scalar field is given by
 

‘� � �abra��x�rb��x� � f�
6

� gmn
�
@m �

1

2
Bm

�
��x�

�
@n �

1

2
Bn

�
��x� � f�6 (58)

in which f is the dimensionless coupling constant. The
effective action of the scalar matter field on the brane up to
the leading term in brane tension expansion is obtained

 I� �
Z
d3x dete‘�: (59)

For the fermion spinor field, the spinor representation of
the operators Ma are �a� � � �

1
2	a. The covariant de-

rivative of the spinor field is

 ra i�x� � Da i � i
1

2
!a

b	bij j�x� � Ba i�x� (60)

Since  �x�, � �x� interacts with the field Ba in the same
manner, the spinor field has no minimal form of coupling
to the Weyl gauge field. The Lagrangian of the spinor
matter field with Yukawa coupling to the scalar fields is

 ‘ �
1

2
i� � 	ara �ra � 	a � � g �  �2 (61)

The effective action of the spinor field on the brane has the
form

 I �
Z
d3x dete‘ (62)

The field strength which describes the Weyl gauge field Bm
has the normal form

 Fmn � @mBn � @nBm (63)

Introducing new dynamics variables Fab � e�1m
a e�1n

b Fmn,
their infinitesimal Weyl transformation properties are

 DFab � �2d�x�Fab; (64)

on dimension and Weyl scale invariant ground, the effec-
tive action of the Weyl gauge field can be constructed

 IB �
Z
d3x dete‘B �

Z
d3x dete‘B�e�1m

a ; Fmn� (65)

where the lagrangian has Weyl dimension �3 and is a
function of e�1m

a and Weyl gauge field strength Fmn.
Considering Eqs. (59), (62), and (65), the full effective
action for the matter fields localized on the brane is then
given by

 Imatter � I� � I � IB �
Z
d3x dete‘matter

�
Z
d3x dete‘� �

Z
d3x dete‘ �

Z
d3x dete‘B

(66)

In summary, in this letter we have constructed Weyl
scale invariant version of the p � 2 brane action, which
is a result of spontaneous breaking of the target N � 1,
D � 4 superspace with G symmetry to the W�1; 2� sym-
metry on the embedded the 2� 1 world volume. Its low
energy fluctuations in directions associated with the broken
symmetry generators are described by the dynamics of the
Nambu-Goldstone fields. There, unlike the BPS state of the
D brane which carries conserved charges or the partially
broken supersymmetry on the brane whose central charge
saturates the lower bound of the state [25], it is the case of
non-BPS state. By this approach of nonlinear realization,
one can also find its application to branes of M theory with
a large automorphism group of superalgebra [26]. In addi-
tion, as described above, the brane, as a defect in spacetime
that breaks certain symmetries, may cause the localization
of matter fields as well as the gauge fields on it, which is a
fact of physical necessity and required to be present in the
effective world volume field theories. Additional discus-
sions can also be found in [27,28] and some brane world
scenarios as well [29].
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APPENDIX A: DIMENSIONAL REDUCTION OF
N � 1, D � 4 SUSY TO N � 2, D � 3 SUSY

In N � 2, D � 3 Supersymmetry theory, there are two
two-component Majorana spinorial generators Q1

�, Q2
�

satisfying

 fQ1
�; �Q1

�g � �	 � P���; fQ2
�; �Q2

�g � �	 � P���;

fQ1; �Q2g � iZ0;
(A1)

where �;� � 1; 2 are component indices, and
�	0; 	1; 	2� � ��2; i�1; i�3�, �Q1�2� � Q1�2�yC �
Q1�2�y	0, with Majorana condition Q1�2� � �Q1�2�	, and
Z0 is the central charge. If we introduce a Dirac spinor
Q0 � 1��

2
p �Q1 � iQ2�, then we have

 fQ0; �Q0g � 	 � P� Z0: (A2)

In N � 1, D � 4 Supersymmetry theory, from Eq. (1),
we have

 fQ�; �Q _�g � 2��� _�P�: (A3)

Imposing rotation operations e�iM
23�=2 and eiM

13�=2 con-
secutively on Eq. (A3), the four momentum vector has the
corresponding transformation

 P0 ! P0 P1 ! P2 P2 ! �P3 P3 ! �P1

(A4)

and the spinor becomes

 Q! W (A5)

with

 W �
Q1e

�i�=4 cos�4 �Q2e
i�=4 sin�4

Q2e
i�=4 cos�4 �Q1e

�i�=4 sin�4

 !
(A6)

Equation (A3) then has the form

 fW;Wyg � 2�0P0 � 2�1P2 � 2�2��P3� � 2�3��P1�

(A7)

Right multiplication of �2 from both sides, it has the form

 fW;Wy�2g � 2�2P0 � 2i�3P2 � 2��P3� � 2i�1P1

� 2	0P0 � 2	1P1 � 2	2P2 � 2��P3�:

(A8)

Thus

 fW; �Wg � 2	 � P� 2��P3�; (A9)

where �W � Wy	0. Compare (A9) with (A2), we may
identify W with

���
2
p
Q0 and Z0 with �P3. Using redefined

operators

 Q1 �
1���
2
p

�
is1

is2

�
; Q2 �

1���
2
p

�
�iq1

�iq2

�
; (A10)

from Eqs. (A1), (A2), (A6), and (A10), we have

 

q1

q2

� �
�

1
2Q1ei�=4 � 1

2Q2ei�=4 � 1
2

�Q1e�i�=4 � 1
2

�Q2e�i�=4

1
2Q1e�i�=4 � 1

2Q2e�i�=4 � 1
2

�Q1ei�=4 � 1
2

�Q2ei�=4

 !
;

s1

s2

� �
�

1
2Q1e�i�=4 � 1

2Q2e�i�=4 � 1
2

�Q1ei�=4 � 1
2

�Q2ei�=4

1
2i Q1e

�i�=4 � 1
2i Q2e

�i�=4 � 1
2i

�Q1e
i�=4 � 1

2i
�Q2e

i�=4

 !
:

(A11)

Hence, the extended centrally charged N � 2, D � 3 su-
persymmetry algebra is
 

fqi; qjg � 2�	mC�ijPm; fsi; sjg � 2�	mC�ijPm;

fqi; sjg � �2iCijP3; �Km; qj� �
1

2
	mijsj;

�Km; si� � �
1

2
	mijqj; �Mmn; qi� � �

1

2
	mnij qj;

�Mmn; si� � �
1

2
	mnij sj:

(A12)

APPENDIX B: USEFUL FORMULAS

In derivation of Eqs. (9) and (10), we consider the Baker-
Hausdorff formula:

 

exp�a� exp�b� � exp
�
a� b�

1

2
�a; b� �

1

12
�a; �a; b��

�
1

12
�b; �b; a�� � . . .

�
: (B1)

For infinitesimal operator a, up to the first order of a, we
have
 

exp�a� exp�b� � exp
�
a� b�

1

2
�a; b� �

1

12
�b; �b; a��

� . . .�O�a2�

�
� exp�a� adb=2�a� � adb=2

� coth�adb=2��a� �O�a2��; (B2)

and likewise
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exp�b� exp�a� � exp
�
a� b�

1

2
�b; a�

�
1

12
�b; �b; a�� � . . .

�
� exp�b� adb=2�a� � adb=2

� coth�adb=2��a� �O�a
2��; (B3)

in which adb=2�a� is the adjoint operation with adb=2�a� �
�b2 ; a�. In derivation of Eq. (16),consider the differentiation
formula for exponent:

 exp��b�d exp�b� �
X1
k�0

��1�k

�k� 1�!
�adb�kdb (B4)
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