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I. INTRODUCTION

The deconfining phase transition in SU�N� gauge theo-
ries is of interest in its own right, as a problem in statistical
mechanics, and for its possible application to the collisions
of large nuclei at very high energies.

If the deconfining transition is of second order, then
universality and the renormalization group predicts the
critical behavior [1]. Lattice simulations indicate that the
deconfining transition is of second order forN � 2,N � 3,
and (perhaps) N � 4 in 2� 1 dimensions [2], and for N �
2 in 3� 1 dimensions [3].

For other N, N � 5 in 2� 1 dimensions [2], and for
N � 3 in 3� 1 dimensions [4–7], the deconfining transi-
tion appears to be of first order [4–7]. Universality is of no
help for a first order transition. Moreover, even when a
transition is of second order, universality is only of use near
the transition; it says nothing about what happens away
from it.

A first order transition is natural at large N, because the
number of degrees of freedom is�1 in the confined phase,
and �N2 in the deconfined phase [7]. One possibility is
that the transition is so strongly first order that the entire
deconfined phase is a nearly ideal gluon plasma. In 3� 1
dimensions, for example, this might have been true for all
N, from N � 3 to N � 1. In this case, the deconfined
phase would be amenable to analysis by means of a re-
summed perturbation theory [8], for all temperatures from
the transition temperature, on up. This does not seem to be
what happens, however. If Td is the temperature for decon-
finement, all consistent resummations of perturbation the-
ory appear to fail in describing temperatures below
temperatures of order � 4Td [8].

A plausible guess is that at temperatures T between Td
and � 4Td, the theory goes into a regime of strong cou-
pling [9,10]. After all, by running asymptotic freedom in
reverse, as the temperature decreases, the value of the
strong coupling constant, �s�T�, increases.

Even at temperatures as low as the transition tempera-
ture, though, the gauge coupling is not especially large.
Consider the effective coupling which enters into the di-
mensionally reduced theory in three dimensions [11].
Computations show that in the magnetic sector, nothing

surprising happens, even at temperatures as low as Td. For
example, one can compare the static string tension in the
dimensionally reduced theory, to that in the full theory.
Using the two loop calculations of the magnetic coupling
by Giovannangeli [12], Laine and Schröder [13] find re-
markably good agreement between these two quantities
from high temperature all of the way down to Td. They
estimate that in QCD, even at a ‘‘transition’’ temperature of
� 175 MeV, that the effective coupling in the dimension-
ally reduced theory is �eff

s � 0:28 [13]. This is a surpris-
ingly small coupling: at zero temperature, it corresponds to
a relatively high momentum scale, of � 1:6 GeV.

While nothing remarkable happens in the magnetic sec-
tor, something striking happens in the electric. At nonzero
temperature, the electric sector of a gauge theory is probed
by the eigenvalues of the thermal Wilson line, which are
gauge invariant [14–23]. Most notably, the Polyakov line
is proportional to the sum of these eigenvalues, and is near
one in a perturbative regime. Numerical simulations on the
lattice show that while the renormalized Polyakov loop is
� 0:9 at � 3Td, it falls sharply as the temperature de-
creases, to � 0:4 at the transition, and vanishes in the
confined phase [19,20].

Thus when a gauge theory deconfines, it does not go
immediately to a nearly ideal plasma at Td. Instead, for
temperatures between Td, and � 4Td, the electric sector,
although not strongly coupled, behaves in a pronounced
nonperturbative manner.

We remark that this behavior in the electric sector drives
the theory far from the conformal limit. This is shown by
the interaction measure, which is the trace of the energy
momentum tensor divided by T4. The interaction measure
vanishes for a conformally invariant theory, such as for a
free, massless field, or less trivially, for a gauge theory with
N � 4 supersymmetry. For a SU�N� gauge theory in 3�
1 dimensions, lattice simulations show that for N � 2 [3],
N � 3 [4], N � 4 [6], and N � 8 [6], the interaction
measure is very large when T: Td ! 4Td. How large can
be estimated by comparing to the value in perturbation
theory, where it starts at ��2

s . For N � 3, the interaction
measure has a sharp maximum just above the transition, at
T � 1:2Td. At this maximum, the interaction measure is
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about 10 times larger than its perturbative value, using the
values of �s�T� from [13]. In contrast, by � 4Td, its value
is within the range expected from perturbation theory.

In order to understand the nonperturbative, electric sec-
tor of a deconfined gauge theory, it is necessary to develop
an effective theory of thermal Wilson lines [16,20–23].
Wilson lines are SU�N� matrices, and so the effective
theories of relevance are matrix models.

In this paper we take a small step in this process, by
considering the effective theory for deconfinement in 2� 1
dimensions. In 3� 1 dimensions, at least at large N the
effective theory for deconfinement is dominated by an
effective potential [22]. In 2� 1 dimensions, however,
fluctuations can dominate the potential. Fluctuations are
why, for instance, the deconfining transition forN � 3 is of
second order in 2� 1 dimensions, versus the first order
transition expected in mean field theory.

The infrared behavior of such a matrix model is in-
volved, and involves complex interactions between the
potential and fluctuations. The ultraviolet limit, though,
is amenable to perturbative analysis, and it is this which
we study in the present work.

Our computation is similar to that for an ordinary non-
linear sigma model in two dimensions [24–29]. While
familiar sigma models have one coupling constant, matrix
models have an infinity of couplings, all of which are
relevant in the ultraviolet limit. Thus one of the purposes
of this paper is to see if such models are well behaved in
perturbation theory. We find that they are: modulo a rea-
sonable technical assumption on the size of the coupling
constants, (48), we find that at least to one loop order,
the counterterms induced can be reabsorbed into renorm-
alizations of the bare coupling constants. This allows
�-functions to be defined in a standard fashion [24].

It is well known that the single coupling constant of the
nonlinear sigma model is asymptotically free in two di-
mensions [24–29]. One might hope that the new couplings
in matrix models are also asymptotically free. We find that
this is not true. We consider the simplest generalization of a
SU�2� � SU�2� sigma model, which involves three cou-
pling constants. While the coupling analogous to that of the
usual sigma model is always asymptotically free, at least
one of the two new couplings is not. This result is similar to
that of Friedan, who considered a sigma model in a back-
ground metric, and found that the new couplings induced
by the background metric usually spoil asymptotic free-
dom [27].

In Sec. II we classify the types of matrix models for
general N; in Sec. III, for N � 2. Section IV describes the
one loop calculation in a general background field. The
counterterms are computed in Sec. V, producing the
�-functions of Sec. VI. In Sec. VII we suggest how the
�-functions for N � 2 might generalize to N � 3, and
how these affect the phase transitions of the model in,
and above, two dimensions. An appendix contains a com-

ment about a nearly Goldstone boson at large N in SU�N�
gauge theories.

II. VARIETY OF MATRIX MODELS

Consider a matrix valued field L� ~x�. Let it be a SU�N�
matrix, satisfying the constraints

 L yL � 1; det�L� � 1: (1)

We chose L to lie in the fundamental representation, so
L � Lab, where a; b � 1 . . .N. In the usual nonlinear
sigma model, this matrix is assumed to be invariant under
a global symmetry of �SU�N� � SU�N��=Z�N�,

 L � ~x� ! UL� ~x�V; (2)

U and V are independent global SU�N� rotations, modulo a
common Z�N� rotation. If U and V are distinct rotations,
the only renormalizable Lagrangian invariant under this
symmetry is

 

1

g2 trj@iLj2; (3)

where g2 is the coupling constant for the sigma model.
For a generic sigma model in two spacetime dimensions,

both the field, L, and the coupling constant, g2, are dimen-
sionless. It is well known that the coupling g2 is asymptoti-
cally free in two spacetime dimensions [24].

The model can be generalized by relaxing the global
symmetry to one of SU�N�, taking V � Uy. The common
assumption is to impose a further constraint on the trace of
L. Then the only possible action remains as in (3), but the
symmetry changes, as the model now defines a sym-
metric space [24,25,29]. For example, if N � 2M is
even, and one imposes the constraint that L is traceless,
trL � 0, the symmetry becomes SU�2M�=S�U�M� �
U�M�� [24,25,29].

To study the deconfining phase transition in d� 1
spacetime dimensions, one can construct an effective the-
ory of straight, thermal Wilson lines in d spatial dimen-
sions [23]. This effective theory is valid over (spatial)
distances ~x	 1=T, where T is the temperature. As a
theory in two spatial dimensions, then, the model we study
is relevant to the transition in 2� 1 dimensions. We will
discuss the salient properties of this effective theory as we
go along. For now, we only need to know that in the
effective theory, the Wilson line, which we denote as
L�x�, is invariant under local gauge transformations,
�� ~x�, and global Z�N� transformations,

 L � ~x� ! e2�i=N�� ~x�L� ~x��y� ~x�: (4)

To accommodate the local gauge invariance, it is neces-
sary to include a SU�N� gauge field, Ai. Define the adjoint
covariant derivative as Di � @i � iG
Ai; �, where G is the
gauge coupling. The action for L is then
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 tr jDiLj2; (5)

plus the usual action for the gauge field. In the effective
theory for deconfinement, the Ai represent the gauge po-
tentials for the (static) magnetic field.

Unlike symmetric spaces, the trace of L cannot be con-
strained. In fact, the simplest trace,

 ‘ �
1

N
trL; (6)

is an order parameter for deconfinement, the Polyakov loop
in the fundamental representation. A nonzero value for the
fundamental loop signals that the vacuum spontaneously
breaks the global Z�N� symmetry in the deconfined phase.

As we cannot impose a constraint on the trace of L, the
possible Lagrangians are far more complicated than those
of the usual nonlinear sigma model. To start with, there are
terms with no derivatives; that is, there is a potential for L.
This is a sum over loops [22],

 V �
X

S�R0

�S Re‘S : (7)

Here, ‘S denotes the trace of a loop in the representation S.
For example, the loop in the adjoint representation is

 ‘ad �
1

N2 � 1
�jtrLj2 � 1�: (8)

We always divide a loop by the dimensionality of the
representation. In this way, in the perturbative limit,
when L � 1, all loops are normalized to be one.

We assume that the breaking of the global Z�N� sym-
metry is spontaneous, so that the only loops which con-
tribute to the loop potential are Z�N� neutral. In the loop
potential, R0 denotes all possible Z�N� neutral represen-
tations. The series starts with the adjoint loop. Using the
character expansion, we only need take linear powers of
loops, albeit in arbitrary representations.

Reference [23] discusses the construction of an effective
theory in 3� 1 dimensions, but at least formally, it is
immediate to extend it to 2� 1 dimensions. In any number
of dimensions, the Wilson line is dimensionless. For the
original gauge theory in 2� 1 dimensions, the gauge
coupling squared, g2

3, has dimensions of mass. In the
effective theory, classically the term for the electric field
is identical to (3), with the sigma model coupling, g2 �
g2

3=T [23]. The gauge coupling in the effective theory is
G2 � g2

3T, and so G2 has dimensions of mass squared. At
one loop order, some potential terms, as in (7), are induced,
with �S � T2. Further terms are induced by corrections to
higher order; these are then a power series in g2

3=T, times
T2. Besides terms with no and two derivatives, terms with
four and more derivatives also arise in the effective theory
[23]. We stress that the construction of this effective theory
is only valid in perturbation theory, where g2

3=T is small;
implicitly, it is assumed that this is a reasonable approxi-

mation, even down to the transition temperature. While this
appears to be true in 3� 1 dimensions [13], this has not yet
been studied in lattice simulations in 2� 1 dimensions [2].

The dominant behavior of the theory in the infrared and
ultraviolet limits can be read off by the dimensionality of
the couplings. In the infrared limit, as all �S have dimen-
sions of mass, they should dominate. There is an important,
if familiar qualification: as a theory in two dimensions,
fluctuations can be important when the fields are light.

Conversely, in the ultraviolet limit, terms with two de-
rivatives dominate over those with none. Now of course,
since we are ultimately interested in an effective theory,
valid only over large distances, studying the ultraviolet
behavior is something of an academic exercise. It was
our original hope that these theories might be asymptoti-
cally free in all couplings. If so, then as with the usual
nonlinear sigma model, one could be able to study the
phase transition in the infrared limit, in three dimensions,
by developing an expansion in 2� � dimensions, � > 0. In
the next section and the remainder of the paper, we con-
sider the simplest extension of the nonlinear sigma model,
which involves the three couplings which contribute to
quartic interactions in the perturbative limit, Sec. III B.
While that leaves an infinity of other couplings, since we
find that these three couplings are not uniformly asymptoti-
cally free, Sec. VI, there is no point in going any further.

With this mea culpa aside, we classify all terms with two
derivatives [22]. The most obvious is the original
Lagrangian, times any Z�N� neutral loop:

 tr jDiLj2 Re‘S ; eS � 0: (9)

Re denotes the real part, while eS is the Z�N� charge of a
loop in the representation S. As Z�N� charges, eS is only
defined modulo N. For the time being, we do not bother
with denoting coupling constants, since we are only con-
cerned with the types of terms which can arise in the
action.

One can add more powers of L inside the trace in (9),

 Re tr�jDiLj2Lp�‘S ; eS � �p: (10)

The global symmetry is only one of Z�N�, and not U�1�.
This implies that instead of taking the trace of the complex
conjugate square of the covariant derivative, as in (9), one
can take the trace just of the square of the covariant
derivative:

 Re tr�DiL�2‘S ; eS � �2; (11)

this is then multiplied by a loop of charge �2 to ensure
Z�N� invariance. Further powers of L can be added inside
the trace:

 Re tr��DiL�2Lp�‘S; eS � �p� 2: (12)

This list continues, until one is only left with derivatives
of loops:
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 Re �@i‘S��@i‘S0 �‘S00 ; eS � eS0 � eS00 � 0: (13)

This list is not meant to be exhaustive. Clearly there is an
infinite set of relevant couplings. As we shall see in the
next section for N � 2, not all of these couplings are
necessarily independent. While this infinite set of cou-
plings is much more complicated than ordinary sigma
models [24–27,27–29], it is dictated by the physics, and
is unavoidable.

For models with SU�N� � SU�N� symmetry, and their
associated symmetric spaces, the exact S-matrix can be
determined by Bethe ansatz [28]. Because of the plethora
of couplings, we do not expect that our matrix model is
soluble by similar means.

III. N � 2 MATRIX MODELS

A. Classifying Lagrangians

We turn to the case of two colors. Two colors is illumi-
nating, since one can explicitly compute all elements of the
Lie group using the exponential parametrization:
 

L � exp�i ~� 
 ~t�

� cos
�
�
2

�
� 2i�̂ 
 ~t sin

�
�
2

�
: (14)

We use generators ta, normalizing tr�tatb� � �ab=2 (so
ta � �a=2, where the �a are the Pauli matrices). We also
denote

 ~� � ��̂; �̂2 � 1: (15)

The Lagrangian of the gauged nonlinear sigma model is

 L 0�L� � 2 trjDiLj2: (16)

We defer the definition of coupling constants until later.
For N � 2, the covariant derivative is

 Di�̂ � @i�̂�G ~Ai � �̂: (17)

The gauge field only couples to the isovector, �̂a, and not
to the isoscalar, �. For N � 2, the Lagrangian of the sigma
model is then

 L 0� ~�� � �@i��2 � 4sin2

�
�
2

�
�Di�̂�2: (18)

To avoid clutter, the dependence of L0� ~�� on the gauge
field, ~Ai, is left implicit.

The next term, as in the series in (10), is to multiply the
adjoint loop times this term. We subtract off the value of
the loop when L � 1, and so define

 L 1�L� � 3
2�1� ‘ad� trjDiLj2; (19)

 � sin2

�
�
2

�
L0� ~��: (20)

Another possible kinetic term involves the loop in the
fundamental, or doublet, representation:

 L 2�L� � 4�@i‘�2; (21)

 � sin2

�
�
2

�
�@i��

2: (22)

This is a term as in (13). As this is formed exclusively from
the loop, it depends only upon the magnitude of ~�, and not
upon its direction in isospin space, �̂. For SU�2�, ‘ �
trL=2 is automatically real, so it does not matter if one
takes just the square of the derivative of ‘, or the complex
conjugate square. Lastly, as the loop is gauge invariant, L2

is independent of the gauge field.
A term like that in (12) is

 tr �DiL�2 � �L0� ~�� �L2� ~��: (23)

This identity is special to N � 2, and shows that this is not
a new, independent coupling.

It is clear that there is an infinity of possible couplings.
In going from the original Lagrangian, (16), to (19), we
multiplied by the adjoint loop minus one, which for N � 2
is proportional to sin2��=2�. We can continue this process
to infinite order, multiplying L0 and L2 by higher and
higher powers of sin2��=2�. All of these are independent
couplings, with dimensionless coupling constants.

For N � 2, the Lagrangian L0 is invariant under an
extended global symmetry of �SU�2� � SU�2��=Z�2�,
which is isomorphic to O�4� [26]. It is instructive to write
the Lagrangians in terms of O�4� fields. This is done by
introducing

 � � cos��=2�; ~� � sin��=2��̂; (24)

and then forming the O�4� vector ~� � ��; ~��. The matrix
constraint then becomes ~�2

� �2 � ~�2 � 1. Dropping the
gauge fields, we find

 L 0� ~�� � 4�@i ~��2 � 4
�
�@i ~��2 �

� ~� 
 @i ~��
2

1� ~�2

�
: (25)

The doublet loop ‘ � �, so the new couplings in our
matrix model are

 L 1� ~�� � �1� �
2��@i ~��

2 � ~�2

�
�@i ~��

2 �
� ~� 
 @i ~��2

1� ~�2

�
;

(26)

and

 L 2� ~�� � 4�@i��2 � 4
� ~� 
 @i ~��

2

1� ~�2 : (27)

It is clear that only L0 is O�4� invariant. We write L1 and
L2 using bothO�4� degrees of freedom, and in terms of the
~� field. We do this because while the independent degrees
of freedom are the ~� fields, it is instructive to see how the
O�4� symmetry is broken in the new couplings. In terms of
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the ~�’s, (23) is especially simple,

 tr �DiL�2 � �4�@i ~��2; (28)

just a free kinetic term for the pions.
The �-functions can be computed using the ~�’s, but we

find the ~�’s more convenient.

B. Coupling constants

We introduce the coupling constants g2, 	, and 
 in the
bare Lagrangian as

 L �
1

2g2 L0 �
	

g4 L1 �



g4 L2: (29)

To understand why we introduce the coupling constants, 	
and 
, with overall factors of 1=g4, we first note that

 L 0��� �
4

�2 sin2

�
�
2

�
��Di ~��

2 � �@i��
2� � �@i��

2: (30)

This form is useful in the perturbative limit. The simplest
perturbation theory is to expand about zero field, taking
~�) g ~�. Expanding to quartic order in �,

 

1

2g2 L0 �
1

2
�Di

~��2 �
g2

12
~�2�Di

~��2 � . . . ; (31)

 

	

g4 L1 �
	
4
~�2�Di

~��2 � . . . ; (32)

and

 




g4 L2 �


4
� ~� 
 @i ~��2 � . . . : (33)

Thus L0 includes the free part of the Lagrangian, plus
quartic interactions �g2. For zero background field, the
new terms in the Lagrangian, L1 and L2, do not contribute
to the quadratic part of the Lagrangian: they only contrib-
ute to quartic interactions�	 and�
, respectively. Hence
the couplings g2, 	, and 
 are all couplings which should
be included to one loop order.

This continues with the terms neglected above: a term
such as �sin��=2��2nL0 first contributes to a 2n� 2 point
function of the ~�’s. Thus the proper normalization of such
a term is a new coupling constant times 1=g2�n�1�.

This explains why we concentrate on the above three
couplings: they are uniquely the only couplings which
contribute to quartic interactions in the perturbative limit.

IV. BACKGROUND FIELD METHOD

A. Possible classical fields

We wish to compute the renormalized Lagrangian to one
loop order. As is well known, to do so it is easiest to use the
background field method [24]. We take some classical,
background field ~�, and expand in a quantum field ~�. To
one loop order, it is only necessary to expand to quadratic

order in the quantum fluctuations, ~�. The price paid is that
all dependence upon the background field must be kept.
Thus to ease our labor, we want to choose the simplest
possible background field we can.

The background field cannot be too simple, however. To
one loop order, various counterterms are generated. We
need a background field which allows us to distinguish
which counterterms contribute to the renormalization of
which terms in the bare Lagrangian.

Consequently, even in principle, it does not suffice to
expand about a trivial background: while the quartic inter-
actions in L2 differ, (33), those in L0 and L1, (31) and
(32), are the same.

Thus we need to expand about a background which is
not trivial. The next simplest possibility is to take a field
which lies everywhere in the same direction in isospin
space, so that @i�̂ � 0. For such a field, the Lagrangian
becomes

 L �
1

g2

�
1�
�	� 
�

g2 sin2

�
�
2

��
�@i��

2: (34)

This background field allows us to separate contributions
to L0 from those to L1 and L2, but we cannot disentangle
which terms contribute to L1, and which to L2. In terms of
�-functions, we could determine that for g2, and the sum of
	� 
, but not for 	 and 
 by themselves.

Another possibility is to expand for a fixed direction in
isospin space, but in the presence of a background gauge
field, using the covariant derivative, 
Ai; �̂�, to separate the
various terms. We did not do this, because in order to
respect gauge invariance, it is necessary to include fluctua-
tions in the gauge field. (This was checked by explicit
calculation.) Including the fluctuations in the gauge field
seems unduly complicated, since they do not contribute to
the ultraviolet limit in two dimensions; their presence
would be merely as a bookkeeping device, to sort out the
different terms in the renormalized Lagrangian.

The final alternative is to expand about a completely
general background field, whose isospin direction changes
in space, @i�̂ � 0. For an arbitrary field ~�, it is clear that
L0� ~��, L1� ~��, and L2� ~�� represent distinct Lagrangians,
(18), (20), and (22). Thus we can certainly pick out the
contributions to different terms in the Lagrangian which
are generated at one loop order.

Indeed, the necessity of distinguishing between different
terms in the renormalized Lagrangian is why we limit our
calculations to two colors. The three couplings which we
consider forN � 2 exist forN � 3, given in (16), (19), and
(21). Taking the classical field as Lcl � exp�i�ata�, with ta

the generators of SU�N�, it is natural to take the �a to lie in
the Cartan subalgebra. Indeed, the simplest form is to take
�a proportional to a single generator, related to global
Z�N� transformations,
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 �a � �tN; tN �
1N�1 0

0 ��N � 1�

� �
: (35)

This is precisely like the SU�2� ansatz where @i�̂ � 0,
(34), since in SU�2� we can always choose the fixed
direction in isospin space to lie along t3. As for N � 2,
when N � 3 the ansatz of (35) is not sufficient to distin-
guish between 	 and 
, with the sum of L0 �L1 �L2

like that of (34). Thus to determine the separate
�-functions for 	 and 
, it is necessary to expand in a field
which lies in two distinct directions. Since there are N � 1
elements of the Cartan subalgebra, when N � 3 we can
chose the �a to lie in two, different elements of the Cartan
subalgebra. Thus extending our calculation from N � 2, to
N � 3, is straightforward to do. It is not difficult to see,
however, that this will be tedious; even the form of the
classical field is messy. In Sec. VII, we comment on results
for N � 3, using the ansatz of (35). We use this to make an
obvious guess about the leading form of the �-functions
when N � 3.

B. Explicit expansion

We expand

 L � LclLqu � exp�i ~� 
 ~t� exp�ig ~� 
 ~t�; (36)

where ~� is the classical, background field, and g ~� the
quantum field. The factor of g is introduced to simplify
later results, as in Sec. III B. This ansatz is convenient in
computing L0�L� and L1�L�, since
 

tr�@iLy@iL� � tr�@iL
y
cl@iLcl � 2Lqu@iL

y
quLycl@iLcl

� @iL
y
qu@iLqu�: (37)

Instead of the ansatz in (36), we could have taken L �
exp�i� ~�� g ~�� 
 ~t�. While this appears simpler, the expan-
sion of (37) is then much more complicated.

The product

 L y
cl@iLcl � i ~Ai 
 ~t; (38)

is like a gauge field, albeit one formed from a pure gauge
transformation, generated by the field Lcl. Explicitly,

 

~A i � @i��̂� sin���@i�̂� 2sin2

�
�
2

�
�̂� @i�̂; (39)

where we have used the identity

 ~� 
 ~t ~� 
~t �
1

4
~� 
 ~�1�

i
2
~t 
 � ~�� ~��; (40)

~t 
 � ~�� ~�� � �abcta�b�c, where �abc is the completely
antisymmetric tensor. Further,

 L qu@iL
y
qu � �i@i ~� 
 ~t�

i
2
~t 
 � ~�� @i ~�� � . . . (41)

To quadratic order, the doublet loop is

 ‘ �
1

2
trL

� cos
�
�
2

�
�
g
2

sin
�
�
2

�
�̂ 
 ~��

g2

8
cos

�
�
2

�
~�2 � . . .

(42)

Expanding the entire Lagrangian to linear order in the
quantum fluctuations, and integrating derivatives by parts
so that none acts on ~�, we find
 

�1L �
~�
g



�
�@i ~Ai � ~
 sin

�
�
2

��
@2 cos

�
�
2

��
�̂

�
~	
2

�
L0� ~�� sin����̂� 4@i

�
sin2

�
�
2

�
~Ai

���
: (43)

We introduce the modified couplings

 

~	 �
	

g2 ;
~
 �




g2 ; (44)

as these arise naturally in the computation to one loop
order.

The equation of motion is �1L � 0. That of the ordinary
nonlinear sigma model is just the first term on the left-hand
side in (43), @i ~Ai � 0. The additional terms, �~	 and ~
,
are new contributions to the equation of motion in this
matrix model.

The computation of terms to quadratic order in ~� is
straightforward. We integrate by parts freely, organizing
terms so that as few derivatives as possible act on ~�’s, and
as many on the background field, ~�. Doing so, we find that
we can organize terms according to the maximum number
of derivatives which act on ~�.

Terms with up to two derivatives acting on ~� are
 

�2
2L�

1

2

�
1� 2 ~	sin2

�
�
2

��
�@i ~��2� ~


�
@i

�
sin
�
�
2

�
�̂ 
 ~�

��
2
:

(45)

In writing �2
2L, the superscript denotes an expansion to

quadratic order in ~�; the subscript denotes the maximum
number of derivatives acting on ~�.

Terms with one derivative of ~� are
 

�2
1L � �

1

2

�
1� 2 ~	sin2

�
�
2

��
~Ai 
 � ~�� @i ~��

� ~	 sin���̂ 
 ~�� ~Ai 
 @i ~�: (46)

Lastly, terms with no derivatives with respect to ~� are
 

�2
0L �

~
 cos
�
�
2

��
@2 cos

�
�
2

��
~�2

�
~	
4
L0� ~��

�
~�2 � sin2

�
�
2

�
� ~�2 � ��̂ 
 ~��2�

�
: (47)

MICHAELA OSWALD AND ROBERT D. PISARSKI PHYSICAL REVIEW D 74, 045029 (2006)

045029-6



Because we have normalized the quantum field to in-
clude a factor of g, terms to quadratic order which are
independent of any couplings arise from the Lagrangian of
the usual nonlinear sigma model. These are the first terms
on the left-hand side in (45) and (46). The first term on the
left in (45) is just the usual free kinetic term, �@i ~��2=2. The
first term on the left in (46), � ~Ai 
 � ~�� @i ~��=2, repre-
sents the interactions in the usual nonlinear sigma model.
All other terms, which are proportional to either ~	 or ~
,
arise from the new couplings in a matrix model.

There is an important restriction on the coupling con-
stants in these models. Of course we can only compute in
weak coupling, when g2, 
, and 	 are all � 1. Since the
new couplings in a matrix model affect the kinetic term,
though, so that the usual kinetic term dominates at high
momentum, it is necessary that the new terms have small
couplings:

 

~	; ~
� 1; 	; 
� g2 � 1: (48)

In fact this restriction arises naturally in the construction
of the effective theory [23]. As discussed following (8), the
sigma model coupling g2 � g2

3=T. Corrections at one loop
order at one loop order are g2

3=T times this coupling; hence
	=g2 and 
=g2 are �g2

3=T, or 	; 
� �g2
3=T�

2.
Considered purely as a theory in two dimensions, it is

possible to satisfy (48), and still have contributions at one
loop order dominate over those at higher loop order. At one
loop order, corrections are generically �g2, 
, and 	 times
the quantity at tree level. At two loop order, corrections are
then �g4, g2
, 
2, and so on, times the quantity at tree
level. Thus it is possible to take—for example—
 and
	� g3. In this case, (48) is satisfied, since ~	� ~
� g� 1,
but terms at one loop order,�
 and 	, are still larger than 2
loop terms from the ordinary sigma model, �g4.

V. ONE LOOP EFFECTIVE ACTION

A. What to compute

Having obtained the effective Lagrangian to quadratic
order in ~�, to one loop order the effective action involves
the complete inverse propagator in the presence of the
background field:

 S eff � 1
2 tr log�rab � ~V

ab
i @i � ~Mab�: (49)

The trace involves summation over isospin indices and
spacetime momenta.

In writing the inverse propagator, we take the liberty to
freely integrate terms by parts. Terms in the inverse propa-
gator can be categorized according to the number of times
the derivative operator appears. Note that this corresponds
to a derivative on the quantum field, ~�, and not to a
derivative on the background field, ~�.

The term with two derivatives is a Laplacian in the
background field,

 rab � �@2�ab � 2 ~	 @i
 

sin2

�
�
2

�
@i
!
�ab

� 2 ~

�
sin
�
�
2

�
�̂a
�
@i
 
@i
!
�

sin
�
�
2

�
�̂b
�
: (50)

The first term on the right-hand side, �@2, is the usual
Laplacian for a free field.

The term free of the derivatives is a type of mass term,

 

~M ab � 2 ~
 cos
�
�
2

�
@2 cos

�
�
2

�
�ab �

~	
2
L0� ~��

�

�
cos2

�
�
2

�
�ab � sin2

�
�
2

�
�̂a�̂b

�
: (51)

As for the second term in (49), we first consider a toy
Lagrangian. Let a field �a interact through a derivative

interaction with a background field ~V
ab
i :

 L ~V
� 1

2�@i�
a�2 � ~V

ab
i �

a@i�
b: (52)

We do not assume anything about the symmetry of ~V
ab
i in

the isospin indices. The Laplacian in this background field
is

 rab~V
� �@2�ab � 1

2�
~V
ab
i @i
!
� @i
 ~V

ba
i �: (53)

The two terms in� ~V i arise because the derivative can act
either on the ~� which appears on the left, or that which
appears on the right. For the last term, where the derivative
acts to the left, it is permissible to integrate by parts. Doing
so, the derivative acts either as an operator, or it acts on the
background field:

 rab~V
� �@2�ab � 1

2�
~V
ab
i �

~V
ba
i �@i
!
� 1

2�@i
~V
ba
i �: (54)

This result is general, as we have made no assumption
about the order of the momenta. The result in (54) can also
be derived more carefully, without any cavalier integration
by parts. One expands the original Lagrangian, (52), into
terms which are symmetric and antisymmetric in the iso-
spin indices. This is done both for the background field
~V
ab
i , and for �a@i�b. After some algebra, one finds the

same result as in (54).

In the problem at hand, ~V
ab
i is given by

 

~V ab
i � �

1

2
�abc

�
1� 2 ~	sin2

�
�
2

��
Ac

i �
~	 sin����̂aAb

i :

(55)

Equation (54) now contains one term that has one deriva-
tive on the quantum field, ~�:
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V ab
i �

~V
ab
i �

~V
ba
i

� ��abc
�
1� 2 ~	sin2

�
�
2

��
Ac

i

� ~	 sin�����̂aAb
i � �̂

bAa
i �; (56)

and one term, �@i
~V
ba
i , which has no derivatives on �:

 � @i
~V
ba
i � �~	@i�sin����̂bAa

i �: (57)

This is a type of mass term, and so we add it to that of (51),
and define
 

Mab � �~	@i�sin����̂bAa
i � � 2 ~
 cos

�
�
2

�
@2 cos

�
�
2

�
�ab

�
~	
2
L0� ~��

�
cos2

�
�
2

�
�ab � sin2

�
�
2

�
�̂a�̂b

�
: (58)

The effective action is then

 S eff � 1
2 tr log�rab �V ab

i @i
!
�Mab�; (59)

where the term with one derivative now is like a coupling
to a gauge field V ab

i .
Computing the complete effective action for this inverse

propagator would be most involved. However, our needs
are much simpler. We do not want all terms in the effective
action, but only the ultraviolet divergent terms which
contribute to the renormalization of the original
Lagrangian. For this, we only need to expand the effective
action to include terms with two derivatives of the back-
ground field, ~�. There is an infinite series of terms with
higher numbers of derivatives of ~�, but these are ultraviolet
finite. Terms with higher derivatives do have infrared
divergences, but these are cutoff by masses generated by
the loop potential.

The simplest term to compute is that from the mass term,
Mab. Like the original Lagrangian, this is already of
second order in derivatives of the background field, and
so can be expanded directly. Terms involving the derivative
operators, V ab

i @i and rab, are more subtle to compute.
Some pieces of these operators are already of quadratic
order in derivatives of ~�, but other pieces are not. Thus we
have to take care, to ensure that we include all terms of
quadratic order in the background field.

Besides terms of quadratic order in derivatives of the
background field, there are terms of zeroth order in deriva-
tives. Such terms represent ultraviolet divergent renormal-
izations of the loop potential. In terms of the
renormalization group, these contribute to anomalous di-
mensions for the operators in the loop potential. We do not
consider such terms in the present work, since the first
thing to compute are the �-functions.

In the next three subsections, we discuss examples
which illustrate how to compute each of these terms. We
put all of the pieces together in Sec. VI.

We regularize integrals by dimensional continuation
from two to 2� � dimensions, but checked that the same
results are obtained with Pauli-Villars regularization. We
also derived all results using a mass to cutoff infrared
divergences. We do not present the details of these checks,
since they do not affect the final results, but mention them
to reassure the skeptical reader.

B. Terms with no derivatives

The first example is trivial, the free energy of a mass
term:

 

1
2 tr log��@2 �m2�: (60)

Computing in 2� � dimensions, the ultraviolet divergent
contribution to the effective Lagrangian is

 �
m2

2

Z d2��k

�2��2��
1

k2 � �
m2

4��
: (61)

This result is valid only to �1=�, neglecting all contribu-
tions which are finite as �! 0. This integral is needed to
compute the contribution of Mab in (58).

C. Terms with one derivative

Since V ab
i is linear in derivatives of the background

field we have to expand it to quadratic order to obtain an
ultraviolet divergent term of quadratic order in derivatives.
This contributes to the effective action, 1

2 tr log�ab, as
 

� �
i2

4
V ab

i V ab
j

Z d2��k

�2��2��
kikj

�k2�2
;

� �
1

16��
�V ab

i �
2: (62)

The factors of i arise in going from coordinate to momen-
tum space, ~@i ) iki.

D. Terms with two derivatives

We turn to the expansion of terms containing up to two
derivatives.

We start with the case where the background fields can
be treated as constant. Then the Laplacian derived from
(50) is just the function

 

~r ab �

�
1� 2 ~	sin2

�
�
2

��
�ab � 2 ~
sin2

�
�
2

�
�̂a�̂b; (63)

times the usual Laplacian for a massless field, �@2.
For constant fields, it is easy computing the correspond-

ing propagator. In fact, we can further simplify our algebra
by noting that in order to compute the �-functions to one
loop order, it suffices to use the form of this propagator
which is valid only to linear order in ~	 and ~
. This
propagator is
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~� ab �

��
1� 2 ~	sin2

�
�
2

��
�ab � 2 ~
sin2

�
�
2

�
�̂a�̂b

�
;

(64)

times the usual massless propagator, 1=��@2�.
Notice that the restriction on the coupling constants in

(48) is obvious in this form. If ~	 or ~
 were not� 1, they
would alter the usual propagator of free field theory, and
perturbation theory would be more complicated.

As we explain in the next subsection, it is necessary to
use this modified propagator in computing the effects of
the terms with no and one derivatives of the background
field.

The problem is that in general, one is not allowed to treat
the background fields as constant. To understand the prob-
lem, consider the toy model,

 L f �
1
2�1� f��@i��

2; (65)

where f is some background field. We wish to compute the
ultraviolet divergences for terms which are quadratic in
derivatives of f.

Besides such terms, there are also ultraviolet divergent
terms which are constant in f; we ignore these in the
present model, as renormalizations of the loop potential.
In two spacetime dimensions, there are also terms, qua-
dratic in derivatives of f, which arise through the confor-
mal anomaly [24]. Terms from the conformal anomaly,
though, are ultraviolet finite, and so can be ignored in
computing �-functions.

The Laplacian for this toy model is

 rf � �@
2 � @i

 
f@i
!
: (66)

Terms of linear order in f can be neglected, since they only
contribute to terms constant in f. The first terms which
depend upon derivatives of f arise at quadratic order. We
then expand the effective action, 1

2 tr logrf, to quadratic
order. We go to momentum space, with p the momentum
going through the background field, f. Then the term of
quadratic order in the effective Lagrangian is

 �
1

4
f�p�

�Z d2��k

�2��2��
�k 
 �k� p��2

k2�k� p�2

�
f��p�: (67)

The structure of the numerator is easy to understand. This
is a one loop diagram, where the background field f�p�
couples to two quantum fields. The momenta at each vertex
are k and k� p, with the coupling proportional to the
product of these momenta.

Since we only want the momentum dependent term, we
can subtract off the value of the integral for p � 0. This
reduces a quadratically divergent integral to one which is
merely logarithmically divergent,

 �
1

4
f�p�

�Z d2��k

�2��2��
�k 
 p�2 � k2p2

�k2�2

�
f��p�: (68)

Using the integral in (62), the contribution to the renor-
malized Lagrangian is

 �
1

16��
�@if�

2; (69)

where we have reverted to coordinate space.
A slightly more involved toy Lagrangian, which most

closely mimics our problem, is

 L f;h �
1
2�1� f��@i��

2 � 1
2�@i�

~h 
 ~���2: (70)

By similar computation, the ultraviolet divergent counter-
terms at one loop order are

 �
1

16��
��@if�2 � 4�1� f��@i ~h�2 � 2�@i ~h

2
�2�: (71)

VI. �-FUNCTIONS TO ONE LOOP ORDER

With these results, we can compute the ultraviolet di-
vergent contributions to the Lagrangian at one loop order.

In doing so, it helps to recognize that this is all we want
to do. We only want terms which renormalize the bare
Lagrangian, and so only need keep terms �L0� ~��, L1� ~��,
and L2� ~��. At one loop order, we explicitly see that new
interactions, as discussed at the end of Sec. III A, do
appear. These include, for example, sin4��=2�L0� ~�� �
sin2��=2�L1� ~��, and sin2��=2�L2� ~��. Such terms do
have ultraviolet divergences, which contribute to the
�-functions for these couplings. We ignore these other
couplings in the present work, considering the three cou-
plings which we do include as representative. Partial re-
sults about the renormalization of such couplings are given
in Sec. VII, (84).

Another important simplification is to recognize that
terms at one loop order are one power of the coupling
constant times the bare Lagrangian, (29). Remembering
the definitions of couplings in (44), terms �g2 times those
in the original Lagrangian generate those �1, ~	, and ~
;
terms 	 times the original Lagrangian generate contribu-
tions �~	, ~	2, and ~	 ~
 ; those 
 times the original
Lagrangian generate terms �~
, ~	 ~
 , and ~
2. Thus at one
loop order, we have to include all terms �1, ~	, ~
, ~	2, ~	 ~
 ,
and ~
2.

Of course, terms which are ultraviolet finite can be
ignored completely. This includes all terms with more
than two derivatives of the background field.

The easiest contribution to compute is that from terms
which are already of second order in derivatives, Mab in
(58). Even so, we have to recognize that we cannot use (61)
directly, but must use the propagator in a background field.
Fortunately, as we already have terms with two derivatives,
we can use the propagator for a constant, background field
in (64):

 �
1

4��
~�abMab; (72)
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which equals
 

1

��

�
�

3

8
~	L0 �

1

4
�2 ~	� 3 ~	 ~
�3 ~	2�L1

�
1

8
�3 ~
� 8 ~	2 � 16 ~
 ~	�4 ~
2�L2

�
: (73)

Of course implicitly, all of the L’s are functions of the
background field, ~�.

The next contribution is from terms which are of first
order in the derivatives, V ab

i in (56). Again, we cannot use
the free propagator, but must use the propagator in a
constant, background field. To one loop, this contributes
the ultraviolet divergent terms as in (62),

 �
1

16��
V ab

i
~�bcV cd

i
~�da; (74)

which is

 

1

��

�
1

8
L0 �

1

4
�~
� 2 ~	2��L2 �L1�

�
: (75)

The final contribution is from terms with two deriva-
tives. Using the toy model of (70), where we identify

 f � 2 ~	sin2

�
�
2

�
; ~h � 2 sin

�
�
2

�
�̂; (76)

then from (71), we find that the ultraviolet divergent con-
tributions to the one loop renormalized Lagrangian is

 

1

��

�
�

1

8
~
L0 �

1

4
~	 ~
L1 �

1

8
�~
� 2 ~	2 � 4 ~
2�L2

�
:

(77)

The sum of the ultraviolet divergent counterterms at one
loop order, (73), (75), and (77), is
 

Lct �
1

��

�
1

8
�1� 3 ~	� ~
�L0

�
1

4
�2 ~	� ~
� 4 ~	 ~
�5 ~	2�L1

�
1

4
�3 ~
� ~	2 � 8 ~	 ~
�4 ~
2�L2

�
: (78)

We write the renormalized Lagrangian as

 L ren �
1

2Zgg2 L0 �
Z		

Z2
gg4 L1 �

Z



Z2
gg4 L2: (79)

The renormalization constants for the three couplings are
Zg, Z	, and Z
. In 2� � dimensions, the couplings g2, 	,
and 
 all have dimensions of ��, where � is a renormal-
ization mass scale.

The renormalization constants are fixed by requiring that
the ultraviolet divergences cancel in the sum of the coun-
terterm Lagrangian, Lct in (78), and the renormalized
Lagrangian, Lren in (79) [24]. At one loop order, this
determines the renormalization constants to be

 

Zg � 1�
1

4��
�g2 � 3	� 
�;

Z	 � 1�
1

4��

�
g2

	
� 11	� 6


�
;

Z
 � 1�
1

4��

�
�g2 � 14	� 6
�

	2




�
:

(80)

The inverse powers of the coupling constant appear worri-
some; they certainly do not arise in the�-functions of other
nonlinear sigma models [24].

The �-function for the coupling g2 is given by

 ��g2� � �g2

��
1� �

d
d�

logZg

�
; (81)

and similarly for the other couplings.
Using this definition, we find that the �-functions have a

standard form:
 

��g2� � �g2 �
1

4�
��g4 � 3g2	� g2
� � . . . ;

��	� � �	�
1

4�
��g2
� 11	2 � 6	
� � . . . ;

��
� � �
�
1

4�
��g2
� 	2 � 14	
� 6
2� � . . . :

(82)

In the limit where 	, 
� g2, the �-functions reduce to
 

��g2� � �g2 �
1

4�
g4 � . . . ;

��	� � �	�
1

4�
g2
� . . . ;

��
� � �
�
1

4�
g2
� . . .

(83)

These are the principal results of our paper. We now
discuss the properties of these �-functions in two dimen-
sions, where � � 0.

As discussed in Sec. III A, the leading term in the
�-function for the coupling g2, ��g2� � �g4=�4��, is the
same as for the O�4� nonlinear sigma model [24,26]
(accounting for the somewhat unconventional normaliza-
tion of our coupling constant). As we compute in the
limit where 	 and 
 are � g2, this term dominates those
�� g2	 and �� g2
 in ��g�. As the leading term is of
negative sign, the coupling g2 is, inescapably, asymptoti-
cally free.

The diligent reader might wonder why we did not save
ourselves much effort, and directly compute the
�-functions in the relevant limit, where 	 and 
� g2.
In fact, this is what we did first. We computed the
�-functions for a field which is constant in isospin space,
@i�̂ � 0, where it is much simpler to compute. As seen
from (34), however, this only gives the �-function for the
sum of the two couplings, 	� 
. After some labor, we
found that this �-function vanishes to the requisite order,
�g2	 and �g2
. From (83), we see that this is because in
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��	� and ��
�, the only terms of this order are �g2
.
These terms are equal and of opposite sign, so that up to
terms of higher order, they cancel identically.

Thus in order to know the �-function for 	� 
, it is
necessary to determine the nonleading terms in the
�-functions, as in (82). An important question is if it is
possible to obtain an asymptotically free theory in all three
couplings. Notably, since we take both 	 and 
 to be� g2,
the theory is sensible for either sign of each coupling.
When 	� 
, however, the theory is clearly not asymptoti-
cally free: the dominant term in the �-functions for both 	
and 
 is �g2
. But as each term appears with opposite
sign, (83), whatever sign we take for 
, one coupling is
asymptotically free, and the other, infrared free.

Since 
 dominates the �-functions, one can also con-
sider the limit where we tune 
 to be much smaller than 	,
with 
� 	� g2. In this case, however, the full calcula-
tion, (82), shows that the dominant term in ��	� and ��
�
are each �� 	2. Each of these terms has a positive sign,
and so produces infrared freedom, regardless of the sign
of 	.

VII. CONCLUSIONS

In this paper we computed the �-functions for the
simplest extension of aO�4� nonlinear sigma model, which
is a N � 2 matrix model with three coupling constants. To
leading order in weak coupling, the result is extremely
simple, (83). In general, we find that there is no region of
parameter space in which all three coupling constants are
asymptotically free, (82).

We conclude by discussing unpublished work by one of
us [30]. Both of these calculations take a background field
which lies along a single direction in the Lie algebra. As
discussed in Sec. IVA, this ansatz is not adequate to give
complete information about the �-functions. As we shall
see, however, these limited results indicate that when N �
2, all matrix models include couplings which are not
asymptotically free.

As discussed in Sec. II, there is an infinity of couplings
which we neglected. Consider a background field which
lies along one direction in isospin space, @i�̂ � 0. To
represent the neglected couplings, we add to the
Lagrangian the term

 

�n

�g2�n�1
sin2n

�
�
2

�
�@i��

2: (84)

For n � 1, this corresponds to (34), with the coupling
�1 � 	� 
. When n � 2, �n is proportional to a sum
of several, independent coupling constants. As in
Sec. III B, in expanding about a trivial background, with
�) g�, this term first contributes to a 2�n� 1� point of
�’s. It is for this reason that we normalize this term by an
overall factor of 1=�g2�n�1, so that the 2�n� 1� point
function has coupling �n, independent of g.

The�-function for �n is found to be�� �n2 � 1�g2�n

[30]. This is valid to �g2�n, and neglects subleading
terms �2

n, etc. This vanishes for n � 1, in agreement
with (83). When n > 1, though, the �-function for �n is
infrared free.

Calculations were also done for N � 3. Following
Sec. II, there are couplings, analogous to g2, 	, and 
,
for all N � 3. Going through the same calculations as for
N � 2, it is straightforward to determine the leading terms
in the �-functions. The leading term in the �-function for
g2 is �� Ng4, so this coupling is, of course, asymptoti-
cally free [26]. WhenN � 3, it is found that the�-function
for 	� 
 vanishes to leading order,�g2	 and �g2
 [30].
This is precisely analogous to the results for N � 2, and
suggests that the form of (83) is valid for arbitrary N, with
��	� � ���
� � �g2
, up to corrections�	2,�	
, and
�
2. That is, at least one of the two couplings is always
infrared free. We also expect that when N � 3, the infinite
series of couplings to higher order, as in (84) for N � 2,
includes infrared free couplings.

In summary, these partial calculations strongly suggest
that the �-functions for N � 3 are very similar to those for
N � 2. Generically, while the dominant coupling g2 is
asymptotically free, there are always subdominant cou-
plings which are infrared free. We do not expect any region
of parameter space in which all couplings are asymptoti-
cally free.

We contrast this to the behavior of ordinary nonlinear
sigma models [24–26,28,29]. These models only involve a
single coupling constant, which is asymptotically free in
two dimensions. In such theories, the symmetry is unbro-
ken in two dimensions, and the theory is always in a
massive phase. Above two dimensions, an ultraviolet sta-
ble fixed point appears, with g2 � �. The appearance of
this ultraviolet stable fixed point is assumed to be related to
a phase transition in which the symmetry breaks. The
properties of the transition, as determined from this ultra-
violet stable fixed point, working up in 2� � dimensions,
is believed to reflect the same universal properties as for a
linear sigma model, working down from 4� � dimensions
[24].

There is a greater variety of phase transitions possible in
matrix models, which is reflected in their Lagrangians.
Matrix models have potentials, and we can couple them
to gauge fields. In two dimensions, the terms in the poten-
tial, and the gauge coupling, all have dimensions of mass
squared, and so dominate in the infrared limit.

Conversely, since these terms have positive mass dimen-
sion, they do not affect the ultraviolet behavior, in either
two or 2� � dimensions. From present results, and those
of [30], it appears that the �-functions are very similar for
all N � 2.

This is unlike the results of lattice simulations, which
find that the order of the deconfining transition changes as
a function of N. For theories in 2� 1 dimensions, the
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transition appears to be of second order for N � 2, 3, and
possibly 4, and of first order for N � 5 [2]. For theories in
3� 1 dimensions, the deconfining transition is of second
order for N � 2 [3], and of first order for N � 3 [4–7].

This demonstrates that the connection between the ul-
traviolet behavior of �-functions in 2� � dimensions, and
phase transitions in the infrared limit, is not as immediate
in matrix models, as it is in ordinary sigma models.
Certainly, before we can understand what happens non-
perturbatively in the infrared limit, we must first under-
stand perturbation theory in the ultraviolet limit. This was
the goal of the present work. We hope that it provides an
impetus to better understand the rich structure of phase
transitions possible in matrix models.
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APPENDIX

We use this opportunity to make a comment about the
correlation functions of Polyakov loops at large N.

Consider the two-point function of Polyakov loops,

 htrL�x�y trL�0�i �
X
i

exp��mijxj�; x! 1; (A1)

where the summation is over all states which contribute to
this correlation function. For a SU�N� gauge theory with-
out quarks, the symmetry broken is Z�N�. As N ! 1,
this becomes U�1�. By Goldstone’s theorem, when U�1�
breaks, there must be an associated massless particle. At
large but finite N, there is a light, almost Goldstone parti-
cle; as the mass of an almost Goldstone particle is propor-
tional to the parameter which breaks the symmetry, which
in the pure glue theory is 1=N2, then m2

G � 1=N2, or mG �
1=N. This almost Goldstone mode is separate from the
usual, perturbative excitation associated with the Debye
mass.

This is trivial in three dimensions, but one might wonder
if it still holds in two dimensions, since then a continuous
symmetry cannot break. We suggest, however, that at large
N, the two-point correlations of (A1) will look similar in
either two and three dimensions. This is because at largeN,
all connected correlation functions are suppressed by
powers of �1=N2. Thus it is possible to have a massless
Goldstone boson at infinite N, since then it is also
noninteracting.
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M. Lütgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[5] B. Lucini and M. Teper, J. High Energy Phys. 06 (2001)
050; B. Lucini, M. Teper, and U. Wenger, Phys. Lett. B
545, 197 (2002); J. High Energy Phys. 01 (2004) 061;
Nucl. Phys. B715, 461 (2005); H. Meyer and M. Teper,
J. High Energy Phys. 12 (2004) 031; M. Teper, hep-th/
0412005; B. Lucini, M. Teper, and U. Wenger, J. High
Energy Phys. 02 (2005) 033; J. Kiskis, hep-lat/0507003;
B. Bringoltz and M. Teper, Phys. Rev. D 73, 014517
(2006).

[6] B. Bringoltz and M. Teper, Phys. Lett. B 628, 113
(2005).

[7] K. Holland and U. J. Wiese, hep-ph/0011193; K. Holland,
M. Pepe, and U. J. Wiese, hep-lat/0309008; Nucl. Phys. B,
Proc. Suppl. 129, 712 (2004); K. Holland, P. Minkowski,
M. Pepe, and U. J. Wiese, Nucl. Phys. B668, 207 (2003);
Nucl. Phys. B, Proc. Suppl. 119, 652 (2003); M. Pepe,
Nucl. Phys. B, Proc. Suppl. 153, 207 (2006).

MICHAELA OSWALD AND ROBERT D. PISARSKI PHYSICAL REVIEW D 74, 045029 (2006)

045029-12



[8] M. Laine, hep-ph/0301011; J. P. Blaizot, E. Iancu, and A.
Rebhan, hep-ph/0303185; U. Kraemmer and A. Rebhan,
Rep. Prog. Phys. 67, 351 (2004); J. O. Andersen and M.
Strickland, Ann. Phys. (N.Y.) 317, 281 (2005).

[9] A. Peshier, B. Kampfer, O. P. Pavlenko, and G. Soff, Phys.
Rev. D 54, 2399 (1996); A. Peshier, B. Kampfer, and
G. Soff, Phys. Rev. C 61, 045203 (2000); Phys. Rev. D 66,
094003 (2002); hep-ph/0212179; A. Peshier, Phys. Rev. D
63, 105004 (2001); A. Peshier, Phys. Rev. D 70, 034016
(2004); A. Peshier and W. Cassing, Phys. Rev. Lett. 94,
172301 (2005).

[10] E. V. Shuryak and I. Zahed, Phys. Rev. C 70, 021901
(2004); Phys. Rev. D 70, 054507 (2004); hep-ph/
0406100; G. E. Brown, C. H. Lee, M. Rho, and E.
Shuryak, Nucl. Phys. A740, 171 (2004); J. Liao and
E. V. Shuryak, hep-ph/0508035; Phys. Rev. D 73,
014509 (2006); E. V. Shuryak, hep-ph/0510123.

[11] K. Kajantie, M. Laine, K. Rummukainen, and M. E.
Shaposhnikov, Nucl. Phys. B458, 90 (1996); B503, 357
(1997); K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K.
Rummukainen, and M. E. Shaposhnikov, Phys. Rev. Lett.
79, 3130 (1997); K. Kajantie, M. Laine, A. Rajantie, K.
Rummukainen, and M. Tsypin, J. High Energy Phys. 11
(1998) 011; K. Kajantie, M. Laine, K. Rummukainen, and
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