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The large N reductions in gauge theories are identified with dimensional reductions with homogeneous
distribution of the eigenvalues of the gauge fields, and it is used to identify the corresponding closed string
descriptions in the Maldacena duality. When one does not take the zero-radii limit, the large N reductions
are naturally extended to the equivalences between the gauge theories and the ‘‘generalized’’ reduced
models, which naturally contain the notion of T-dual equivalence. In the dual gravitational description,
T-duality relates two type IIB supergravity solutions, the near horizon geometry of D3-branes, and the
near horizon geometry of D-instantons distributed densely and homogeneously on the dual torus. This is
the holographic description of the generalized large N reductions.
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I. INTRODUCTION

The large N limit of gauge theories leads to a drastic
reduction of dynamical degrees of freedom [1]. The quan-
tities in a gauge theory in D dimension can be calculated
from a much simpler reduced model, which is obtained by
dropping off the spacetime dependence of the original
gauge theory. The crucial condition for this large N reduc-
tion to take place, in the case of SU�N� gauge group, is a
homogeneous distribution of the eigenvalues of gauge
fields, which preserves the �ZN�D symmetry. This is essen-
tially because the homogeneous distribution of the eigen-
values generates spacetime momentum from the gauge
group [2–5].

On the otherhand, the celebrated Maldacena’s duality
conjecture [6] states that the large N gauge theories have
dual descriptions in terms of closed strings in higher di-
mensions, concretely realizing the ideas of the large N
gauge theory—closed string duality [7] and holography
[8] at the same time. It is interesting to ask how the large N
reductions are realized in the dual closed string theory via
the Maldacena duality. Recently in the Gopakumar’s pro-
gram towards a precise formulation of the large N gauge
theory—closed string duality [9], I studied ’t Hooft-
Feynman diagrams of correlation functions in gauge theo-
ries compactified on a thermal circle, to read off the
corresponding dual geometries [10]. It was mentioned
that the technique used for calculating the thermal corre-
lation functions was reminiscent to that appeared in the
large N reductions. However, this aspect was not inves-
tigated in depth there. In the present article, I clarify its
relation to the large N reductions, and its relevance for
finding the dual holographic realization in the Maldacena
duality. Some aspects of the large N reductions will be
shown to have simple explanations in the dual closed string
description.

One of the motivations for this study is that the reduced
models are convenient for putting on computers, and there-

fore clarifying the holographic dual description of the large
N reductions will lead to the test of the Maldacena duality
by computer simulations.

Another main motivation is that this gives a concrete
way to obtain a closed string theory from the matrix model
of M-theory or the type IIB matrix model, via the well
studied Maldacena duality.

II. LARGE N REDUCTIONS IN MALDACENA
DUALITY

In this section, I first review and extend the argument of
[10] for how to probe the dual geometry of the �ZN�D

symmetric phase by the correlation functions in gauge
theories compactified on a D dimensional torus. Then,
the large N reductions of the gauge theories are obtained
as a limit where the size of the torus is taken to zero. The
issue of stability of the �ZN�D symmetric distribution of the
eigenvalues of the gauge fields will be discussed with the
comparison with the stability of the corresponding dual
geometries.

As an example I take D � 4 case, where the boundary
description is naturally identified with some SU�N� gauge
theory. Throughout this article I will work in the N ! 1
planar limit [7]. I study the case where all fields are in
adjoint representation of the gauge group.1 When there are
fermions, I put periodic boundary conditions on them in all
the compactified directions.2 This is necessary for obtain-
ing the reduced model which reproduces the original gauge

*Electronic address: furuuchi@mri.ernet.in

1One can also introduce fields in fundamental representation
and repeat the arguments similar to the one below, but baryons
may be missed from such arguments based on Feynman dia-
grams [11]. One may still expect from the dual holographic
descriptions similar to what is discussed in this article that the
large N reductions still take place.

2In the thermal case, fermions obey the antiperiodic boundary
condition in the Euclidean time direction. As long as the phase is
in the �ZN�D symmetric phase the following argument apply, but
which phase is realized depends also on these boundary
conditions.
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theory results. The crucial condition for the large N reduc-
tion to take place is that the gauge field takes the configu-
ration

 A� �
1

R�
diag��1

�; � � � ; �
N
�� (1)

in an appropriate gauge, where �a� are distributed homoge-
neously between �� 1

2 ;
1
2�. The square expectation value of a

Wilson loop winding around a cycle of T4 is an order
parameter of the �ZN�4 symmetry. It vanishes in the
�ZN�D symmetric phase: hjWj2i � 0 [12], where

 W �
1

N
TrP expi

I 2�R�

0
A�dx�; � � 0; � � � ; 3: (2)

Here R� is the compactification radius in �-th direction
and P denotes the path ordering. Whether the above con-
figuration is realized or not depends on the theory, here I
am interested in a class of theories where this is the case.
However, see the discussions on the Eguchi-Kawai reduc-
tion below.

Suppose one calculates some field theory correlator
hO1�K�1� � � �On�K�n�i of gauge invariant local single
trace operators O�K�j�, Tr�Ij1 � � ��Imjj�K�j� for example.
Here, K�j is an external momentum of the j-th operator
which takes integer values in the unit of 1

R�
, and �I’s are

adjoint scalars. I take the background gauge D�A
� �

@�A
� � i�A�;A

�� � 0, with A� being the fluctuating
quantum part of the gauge field and the background con-
figuration A� being (1). I quantize the theory through the
BRS formalism. Then, the momenta

n�
R�

always appear in

the combination 1
R�
�n��ab � �a� � �b��. Furthermore, in

the planar limit one can always associate a loop momen-

tum
ni�
R�

(i � 1; � � � ; ‘ labels the loop momentum) with an

index loop ai, and they appear in a specific combination
1
R�
�ni� � �

ai
� � [3–5,10].3 In the large N limit one can re-

place the index sums with the integrations:

 

X
a1���a‘

G
�
�ai�
R�

�
!

�
N
Y3

��0

R�
Z 1=2R�

��1=2R��
dP�i

�
G�P�i� (3)

where �
ai
�

R�
was replaced with the continuous integration

variable P�i in the N ! 1 limit. As one sums over the
gauge indices, the sums run over the homogenous distri-
bution of the eigenvalues of the background gauge field.
Thus the sum over the gauge indices can be replaced by the
integration over the dual torus. This is the essential mecha-
nism for the large N reductions. The integrand for the
correlator is a function of P�i �

n�i
R�

. Hence the correlator

has a form

 

�Y‘
i�1

X1
n�i��1

Z 1=2R�

��1=2R��
dP�i

�
G
�
P�i �

n�i
R�

; K�j

�

�

�Y‘
i�1

Z 1
�1

dP�i

�
G�P�i; K�j�: (4)

Thus the full internal loop momentum integrations of the
uncompactified theory has been recovered. In other words,
in the large N limit the functional forms of the field theory
correlators on T4 with the background (1) coincide with
those of the uncompactified theory (with a trivial gauge
field configuration) to all orders in perturbation theory.
However, notice that the external momenta K�j still take
discrete values. Therefore when one performs Fourier
transformation to the position space, one obtains the sum
over images of the correlation functions of the uncompac-
tified theory:

 G�x�j �jT4 �
X1

mj��1

G�x�j � 2�mjR��jR4 : (5)

The result (5) was recently obtained in [10] in the context
of the Maldacena duality. It may be worth noting that the
main ingredients in the derivation of (5) had appeared in
the old study of the large N reductions [3]. The new view-
point brought by [10] was its bulk interpretation: (5) has a
simple interpretation in the corresponding dual geometry.
In the Maldacena duality, the geometry of the bulk can be
probed by the gauge theory correlators. Then, (5) means
that the dual geometry probed by the gauge theory
Feynman diagrams of the compactified theory with the
background (1) is the same as that of the uncompactified
theory, except for the periodic identifications in T4 direc-
tions [10]. Recall that the result for correlation functions of
composite operators (5) is not a trivial consequence of a
simple compactification in the gauge theory side, but the
configuration (1) was crucial: If one sums over images of
each field’s Feynman propagator on R4 to obtain the
propagator on T4 (say h�I�x1��

J�x2�i), which is appropri-
ate for probing a geometry corresponding to A� � 0 back-
ground but not the homogeneous configuration (1), one
does not obtain the sum over images of the correlation
functions of the composite operators.

Now I identify the large N reduction with the zero-radii
limit R� ! 0, so that in the first line of (4) the momentum
summation can be truncated to n�i � 0 part only. Then, the
original T4 momentum summations drop out, but the gauge
index summations reproduce the R4 momentum integra-
tions. This is the essence of the perturbative ‘‘derivation’’
of the holographic dual description of the large N
reduction.4

3The origin of this combination is the covariant derivative for
adjoint fields. For a planar diagram with all adjoint field propa-
gators, the number of index loop is one more than the number of
momentum loops, but one index sum factors out and just gives an
overall factor N [10].

4Derivation assuming that the Maldacena duality is correct for
uncompactified theory. The derivation may be extended to the
nonperturbative one by using the Schwinger-Dyson equation [1].
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There are two main options for taking the zero-radii
limit, corresponding to two types of the reduced models.
The ‘‘quenched’’ reduced models [2] are essentially the
models where the condition (1) is put by hand. This is
actually sufficient for a purpose of calculating quantities of
the uncompactified original gauge theories. By construc-
tion the dual geometry in this case is the same as that of the
uncompactified theory, up to the periodic identifications in
T4 directions. To calculate quantities which is translation-
ally invariant along the T4 directions from the closed string
side, one just needs to study translationally invariant solu-
tions of classical equation of motions. The periodic iden-
tifications in T4 directions, in particular R� ! 0 limit,5 do
not matter in this case. This is the closed string dual
description of the quenched large N reduction. The fact
that in the classical bulk theories one can truncate the
equation of motions to the holographic radial direction,6

and the classical limit of the closed string theory corre-
sponds to the planar limit, shows a beautiful correspon-
dence between the two descriptions. The large N gauge
theories may be said to be ‘‘classical’’ in this sense.

So far, I have been describing how the translationally
invariant quantities can be obtained from the reduced
model, but the reduced model can also be used to calculate
the gauge theory quantities which depend on spacetime
coordinates. This will be explained in the next subsection.

On the otherhand, in the spirit of the original reduced
model of Eguchi and Kawai [1], the configuration (1) is not
put by hand, but it must be realized as a dominant saddle
point. Thus, whether the large N reduction takes place or
not becomes a dynamical issue. This translates via the
Maldacena duality into the issue of stability of the geome-
try dual to the uncompactified theory upon the zero-radii
limit of the T4 compactification.

The dynamical stability of the homogeneous distribution
(1) against the small volume limit R� ! 0 in gauge theo-
ries is a model dependent problem. Here I just make a few
remarks on some aspects of it.

In the supersymmetric case, the results of [13] for S1

compactification may seem to suggest the stability of the
configuration (1). But since here all spacetime directions
are compactified, the quantum fluctuations can be sup-
pressed only by the large N effect. Therefore a separate
study is actually in order. Below, I will discuss a role of
fermions with the periodic boundary conditions, for the
stability of the configuration (1).

If the gauge theory contains a massless elementary
fermionic field, the periodic boundary conditions on it
may restrict the topology of the dual geometry to be R	0 

T4 [14]. This is because if some circle of T4 shrinks to zero
at some distance in the holographic radial direction in the
bulk, the bulk fermion which couples to the gauge theory
operator containing the massless fermion cannot have the
periodic boundary conditions.7 As argued above, the stabil-
ity of the R	0 
 T

4 topology in the bulk is necessary for
the stability of the configuration (1) in the limit R� ! 0
[10].8 This expectation from the closed string side may
heuristically be explained in the reduced models if one
recalls the procedure taken here for taking the large N
limit. To see this, I first analyze a reduced model with
SU�2� gauge group and with one massless adjoint fermion,
to estimate effective potential between two eigenvalues of
the gauge field. In this case it is possible to integrate out the
fermion [17], and it is easy to see that the presence of the
massless adjoint fermion introduces a repulsive potential
�� logL for L� 0, where L is a difference between the
two eigenvalues. One may expect that there is a similar
repulsive force between eigenvalues also in the SU�N�
reduced model. Then, recall that to obtain the reduced
models from the gauge theories, I took N !1 before
taking the R� ! 0 limit. To implement this condition
starting from the reduced models, one should restrict ei-
genvalues of the reduced gauge fields between � 1

2R�
and

1
2R�

.9 It is like putting particles with short distant repulsive

force dense enough in a finite volume so that the resulting
distribution becomes uniform, i.e. the configuration (1) is
realized. On the otherhand, adding a mass term to the
fermion weaken the repulsive force and it disappears if
the mass is sufficiently large. It is natural because if the
mass is taken large enough, the fermion will eventually
decouple from the system. It suggests that in the corre-
sponding classical solution of the dual closed string de-
scriptions, fermionic fields which couple to a gauge
invariant fermionic operator with that massive fermion
are excluded from a region in the spacetime corresponding
to the scale lower than the fermion mass scale, and they do
not restrict the topology there. The complete exclusion of
fermionic field from some region may require a singular

5The limit is, however, slightly subtle for conformal field
theories where the small volume limit can be undone by con-
formal transformation (or isometry in dual closed string descrip-
tion). It will be more appropriate to keep R� finite in such cases.
This is discussed in the next section.

6In quantum theories, even if one is interested in translation-
ally invariant quantities, spacetime dimensionality comes in
through the loop integrals.

7However, this restriction may not be so strong if one takes
into account other spacetime directions in the dual theory. See
[15] for a recent interesting example where the circle in the
asymptotic boundary is mixed with another circle corresponding
to an internal symmetry in field theory side.

8The bulk topology may also be probed by using the classical
closed string worldsheet as a dual description for the Wilson
loop expectation values [16]. Precisely speaking, what is calcu-
lated in [16] is a generalization of the Wilson loop including
adjoint scalars.

9This is a gauge invariant condition for the reduced models.
The mutually commuting configuration (1) should emerge
dynamically.
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geometry in the supergravity description. The arguments
given here are heuristic and deserves further study.

If one introduces a bosonic adjoint field � to a gauge
theory instead of the fermion, it means introducing another
space dimension in the dual closed string side. Here I study
the simple situation where � � 0 vacuum is realized in the
gauge theory. To construct a corresponding reduced model,
one should take the diagonal components of � to be zero
by hand, much in the same spirit as in the quenched
reduced models, but for the opposite type of configura-
tion.10 Then, a calculation similar to the above shows, in
SU�2� case, that the bosonic adjoint field does not change
the leading repulsive potential between eigenvalues pro-
duced by the fermionic field.

For purely bosonic theories, in the closed string side the
AdS soliton [18] which is a possible vacuum state at finite
R� corresponds to a partial breaking of the configuration
(1), and one must also take into account the possibilities of
various phase transitions, like to black holes, black strings
[19,20] and so on, which can trigger instability of the
configuration (1) upon taking the R� ! 0 limit. As I
mentioned earlier, the configuration (1) is crucial for the
large N reduction. The instability of the geometries dual to
the uncompactified theories upon compactification means
that the Eguchi-Kawai reduction does not take place in
those cases.

Correlators of local gauge invariant single trace
operators from reduced models

As has been described in the previous subsections, the
large N reduction is not merely a simple dimensional
reduction in the gauge theory side, but the configuration
(1) was crucial. The loop momentum integrations in the
original gauge theory are recovered from the gauge index
sums in the reduced model. One can also calculate corre-
lation functions in gauge theories which depend on exter-
nal momenta from reduced models, provided that the
configuration (1) is realized. This is essentially because
the gauge indices in the reduced models play the role of
spacetime momenta in the original gauge theory. In the
Maldacena duality, the correlation functions of local gauge
invariant single trace operators are important because they
correspond to closed string amplitudes in the dual theory.
However, since trace operators do not have uncontracted
gauge indices, additional techniques are required to calcu-
late correlation functions which depend on external mo-
menta.11 In this subsection, I explain how to calculate such
correlation functions from the reduced models.

I take an operator made of adjoint scalars �I (I labels
the species of the scalars) as an example, generalizations to
include fermions or dynamical gauge fields are straightfor-
ward. For an operator made of q scalars Tr�I1 � � ��Iq�k� in
the gauge theory, the corresponding object in the reduced
model is given by

 Tr �k�I1 � � ��Iq (6)

where I have defined the ‘‘shifted trace’’ Tr�k as

 Tr �kAB �
X
P1;P2

AP1;P2
BP2;P1�k: (7)

I have reparametrized the matrix indices in terms of the
continuous parameter P� already taking into account the
N ! 1 limit. See Eq. (3). k� is regarded as a shift in the
matrix indices. The point is that the shift inserts the exter-
nal momentum k� to the index line connected to the latter
index of �Iq . The shifted trace does not satisfy the cyclic
property TrAB � TrBA, so the above mapping from the
gauge theory to the reduced model is not unique. However
this is not a problem, since for a planar diagram these
cyclically shifted operators all give the same results. This
is because the index loops and the incoming momenta
always appear in the combination P�i1 � P�i2 � k�,
where i1, i2 are loop indices. k� can be assigned to either
i1 or i2, and the difference can be absorbed by a shift of the
loop momentum, which is an integration variable. See
Figs. 1–3.

P P

k

12

...
...

FIG. 1. The reduced model Feynman diagram for a correlator
with incoming Tr�k�I1 � � ��Iq in the ’t Hooft’s double line
notations. The figure expresses the assignment of the incoming
momenta k to the P1 index loop: �P1 � k� � P2.

P P12

...
...

k

FIG. 2. P1 � �P2 � k�.

10One may also try to show that this configuration is dynami-
cally preferred in the reduced model [17].

11If there are uncontracted gauge indices, these can be straight-
forwardly regarded as the external momenta in the large N
reductions [3–5].
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III. FINITE RADII AND T-DUALITY

A. T-duality in gauge theories

In the previous section I identified the largeN reductions
with the dimensional reductions with the nontrivial gauge
configuration (1). However, since the Maldacena duality is
supposed to hold for any radii, it is natural to generalize the
notion of the large N reductions to that case. In this sub-
section, I will explain that the equivalence between the
original gauge theory and the reduced model still holds for
finite radii, by appropriately generalizing the notion of the
reduced model as a matrix model on a compact space,
along the line of [21]. As found in [21], this naturally leads
to the notion of T-dual equivalence in the matrix model.
The corresponding dual closed string description of this
T-dual equivalence [22] will be presented in the subse-
quent subsection.

For finite radii R�, the gauge theory calculation has
equivalent T-dual descriptions in terms of the matrix
model [21]. Each eigenvalues are interpreted as positions
ofD-instantons (in the string units) in the T-dual language.
The radii of the dual torus ~T4 are ‘2

s
R�

, where ‘s is the string

length. The summation over n� in (4) corresponds to the
summation over images of D-instantons on the dual torus
~T4. To incorporate the images in the reduced models, one
embeds the M4 SU�N� gauge groups into the diagonal
blocks in SU�N 
M4� gauge group, where M is a positive
integer which will be taken to infinity. The matrix compo-
nents of the reduced fields are subject to an identification
corresponding to the ~T4 compactification. The background
gauge field configuration (1) is generalized to

 A� ~m ~m �
1

R�
diag��1

�; � � � ; �
N
�� �

m�

R�
(8)

where m� is a component of a four-vector ~m which is an
index for SU�M4�. The off-diagonal components (in terms
of SU�M4�) are zero. In the matrix model on the torus, the
fields in adjoint representation satisfy [21]

 � ~�1� ~m� ~v�; ~�2� ~n� ~v�
� � ~�1 ~m; ~�2 ~n

(9)

where I have labeled the SU�N� gauge group indices in
terms of ~�, and ~m, ~n are SU�M4� indices. ~v is an arbitrary
four-vector with integer entries, which expresses a parallel

shift to an image. For simplicity, I study massless scalar
fields �I. Generalization to other fields is straightforward.
The quadratic term of the reduced model is given by
 

1

M4 TrSU�N
M4��A�;�
I��A�;�

I�

�
X
~m; ~�1; ~�2

�I
~�1 ~m; ~�2

~0

�
1

R�
���1 � ��2 �m��

�
2
�I

~�2
~0; ~�1 ~m

(10)

where use has been made for (9). In the Maldacena duality,
one studies the coupling of gauge invariant operators to
their sources. For example, in the gauge theory the trace of
q scalar fields have the coupling of the form

 

Z
d4KJ I1���Iq��K�TrSU�N��

I1 � � ��Iq�K�: (11)

The source J I1���Iq is identified with the boundary value of
the corresponding field in closed string side. In the reduced
models, the corresponding coupling is given by

 

�Y
�

Z 1=2R�

��1=2R��
dk�

X1
m���1

�
J I1���Iq��K�Tr�k;� ~m

SU�N
M4�
�I1 ����Iq

(12)

where K� � k� �
m�

R�
, and I have introduced the

‘‘ ~m-shifted trace’’ Tr� ~m
SU�M4�

for SU�M4� indices defined by

 Tr � ~m
SU�M4�

AB �
X
~m1; ~m2

A ~m1; ~m2
B ~m2;� ~m1� ~m�

�
X
~m1; ~m2

B ~m2; ~m1
A ~m1;� ~m2� ~m�: (13)

P P12

...
...

k

FIG. 3. Figure 2 ! Shift of the integration variable: P2 !
P2 � k. This figure corresponds to using Tr�k�I2 � � ��Iq�I1 .

P P

P

1

1 3

3

2

K K2

K K4

K1 K2 K K3 4+ + + = 0

FIG. 4. An example: A four point function of the operators of
the form Tr�k;� ~ms

SU�N
M4�
�3 (s � 1, 2, 3, 4). Assigning loop momenta

to matrix index loops automatically take care of momentum
conservation at each vertex. The Tr�k;� ~ms

SU�N
M4�
�3 adds incoming

momentum Ks � ks �
ms
R between two index lines. Note that

K1 � K2 � K3 � K4 � 0 by the total momentum conservation
for incoming momenta. There are different but equivalent as-
signments for between which two index lines one puts an
incoming momentum, see Fig. 5.
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The SU�M4� matrices A and B satisfy the same condition
as in (9), and the the ‘‘cyclic’’ property, i.e. the second line
of (13) follows from that condition. The shifted trace for
the SU�N� indices P is defined as in (6). One can check that
the reduced model with the above source term gives the
same result of the original gauge theory in the diagram-
matic perturbative calculations. See the example Fig. 4 and
5. In the dual D-instanton descriptions, the T-dual of
momenta are winding modes of closed strings, and the
shift k and ~m in the trace Tr�k;� ~m

SU�N
M4�
corresponds to a

string stretched between a D-instanton and another
D-instanton shifted by ‘2

s�k� �
m�

R�
�.

Note that usually the sum over images is not taken in the
reduced models. In this sense the this is a generalized of the
large N reduction.

B. The dual geometry

Finally, I explain in this subsection that the generalized
large N reduction has a simple description in the dual
geometry.12 As a concrete example, I take N � 4 super
Yang-Mills theory on T4, which is identified as a worldvo-
lume theory of D3-branes, at strong coupling. At strong
coupling supergravity approximation is valid and the dual
geometry is AdS5 
 S

5 with the periodic identifications in
the T4 directions, and the dilaton is constant.13 As will be
shown below, this geometry can be obtained from a multi
D-instanton solution in type IIB supergravity via T-duality,
where D-instantons are densely and homogeneously dis-

tributed on the dual ~T4.14 The dense homogeneous distri-
bution of the D-instantons is identified as a holographic
dual of the dense and homogeneous distribution of the
eigenvalues (1). Thus this is a holographic description of
the equivalence between the gauge theory and the gener-
alized reduced model.

The (Euclideanized) metric for the D-instantons in
Einstein frame is flat: ~g��E � ���, �; � � 0; � � � ; 9 [25].
The solution can be obtained by solving the following
equation for dilaton ~�:

 @�@
�e ~� � 0: (14)

When D-instantons are densely and homogeneously dis-
tributed in the ~T4 directions, and overlapping on a point in
the transverse six dimensions, the solution is given by

 e ~�1� ~� � gs

�
1�

c0gsN‘4
s

r4

�
(15)

where r is the radial coordinate transverse to ~T4, N is a
number of D-instantons on ~T4 and gs � e ~�1 is the string
coupling constant. c0 is a numerical constant related to the
volume of the unit five-sphere, I suppress such numerical
factors hereafter. In the near horizon limit r! 0, the
dilaton configuration becomes

 e ~� �
gsN‘

4
s

r4 (16)

and I obtain the AdS5 
 S
5 metric in the string frame

~ds2
st � e ~�=2 ~ds2

E:

 

~ds 2
st �

�������������
gsN‘4

s

p
r2 �dr2 � r2d�5 � d~x2

==� (17)

where ~x�== is a coordinate on ~T4 with period 2� ~R�
15 and

d�5 is the volume form of the unit five-sphere. Now I
perform T-dual transformation on ~T4. The T-dual metric is
again AdS5 
 S

5:

 ds2
st �

�������������
gsN‘4

s

p
r2 �dr2 � r2d�5� �

r2�������������
gsN‘

4
s

p dx2
== (18)

where x�== is a coordinate on T4 with period 2�R� �

2� ‘2
s

~R�
. Under the T-duality the dilaton transforms as [26]

 � � ~��
1

2
log det

~T4
~g�� st � 0: (19)

Thus one arrives at the AdS5 
 S
5 geometry with the

constant dilaton (e�1 � gs), as I have claimed. This is

P P

P

1 3

4
3

2

+ +

K K

K1 2K

K1

K +K42

K +K4K321K
= 0

FIG. 5. Another way to calculate the same diagram.

12I thank R. Gopakumar and K. P. Yogendran for stimulating
my thought on T-dual geometries at the early stage collaboration
in [10].

13Since the discussions in the previous section were based on
perturbation theory, the discussion in this section at strong
coupling may should be regarded as complementary description.
However, from the high symmetry of AdS5 one may expect that
the form of the geometry does not receive �0 corrections [23]. If
this is the case the following arguments should be the direct
holographic dual description of the perturbative explanation of
the generalized large N reduction discussed in the previous
section.

14The T-dual relation of these geometries has appeared in [24].
The point of this subsection is to exhibit the parallel between the
dual descriptions.

15Before taking the near horizon limit
Q3
��0

~R� � ‘4
s should

hold in this solution so that N coincides with the number of
D-instantons. After the near horizon limit this restriction can be
removed by the isometry of AdS5.
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the holographic description of the generalized large N
reduction in the previous subsection. Notice the key role
of the dense and homogeneous distribution of the
D-instantons, which is dual to the dense and homogeneous
distribution of the eigenvalues of the gauge field: It gives
the geometry which is T-dual to the geometry just obtained
by a simple T4 identification of the uncompactified
D3-brane near horizon geometry.

Recall that the T-dual relation in the supergravity clas-
sical solutions can be derived from closed string world-
sheet sigma model [22,26], whereas the matrix model
T-duality was motivated and ‘‘explained’’ by the open
string sigma model but was shown purely within the gauge
theoretical language in [21]. The validity of these two
descriptions may have an overlap in the Maldacena’s large
N and the near horizon limit, as long as the conjecture is
correct.16 Then, the T-dual equivalence of two geometries
can be interpreted as a holographic dual description of the
matrix model T-dual equivalence between the gauge the-
ory and the generalized reduced model studied in the
previous subsection.

IV. SUMMARY AND DISCUSSIONS

In this article, I have presented the holographic dual
descriptions of the large N reductions in the Maldacena
duality. This will be useful for deepening the understand-
ing of both sides. The equivalence between the reduced
model and the original gauge theory can be interpreted as a
limit of the compactification with the homogeneous distri-
bution of the eigenvalues of the gauge field. It was shown
how this equivalence is reflected in the dual bulk geometry
through the correlation functions of the local gauge invari-
ant single trace operators. Since the Maldacena duality
holds even for finite radii, it is natural to generalize the
equivalence relation to that case. This was achieved by
using the description of the matrix model on a compact
space introduced in [21]. This description naturally con-
tains the notion of T-duality. I pointed out that for finite
radii the T-dual equivalence of two supergravity solutions
are the holographic dual description of the T-dual equiva-
lence between the gauge theory and the generalized re-
duced model.

The crucial condition for the large N reduction is the
homogeneous distribution of the eigenvalues of the gauge

field (1). In the quenched reduced models this condition is
forced by hand, whereas in the Eguchi-Kawai reduction the
stability is a dynamical issue. The stability of the homoge-
neous distribution should reflect the stability of the super-
gravity solution dual to the uncompactified gauge theory
upon compactification on T4. I pointed out an interesting
possible role of fermions obeying the periodic boundary
conditions in the T4 directions.

I also presented a new technique for calculating position
dependent correlation functions of local gauge invariant
single trace operators in gauge theories from the reduced
models.

Despite the evidences from the past studies, the
Maldacena duality still remains as a conjecture. The holo-
graphic dual of the large N reductions established in this
article will be useful for the quantitative tests of the
Maldacena duality. Reduced models are suitable for study-
ing the nonperturbative effects. In the Maldacena duality, it
is also expected that the classical closed string descriptions
capture the nonperturbative effects of the dual gauge theo-
ries. It will be interesting to study further how nonpertur-
bative effects in the reduced models reflect themselves in
the dual closed string descriptions. The large N reductions
also provide an advantage for computer simulations [27].
As shown in this article, the large N reductions have more
direct correspondence with the Maldacena duality com-
pared with the lattice gauge theory, at least at present. If a
computer simulation of a reduced model supports the
dynamical stability of the configuration (1), it suggests
that there is a dual closed string solution which is stable
against the limit R� ! 0. Then one can further calculate
quantities in closed string theory using the reduced model.
I hope that the holographic dual descriptions of the large N
reductions described in this article will lead to the inves-
tigation of the Maldacena duality by computer simulations
of reduced models.

I think relating the Matrix model ofM-theory [28] or the
IIB matrix model [29] to the Maldacena duality17 via the
large N reductions discussed in this article is the most
concrete way to study how closed strings emerge from
these models, especially taking into account the recent
developments in the understanding of the Maldacena dual-
ity [9,10,30].
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16Practically, one needs to be able to handle either the stringy
corrections or the strongly coupled gauge theory. Note that
although one obtains a smeared solution from D3-brane solution
even for finite N, when the number of the D3-brane is small the
gauge theory description is not rigorously related to this geome-
try. The ’t Hooft-Maldacena limit provides the correspondence
between the gauge theory and the closed string theory, and the
large N limit of the homogeneous distribution of the eigenvalues
of the gauge field, which is dual to the dense and homogeneous
distribution of the D-instantons, provides the effective smearing
of the multi-D-instanton solution.

17I am aware that many researchers have resorted the idea of
relating the matrix models with Maldacena duality from differ-
ent directions.
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