
Supersymmetric Chern-Simons theory and supersymmetric quantum Hall liquid

Kazuki Hasebe*
Department of General Education, Takuma National College of Technology, Takuma-cho, Mitoyo-city, Kagawa 769-1192, Japan

(Received 8 June 2006; published 25 August 2006)

We develop a supersymmetric extension of Chern-Simons theory and Chern-Simons-Landau-Ginzburg
theory for the supersymmetric quantum Hall liquid. Supersymmetric counterparts of topological and
gauge structures peculiar to the Chern-Simons theory are inspected in the supersymmetric Chern-Simons
theory. We also explore an effective field theoretical description for the supersymmetric quantum Hall
liquid. The key observation is the charge-flux duality. Based on the duality, we derive a dual super-
symmetric Chern-Simons-Landau-Ginzburg theory, and discuss physical properties of the topological
excitations in the supersymmetric quantum Hall liquid.
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I. INTRODUCTION

In recent years, concepts of the quantum Hall effect
(QHE), which was believed to be formulated only in
two-dimensional space, have been dramatically changing,
initiated by the success of the construction of the four-
dimensional QHE [1]. Since then, further generalizations
of the QHE have been explored, in even higher dimensions
[2–6] and in q-deformed systems [7]. More recently, in-
spired by the developments of the nonanticommutative
geometry [8–10], supersymmetric (SUSY) extensions of
QH liquids were proposed on noncommutative supermani-
folds, such as a fuzzy supersphere [11] and a noncommu-
tative superplane [12]. The analyses of the SUSY QHE
revealed some of the novel physical consequences of the
nonanticommutative geometry. The SUSY QH liquids ex-
hibit natural SUSY counterparts of the mathematical and
physical features peculiar to the original QH liquids, for
instance, noncommutative geometry, fractionally charged
excitations, Hall orthogonality, and W1 symmetry. The
SUSY Landau problems on other analogous noncommuta-
tive supermanifolds, such as fuzzy CP�njm�, were studied in
Ref. [13], a higher SUSY Landau problem was also re-
ported in Ref. [14], and a SUSYextension of the QH matrix
model was constructed in Ref. [15].

One of the most amazing incidents of the QHE is the
emergence of the Chern-Simons (CS) topological field
theory in a low energy sector. The CS flux attachment to
electrons induces the statistical transmutation from fer-
mion to (composite) boson, and the QH states are regarded
as ‘‘superfluid’’ states of composite bosons. The Chern-
Simons-Landau-Ginzburg (CSLG) theory describes low
energy phenomenology in the QHE [16–18]. Apart from
relations to QHE, the CS theory is important of its own
right in a field theoretical point of view [19]. It is quite
interesting that such a novel field theory appears from
mysterious many-body effects, and well describes collec-
tive phenomena of a real condensed matter system.

In this paper, we develop a SUSY extension of the CS
theory and CSLG theory with OSp�1j2� global symmetry.
The SUSY CS theory demonstrates natural SUSY exten-
sions of the topological and gauge features peculiar to the
original CS theory. We also explore the CSLG description
for the SUSY QH liquid. We show the existence of the
charge-flux duality in the SUSY QH system, and derive the
dual representation for the SUSY CSLG theory. Based on
the dual description, physical properties of the topological
excitations in SUSY QH liquids are discussed.

This paper is organized as follows. In Sec. II, we briefly
review the mathematical background for the SUSY QH
liquid. In Sec. III, we present a Lagrange formalism of the
one-particle mechanics on a supersphere in the presence of
the supermonopole background. In Sec. IV, the SUSY CS
theory is constructed and its field theoretical properties are
inspected. In Sec. V, the charge-flux duality in the SUSY
system is explored. With the use of the dual SUSY CSLG
description, we discuss physical properties of the topologi-
cal excitations. Section VI is devoted to summary and
discussions. In Appendix A, several useful formulas on
supermatrix are summarized. In Appendix B, we present
the super Jacobi and Bianchi identities.

II. THE SUPER HOPF MAP AND THE
SUPERMONOPOLE

In this section, we review the super Hopf map and the
supermonopole [20,21] used in the setup of the supersym-
metric QH liquid. First, we introduce the OSp�1j2� super-
group, whose generators are given by la (a � x; y; z),
which are Grassmann even, and l� (� � �1; �2), which
are Grassmann odd. They satisfy the following graded
algebras:
 

�la; lb� � i�abclc; (2.1a)

�la; l�� �
1
2��a���l�; (2.1b)

fl�; l�g �
1
2�C�a���la: (2.1c)

The fundamental representations of the OSp�1j2� genera-
tors are given by*Electronic address: hasebe@dg.takuma-ct.ac.jp
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 la �
1
2

�a 0
0 0

� �
; l� � i12

0 ��
�C���t 0

� �
; (2.2)

where f�ag are Pauli matrices, C is the charge conjugation
matrix given by C � i�2 and �1 � �1; 0�t, �2 � �0; 1�t.
The general element of the OSp�1j2� supergroup (strictly
speaking UOSp�1j2� supergroup), is parametrized as

 g �
u �v� ��u� �v�

v u� �u� � ��v
� ��� 1� ���

0
@

1
A; (2.3)

where u and v are Grassmann even complex parameters, �
is a Grassmann odd parameter, and they are chosen to
satisfy the constraint u�u� v�v� ��� � 1. With this
constraint, one may see that g satisfies the following con-
ditions

 s det�g� � u�u� v�v� ��� � 1 (2.4)

and

 gzg � ggz � 1: (2.5)

The definitions of the superdeterminant s det, and the
superadjoint z are given by Eqs. (A2) and (A3), respec-
tively. (Our definition of the superadjoint is different from
the conventional one.)

The super Hopf map is given by the mapping from
OSp�1j2� element g to the coordinates (xa, ��) on the
supersphere S2j2

 g! gl3gz � xala � iC����l�: (2.6)

Taking square and supertrace on both sides (see Eqs. (A4)
and (A5)), it is easily checked that (xa, ��) satisfy the
constraint

 x2
a � C������ � 1; (2.7)

which defines the supersphere with unit radius. With the
use of the Hopf spinor  � �u; v; ��t, (xa, ��) in Eq. (2.6)
are concisely represented as
 

xa � 2 yla ; (2.8a)

�� � �2i yl� ; (2.8b)

where  y 	 �u�; v�; ���. Since (xa, ��) are invariant under
the U�1� transformation

 g! g 
 e2i�l3 (2.9)

or

  ! ei� ; (2.10)

the supersphere is given by the coset S2j2 �

OSp�1j2�=U�1�, and the U�1� fibre is defined on S2j2. The
connection of the U�1� fiber is given by

 A � �is tr�l3gzdg� � �i
1
2� 

zd � d z �; (2.11)

where  z 	 �u�; v�;����. Under the U�1� transformation

(2.9) or (2.10), as expected, A is transformed as

 A! A� d�: (2.12)

Inverting the super Hopf map (2.8) from (xa, ��) to  ,
the super Hopf spinor is expressed as [21],

  �

��������
1�x3

2

q
�1� 1

4�1�x3�
�C��

x1�ix2�������������
2�1�x3�
p �1� 1

4�1�x3�
�C��

1�������������
2�1�x3�
p ��1� x3��1 � �x1 � ix2��2�

0BBBB@
1CCCCA: (2.13)

Using this explicit form, the supermonopole gauge fields
A � dxaAa � d��A� are calculated as
 

Aa � �
I
2
�ab3

xb
1� x3

�
1�

2� x3

2�1� x3�
�C�

�
; (2.14a)

A� � �i
I
2
��aC���xa��; (2.14b)

with I � 1. The supermonopole gauge fields with quan-
tized charges take the same form as Eqs. (2.14) with the
integer I. With the use of super gauge fields (2.14), the
supermonopole field strengths are obtained as
 

Fab �
I
2
�abcxc

�
1�

3

2
�C�

�
; (2.15a)

Fa� � �i
I
2
��ab � 3xaxb����bC��; (2.15b)

F�� � �iI��aC���xa

�
1�

3

2
�C�

�
; (2.15c)

where we used the definition of the super field strengths
 

Fab � @aAb � @bAa; (2.16a)

Fa� � @aA� � @�Aa; (2.16b)

F�� � @�A� � @�A�: (2.16c)

III. ONE PARTICLE ON THE SUPERSPHERE IN
THE SUPERMONOPOLE BACKGROUND

Before discussing the many-body system, we consider
one-particle mechanics on the supersphere with unit radius
in the supermonopole background. The supermonopole is
set at the center of the supersphere. The one-particle
Lagrangian is given by

 L �
m
2
� _x2
a � C�� _�� _��� � _xaAa � _��A� � V; (3.1)

where V is the external electric potential, (Aa, A�) are
supermonopole gauge fields (2.14), and (xa, ��) satisfy
the constraint (2.7). Introducing a Lagrange multiplier 	,
the equations of motion are derived as
 

m �xa � Fab _xb � Fa� _�� � Ea � 	xa; (3.2a)

m ��� � C���Fa� _xa � F�
 _�
� � E� � 	��; (3.2b)
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where Ea � �@aV, E� � C��@�V, and (Fab, Fa�, F��)
are supermonopole gauge fields (2.15). From Eqs. (2.7) and
(3.2), 	 is eliminated as

 	 � �m� _x2
a � C�� _�� _��� � �Eaxa � C��E����: (3.3)

Inserting this explicit form of 	 to Eqs. (3.2), we obtain
self-contained equations of motion. Though it is quite
nontrivial to solve such nonlinear equations, we may dis-
cuss local motions of the particle of our interest.

The center-of-mass coordinates (Xa, ��) are defined as
 

Xa � xa �
2

I
�a; (3.4a)

�� � �� �
2

I
��; (3.4b)

where (�a, ��) represent the OSp�1j2� angular momenta
of the particle
 

�a � m�abcxb _xc � i
m
2����aC���

_��; (3.5a)

�� � im2xa��a���
_�� � i

m
2����a��� _xa: (3.5b)

In the lowest Landau level (LLL) limit (which is realized at
m! 0), the particle coordinates (xa, ��) are reduced to the
center-of-mass coordinates (Xa, ��). With the use of
Eqs. (3.2), the constraint (2.7), and its derivative _xaxa �
C�� _���� � 0, the velocities of the center-of-mass coor-
dinates are derived as
 

_Xa � �
I
2
�abcxbEc � i

I
4
����aC���E�; (3.6a)

_�� � �i
I
4
��a���xaE� � i

I
4
��a�����Ea: (3.6b)

In the presence of the magnetic field, a charged particle
performs a drift motion, where the center-of-mass coordi-
nates move perpendicularly to the direction of the applied
electric fields. From Eqs. (3.6), we confirm such orthogo-
nality in the SUSY sense:

 Ea _Xa � C��E� _�� � 0: (3.7)

Meanwhile, from Eqs. (3.2), the particle velocities and the
electric fields are related as

 Ea _xa � C��E� _�� � m� _xa �xa � C�� _�� ����: (3.8)

In the LLL limit, from Eq. (3.8), one may find the super
Hall orthogonality

 Ea _xa � C��E� _�� � 0; (3.9)

which is consistent with the one obtained in the SUSY
noncommutative formalism [11].

Without electric fields, from Eqs. (3.6), the velocities of
the center-of-mass coordinates vanish

 

_X a �
_�� � 0; (3.10)

and, from Eq. (3.8), the accelerations and velocities be-

come orthogonal

 _x a �xa � C�� _�� ��� � 0: (3.11)

Under the perpendicular magnetic field, a charged particle
performs a cyclotron motion around its center-of-mass
coordinates due to the Lorentz force. Equations (3.10)
and (3.11) demonstrate this observation in the SUSY sense.

In the planar limit (x3 � 1), the one-particle Lagrangian
(3.1) is reduced to

 L �
m
2
� _x2
i � C�� _�� _��� �

B
2
�ij _xixj � iB��1��� _����;

(3.12)

where B � I=2. The canonical momenta are obtained as
 

pi �
@
@ _xi

L � m _xi �
B
2
�ijxj; (3.13a)

p� �
@

@ _��
L � mC�� _�� � iB��1�����: (3.13b)

In the LLL limit, from the commutation relations
�xi; pj� � i�ij and f��; p�g � i���, we obtain the alge-
bras on the noncommutative superplane
 

�xi; xj� � �i
1

B
�ij; (3.14a)

f��; ��g � �
1

2B
��1���: (3.14b)

These SUSY noncommutative algebras bring novel phys-
ics to planar SUSY quantum Hall systems [12].

IV. SUSY CS THEORY

It is well known that CS theories are defined in spaces
with odd dimensions. With the CS coupling constant �, the
CS Lagrangian in 3-dimensional space is given by

 L CS �
�
4
�abcAaFbc: (4.1)

In the following, we modify LCS to be invariant under the
OSp�1j2� global supersymmetry.

As a preliminary, we summarize the OSp�1j2� trans-
formations of the super gauge fields. The derivative ex-
pressions for the OSp�1j2� generators are
 

La � �i�abcxb@c �
1
2����a���@�; (4.2a)

L� �
1
2xa�C�a���@� �

1
2����a���@a: (4.2b)

With the use of the Grassmann odd generators L�, the
super charge is constructed as

 Q � L���; (4.3)

where �� are Grassmann odd parameters. The super trans-
formations of (xa, ��) read
 

��xa � �Q; xa� �
1
2��a�; (4.4a)

���� �
1
2xa�C�a���: (4.4b)
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Similarly, the super gauge fields and the super field
strengths are transformed as
 

��Aa � �
1
2A��C�a�����; (4.5a)

��A� �
1
2Aa��a���; (4.5b)

and
 

��Fab � �
1
2Fa��C�b��� �

1
2Fb��C�a���; (4.6a)

��Fa� �
1
2Fab��b��� �

1
2F���C�a���; (4.6b)

��F�� � �
1
2Fa���a��� �

1
2Fa���a���: (4.6c)

It is noted that 12-dimensional representations (Fab, Fa�,
F��) are not irreducible representations but irreducibly
decomposed into 7 � 5 representations. The 5-dimensional
irreducible representations (Fa, F�), which we call the
super vector field strengths, are constructed as
 

Fa �
1
2�abcFbc � i

1
4�C�a���F��; (4.7a)

F� � �i
1
2�C�a���Fa�: (4.7b)

It is easy to check that, under the super transformations
(4.6), (Fa, F�) form a super multiplet
 

��Fa �
1
2F���a���; (4.8a)

��F� �
1
2Fa�C�a���; (4.8b)

and satisfy the scalar super Bianchi identity

 @aFa � @�F� � 0; (4.9)

where we used the identities �abc@aFbc � 0 and
�C�a����2@�F�a � @aF��� � 0, which are obtained
from the super Bianchi identities (B2) and (B4).

From the inner product of (Aa, A�) and (Fa, F�), an
OSp�1j2� singlet is constructed as

 L s CS �
�
2
�AaFa � A�F��; (4.10)

which we adopt as the SUSY CS Lagrangian. In terms of
(Fab, Fa�, F��), Ls CS is rewritten as

 L s CS �
�
4

�
�abcAaFbc � i�C�a���A�Fa� �

i
2

�C�a���AaF��

�

�
�
2

�
�abcAa@bAc �

i
2
�C�a���A�@aA�

� i�C�a���A�@�Aa

�
� �total fermionic derivative term�: (4.11)

Though either term in Ls CS is not OSp�1j2� singlet, Ls CS

is invariant in total. To respect the OSp�1j2� global sym-
metry, the basespace for the SUSY CS Lagrangian is given
by R3j2, whose volume element is d3xd2�. Thus, we have
obtained the SUSY CS action invariant under the OSp�1j2�

super transformation, while it is not invariant under general
super coordinate transformations. Namely, the form of our
SUSY CS action critically depends on the particular choice
of the coordinates and the background manifold. Then, in
this sense, our SUSY CS theory is not a topological field
theory on supermanifolds. (Topological field theories do
not depend on the background metric and are invariant
under general coordinate transformations.) However, our
SUSY CS theory still inherits topological natures peculiar
to the original CS theory and manifests them in a SUSY
sense as we shall see in Subsections IV B and IV D. Some
comments are added further. One may find ‘‘various
kinds’’ of SUSY CS theories in literature. For instance,
in Ref. [22], the SUSY CS theory is referred to as the CS
theory with OSp�1j2� gauge symmetry. In Ref. [23], the
SUSY CS theory is referred to as the CS theory coupled to
super matter currents. In the above, we derived a new
SUSY CS Lagrangian, which possesses the OSp�1j2�
global supersymmetry. The matrix analogue of our
SUSY CS Lagrangian is found in Ref. [24], where the
SUSY CS term plays a crucial role for the realization of
fuzzy superspheres in the supermatrix model. In the fol-
lowing subsections, we investigate field theoretical aspects
of our SUSY CS theory.

A. U�1� gauge symmetry

The original CS Lagrangian (4.1) is invariant under the
U�1� gauge transformation up to a total derivative term.
Similarly, under the U�1� gauge transformation with the
gauge function �

 �Aa; A�� ! �Aa; A�� � �@a�; @���; (4.12)

Ls CS only yields the total derivative terms
 

�Ls CS �
�
2
�@a��Fa� � @���F���

�
�
4

�
@a���abcFbc� � i@����C�a���Fa��

�
i
2
@a���C�a���F���

�
; (4.13)

where the scalar Bianchi identity (4.9) was used. Thus,
Ls CS is invariant under the U�1� gauge transformation
when the boundary contributions are neglected.

B. Coupling with matter

Next, we investigate the SUSY CS theory with matter
fields, by adding the interaction term

 L I � AaJa � A�J� (4.14)

to Ls CS, where (Ja, J�) are the matter currents that form a
super multiplet
 

��Ja �
1
2J���a���; (4.15a)

��J� �
1
2Ja�C�a���: (4.15b)
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The equations of motion for SUSY CS fields are given by
 

�Fa � �Ja; (4.16a)

�F� � �J�: (4.16b)

It is obvious that the current conservation

 @aJa � @�J� � 0 (4.17)

is compatible with the scalar super Bianchi identity (4.9).
Regarding the 3rd bosonic axis as the temporal direction,
we consider point particles coupled to the SUSY CS fields
in Wick-rotated Euclidean super space-time R3j2. The
Lagrangian is given by

 L �
X
p

m
2
� _xpi _xpi � C�� _�p� _�p�� �

Z
d2xd2�LI

�
Z
d2xd2�Ls CS; (4.18)

where (xpi , �p�) (i � 1, 2) denotes the position of the pth
particle, and the matter currents are
 

Ja�x; �� �
X
p

_xpa�2�x� xp��2��� �p�; (4.19a)

J��x; �� �
X
p

_�pa�2�x� xp��2��� �p�: (4.19b)

The equations of motion for the pth particle are derived as
 

m �xpi � Fia _xpa � Fi� _�p�; (4.20a)

m ��p� � C���Fa� _xpa � F�
 _�p
�: (4.20b)

With the use of Eqs. (4.16), the equations of motion (4.20)
are reduced to those of the free particle
 

�xpi � 0; (4.21a)
��p� � 0: (4.21b)

Thus, the SUSY CS gauge fields never affect the dynamical
motion of the matter particles in bulk. This is a conse-
quence of the topological nature of the SUSY CS theory.

C. SUSY Hopf term

The phase interaction between two anyons is described
by the nonlocal Hopf term
 

LHopf � �
1

2�

Z
d3x

Z
d3y�abcJa�x�

xb � yb
jx� yj3

Jc�y�

� �
1

2�
J
�@

@2 J; (4.22)

where ��@�ab � �abc@c, @2 � @2
a, and Ja represents the

anyon current. Introducing the CS gauge fields, the Hopf
interaction is rewritten as the CS local interaction
�
2 A�@A� AJ. (Integrating out the CS fields, we obtain
the Hopf term (4.22).) The Hopf term corresponds to the
topological invariant of the two closed (anyon) loops,

known as Gauss linking number. It would be quite inter-
esting to see the SUSY extension of the Hopf term by
integrating out the SUSY CS gauge fields in the SUSY
CS Lagrangian. For later convenience, we rewrite the
SUSY CS Lagrangian in matrix representation

 L � Ls CS �LI �
�
2

A
A

� �
t
X

A
A

� �
�

A
A

� �
t J
J

� �
;

(4.23)

where Aa and Ja represent the bosonic gauge fields and the
bosonic currents, respectively, while A� and J � represent
the fermionic ones. The matrix X is given by

 X �
M P
�Pt N

� �
	

��abc@c
i
2 �C�a���@�

i
2 �C�b���@� � i

2 �C�a���@a

 !
:

(4.24)

Because of the existence of the U�1� gauge freedom (4.12),
with any smooth function �, the zero-mode equation of X
holds

 X 

@a�
@��

� �
� 0: (4.25)

Then, when we take the inverse of X, the U�1� gauge
freedom needs to be fixed by restricting the function space
in which X does not have its zero-mode. For instance, we
may apply the super Lorentz gauge

 @aAa � C��@�A� � 0; (4.26)

or the ordinary Lorentz gauge

 @aAa � 0: (4.27)

Integrating out the super gauge fields (A, A) in Eq. (4.23),
a SUSY extension of the Hopf term is obtained as

 L s Hopf � �
1

2�
J
J

� �
t 1

X
J
�J

� �

� �
1

2�
J
J

� �
t ~M ~MP 1

N
1
N P

t ~M � ~N

 !
J
J

� �

� �
1

2�
J
J

� �
t ~M 1

MP
~N

~NPt 1
M � ~N

 !
J
J

� �
; (4.28)

where ~M, ~N are given by
 

~M �
1

M� P 1
N P

t ; (4.29a)

~N �
1

N � Pt 1
MP

: (4.29b)

See also the formulas (A6) and (A8) about the inverse of
the supermatrix. Expanding ~M and ~N in terms of
Grassmann odd quantity P, Ls Hopf is simply rewritten as

SUPERSYMMETRIC CHERN-SIMONS THEORY AND . . . PHYSICAL REVIEW D 74, 045026 (2006)

045026-5



 L s Hopf � �
1

2�
J
J

� �
t 1

M�
1
MP

1
N P

t 1
M

1
MP

1
N

1
N P

t 1
M � 1

N �
1
N P

t 1
MP

1
N

 !
J
J

� �
: (4.30)

Because of the nilpotency of the Grassmann number, terms more than quadratic about P do not appear in the expansion. In
the original derivative expression, block components of X�1 are represented as
 �

1

M
�

1

M
P

1

N
Pt

1

M

�
ab
�

�
�@

@2

�
ab
�

1

2

�
�@

@2

�
3

ab

@
@�
C
@
@�
; (4.31a)�

�
1

N
�

1

N
Pt

1

M
P

1

N

�
��
� 2i��aC���

@a
@2 � i

��
�a@a
@2

�
3
C
�
��

@
@�
C
@
@�
; (4.31b)�

1

M
P

1

N

�
a�
� ��abc��d�b���

@c
@2

@d
@2 @�; (4.31c)�

1

N
Pt

1

M

�
�a
� ��abc��d�b���

@d
@2

@c
@2 @�; (4.31d)

where 1
@a
� @a

@2 , @2 � @2
a, �2��� � 1

2 �C�, ��@�ab � �abc@c
and we used the Lorentz gauge (4.27) to obtain 1

�@ � �
�@
@2 .

The identity matrix 1 corresponds to �3�x��2��� in the
function sense. Since each inverse matrix performs one
integration in the parameter space, the SUSY Hopf term is
expressed by highly nonlocal interactions. For instance, the
second term on the right-hand side (r.h.s.) in Eq. (4.31a)
contains ��@=@2�3, which performs x-space integration 3
times. The fermionic terms in Ls Hopf are regarded as
newly induced phases by the fermionic gauge field A.
As the topological charge of the supermonopole is given by
that of its bosonic counterpart [20], we may define the knot
invariant of the SUSY Hopf term by its original Hopf term
which appears as the first term in Eq. (4.31a).

D. SUSY Maxwell-Chern-Simons theory and
topological masses

The inner product of the super vector field strengths (Fa,
F�) gives an OSp�1j2� singlet

 

LsM � �
1

2e2 �F
2
a � C��F�F��

� �
1

4e2

�
F2
ab �

i
2
�abc�C�c��FabF�� � Fa�Fb��

�
1

2
C��Fa�Fa� �

1

4
C��C
�F�
F��

�
; (4.32)

which we adopt as the SUSY Maxwell Lagrangian. The
SUSY Maxwell-CS Lagrangian is constructed by the cou-
pling of LsM and Ls CS:

 L s MCS � �
1

2e2 �F
2
a � C��F�F�� �

�
2
�AaFa � A�F��:

(4.33)

The equations of motion are derived as

 

1

e2 @bFba � i
3

8e2 �abc�C�c���@bF�� �
1

4e2 C��@�Fa� � ��abcFbc � i
�
2
�C�a���F��; (4.34a)

i
3

8e2 �abc�C�c���@�Fab �
1

4e2 C���@aFa� � C
�@
F��� � i��C�a���Fa�: (4.34b)

With the use of (Fa, F�), Eqs. (4.34) are simply rewritten
as
 

1

e2 �abc@bFc �
i

2e2 �C�aC���@�F� � �2�Fa;

(4.35a)

i

2e2 �C�aC���@aF� �
i

2e2 �C�a���@�Fa � �2�F�:

(4.35b)

It is well known that the CS term coupled to the Maxwell
Lagrangian induces a topological mass to gauge fields. The
mechanism is intuitively explained with the use of the

analogy between the Maxwell-CS mechanics and the par-
ticle mechanics under the magnetic field [25]. The CS term
acts as a ‘‘Lorentz force’’ in the Maxwell-CS mechanics,
and yields a cyclotron frequency which corresponds to the
gauge mass in the Maxwell-CS field theory. Here, we
perform similar analyses in the SUSY Maxwell-CS theory.
For this end, we treat the 3rd bosonic coordinate as the
temporal direction, and work in the super space-time. In a
low energy limit, the spatial derivatives of the gauge fields
are dropped and the super vector field strengths are reduced
to

 Fi ! ��ij _Aj; F� !
i
2
��1��� _A�; (4.36)
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and the Lagrangian for the SUSY Maxwell-CS mechanics
is obtained as

 Ls MCS �
1

2e2
_A2
i �

1

8e2 C��
_A� _A� �

�
2
�ijAi _Aj

�
�
4
i��1���A� _A�: (4.37)

The equations of motion (4.34) become
 

�Ai � e2��ij _Aj; (4.38a)
�A� � �2ie2���3��� _A�: (4.38b)

Ls MCS is formally equivalent to the one-particle
Lagrangian on the superplane (3.12) with replacement

 �Ai; A�� ! �xi; 2C�����; e2 ! 1=m; �! �B:

(4.39)

From Eqs. (4.38), the cyclotron frequencies in the SUSY
Maxwell-CS mechanics are given by !B � e2� and !F �
2e2�, which, respectively, correspond to the topological
masses for the bosonic and the fermionic gauge fields in
the SUSY Maxwell-CS field theory.

V. THE SUSY CSLG THEORY AND ITS DUAL
REPRESENTATION

In this section, we present an effective field theory for
SUSY QHE. We explore the charge-flux duality in the
SUSY QH system, and construct its dual description,
where topological solitons arise as fundamental excita-
tions. Based on the dual SUSY CSLG description, we
discuss physical properties of topological solitons on the
SUSY QH liquid. Since we deal with the spinless matter
fields, the topological solitons are realized as the SUSY
extension of vortices.

A. Charge-flux duality

For the existence of the charge-flux duality, space(-time)
dimension is crucial. In general dimensions, the field
strengths behave as a 2-rank antisymmetric tensor, while
in 3-dimensional space, thanks to the existence of the 3-
rank antisymmetric tensor, the 2-rank field strengths are
mapped to the 3-vector field strengths

 Fa �
1
2�abcFbc: (5.1)

Then, in 3-dimensional space, there exists one-to-one cor-
respondence, called the charge-flux duality, between 3-
vector currents and 3-vector field strengths

 Ja $ Fa �
1
2�abcFbc; (5.2)

or, in their components,

 �; Ji� $ �B;Ei�: (5.3)

In the SUSY case, there exists an analogous correspon-
dence between super vector currents and super vector field

strengths:
 

Ja $ Fa �
1
2�abcFbc � i

1
4�C�a���F��; (5.4a)

J� $ Fa � �
i
2
�C�a���Fa�: (5.4b)

Based on this one-to-one relation, we introduce the dual
CS field strengths ( ~Fa, ~F�)
 

~Fa �
1

2
�abc ~Fbc � i

1

4
�C�a��� ~F��; (5.5a)

~F� � �
i
2
�C�a��� ~Fa�; (5.5b)

to match the super matter currents
 

~Fa � �Ja; (5.6a)
~F� � �J�: (5.6b)

Since ( ~Fa, ~F�) satisfy the super Bianchi identity @a ~Fa �
@� ~F� � 0, Eqs. (5.6) are compatible with the current
conservation @aJa � @�J� � 0. With the use of the origi-
nal and the dual CS fields, the SUSY CS Lagrangian is
expressed as
 

L � Ls CS �LI �
�
2
�AaFa � A�F�� � Aa ~Fa � A� ~F�

�
�
4

�
�abcAaFbc � i�C�a���A�Fa�

�
i
2
�C�a���AaF��

�
�

1

2
�abcAa ~Fbc

�
i
2
�C�a���A� ~Fa� �

i
4
�C�a���Aa ~F��: (5.7)

Integrating out the original CS fields (Aa, A�), we obtain
the dual CS Lagrangian
 

~Ls CS � �
1

2�
� ~Aa ~Fa � ~A� ~F��

� �
1

4�

�
�abc ~Aa ~Fbc � i�C�a��� ~A� ~Fa�

�
i
2
�C�a��� ~Aa ~F��

�
: (5.8)

Since the CS coupling constant in ~Ls CS is opposite to that
in Ls CS, the charge-flux duality is restated as the s-dual
transformation of the CS coupling.

B. Relativistic SUSY CSLG theory

Before detailed discussions of the nonrelativistic CSLG
theory for SUSY QH liquid, it would be worthwhile to
explore the relativistic formulation of the SUSY CSLG
theory. We regard the 3rd bosonic axis as the temporal
direction, and deal with a covariant SUSY CSLG theory in
the Wick-rotated super space-time R3j2. The essential fea-
tures of duality can be found in this relativistic formula-
tion. We introduce a complex scalar field coupled to the
SUSY CS fields as
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LCSLG � �@a � ica��
� 
 �@a � ica��

� C���@� � ic���� 
 �@� � ic���

�
�

8�

�
�abccafbc � i�C�a���c�fa�

�
i
2
�C�a���caf��

�
; (5.9)

where we denote the SUSY CS fields as (ca, c�), and their
field strengths as (fab, fa�, f��). The field equation for �
is given by

 �@a � ica�2�� C���@� � ic���@� � ic��� � 0: (5.10)

We decompose the complex scalar field into the density
part  and the phase part � as

 � �
����

p

�: (5.11)

With the use of this decomposition, the kinetic term for �
is rewritten as
 

LK � ��i���@a � ica���
2

� C���i�
��@� � ic��� 
 i�

��@� � ic�����; (5.12)

where we postulated the density fluctuations are very
small. With the use of the Stratonovich-Hubbard trans-
formation formula [26], LK is expressed as
 

LK � �i�
��@a � ica��� 
 Ja � �i�

��@� � ic���� 
 J�

�
1

4
�J2
a � C��J�J��; (5.13)

where (Ja, J�) are auxiliary fields. If there were not CS
fields, the equations of motion for (Ja, J�) would be given
by
 

Ja � i��@a
$
�; (5.14a)

J� � iC���
�@�
$
�: (5.14b)

Thus, (Ja, J�) are essentially the U�1� conserved currents.
From Eq. (5.9), the equations of motion for (ca, c�) are
given by
 

Ja �
�

2�
fa; (5.15a)

J� �
�

2�
f�: (5.15b)

We further decompose the phase part into the smooth
part and the singular part (vortex part) ’ as

 � � e�i�’; (5.16)

and obtain

 

LK � �@a�� i’
�@a’� ca�Ja��@��� i’

�@�’� c��J�

�
1

4
�J2
a�C��J�J��: (5.17)

Integrating out the smooth function �, we find the current
conservation law @aJa � @�J� � 0. We introduce the dual
CS fields (~ca, ~c�) based on the relation (5.6), and rewrite
the total Lagrangian LCSLG as

 L CSLG � 2�~ca~Ja � 2�~c�~J� � ca ~fa � c� ~f� �
�

8�

�cafa � c�f�� �
1

16
�~f2
a � C�� ~f� ~f��;

(5.18)

where we used a partial integration, and (~Ja, ~J�) denote the
topological currents for the vortex

 

~Ja � �
i

2�
�abc@b�’�@c’� �

1

4�
�C�a���@��’�@�’�;

(5.19a)

~J� � �
1

4�
�C�a����@a�’

�@�’� � @��’
�@a’��: (5.19b)

Since (~Ja, ~J�) are topological currents, they automatically
satisfy the current conservation law, @a ~Ja � @�~J� � 0.

In the original bosonic CSLG theory, the explicit
representation of the vortex part ’, is given by

’�x� � exp�i��x��, where ��x� �
P
p��x� x

p� �P
p arctan

x2�x
p
2

x1�x
p
1

, and yields the topological charge density

 ~�x� � �
i

2�
�ij@i�’

�@j’� � �
1

2�
�ij@i@j��x�

� �
X
p

�2�x� xp�; (5.20)

where xp denotes the position of the pth vortex. See
Ref. [27] for detailed discussions. Similarly, in the SUSY
case, the vortex part ’ may be expressed as ’�x; �� �
exp�i��x; ��� with ��x; �� �

P
p��x� x

p��2��� �p�,
and yields the super topological charge density
 

~�x� � �
i

2�
�ij@i�’�@j’� �

1

4�
��1���@��’�@�’�

� �
1

2�
�ij@i@j��x; �� �

1

2�
��1���@�@���x; ��

� �
1

2�
�ij@i@j��x; ��

� �
X
p

�2�x� xp��2��� �p�: (5.21)

Integrating out the original SUSY CS fields (ca, c�) in
Eq. (5.18), the dual SUSY CSLG Lagrangian is derived as
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~LCSLG � 2�~ca ~Ja � 2�~c�~J� �
�
2�
�~ca ~fa � ~c� ~f�� �

1

16
�~f2
a � C�� ~f� ~f��

� 2�~ca ~Ja � 2�~c�~J� �
�
2�

�
�abc~ca ~fbc � i

1

2
�C�a���~ca ~f�� � i�C�a���~c� ~fa�

�

�
1

8

�
~f2
ab �

i
2
�abc�C�c����~fab ~f�� � ~fa� ~fb�� �

1

2
C�� ~fa� ~fa� �

1

4
C��C
� ~f�
 ~f��

�
: (5.22)

Thus, ~LCSLG is equivalent to the SUSY Maxwell-CS
Lagrangian coupled to the topological currents. The equa-
tions of motion for (~ca, ~c�) are derived as

 

1

2
�abc@b ~fc �

i
4
�C�a���@� ~f� �

2�
�

~fa � �4�~Ja;

(5.23a)

�
i
4
��a���@a ~f� �

i
4
��a���@� ~fa �

2�
�

~f� � �4�~J�:

(5.23b)

In a low energy limit, the higher derivatives in the SUSY
Maxwell term are neglected, and the dual SUSY CSLG
Lagrangian is approximated by the super vortex
Lagrangian coupled to the dual SUSY CS fields. Then,
replacing vortex with matter, and the CS coupling constant
with its inverse, the dual SUSY CSLG Lagrangian has the
same form as the original SUSY CSLG Lagrangian.
Similarly, in a low energy limit, Eqs. (5.23) are reduced to

 

~fa � 2�~Ja; (5.24a)
~f� � 2�~J�: (5.24b)

Comparing Eqs. (5.24) with Eqs. (5.15), one may find that
the relation between charge and flux in the dual SUSY
CSLG theory is opposite to that in the original SUSY
CSLG theory. It confirms the previous observation that
the s-dual transformation of the CS coupling corresponds
to the charge-flux duality. Such dual feature has already
been reported in the study of the original bosonic CSLG
theory [16,17], and our SUSY CSLG theory shares it. This
may be considered as a manifestation that our SUSY
CSLG theory provides a natural SUSY framework for the
original CSLG theory.

C. Nonrelativistic CSLG theory for SUSY QH liquid

Here, we work in the super space-time again, and con-
struct the nonrelativistic SUSY CSLG theory on a super-
plane. The magnetic field and the electric fields are defined
by the super vector fields (Fa, F�) as B � �Ft, Ei �
Fi�i � 1; 2�, E� � F�. Since the original QH liquid is
described by composite bosons coupled to CS fields, it
would be reasonable to adopt the following nonrelativistic
CSLG Lagrangian as the effective field theoretical descrip-
tion for the SUSY QH liquid
 

Lnr
CSLG � ���i@t � �At���

1

2m
��i@i � �Ai��

�


 �i@i � �Ai���
1

2m
C����i@� � �A��

�� 
 �i@� � �A����
1

2

Z
� 
 V 
 �

�
�

8�

�
�abccafbc � i�C�a���c�fa�

�
i
2
�C�a���caf��

�
; (5.25)

where� denotes the composite boson field, � � � � is
the net charge on the background, � � 2� �=B is the filling
factor, and (�Aa, �A�) are the effective gauge fields for
composite bosons
 

�Aa � Aa � ca; (5.26a)

�A� � A� � c�; (5.26b)

where (Aa, A�) are the external gauge fields.
Since Lnr

CSLG does not possess a quadratic term about the
time derivative, the Stratonovich-Hubbard transformations
are applied only to quadratic terms about the (super)spatial
derivatives. Except for this step, following procedures
similar to Sec. V B, the dual nonrelativistic SUSY CSLG
Lagrangian is derived as

 

~Lnr
CSLG � 2���~ct~Jt � ~ci~Ji � ~c�~J�� �

�
2�

�
�abc~ca

�
~fbc �

�
�
Fbc

�
� i�C�a���~c�

�
~fa� �

�
�
Fa�

�

�
i
2
�C�a���~ca

�
~f�� �

�
�
F��

��
�
m
2

�
~f2
ti �

i
2
�ij�C�i��� ~ftj ~f�� �

1

16
�C�i����C�i�
� ~f�� ~f
�

�
1

4
�C�a�b��� ~fa� ~fb�

�
�

1

2

Z
� 
 V 
 �; (5.27)
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where � is given by � � 1
2 �ij�

~fij �
�

2�Fij� �
i
4 

��1����~f�� �
�

2�F���. Further, we integrate out ~ct to ob-
tain an effective action for super vortices. The equation of
motion for ~ct is given by

 

�
@2
i �

1

4
C��@�@�

�
~ct � �

2�
m

�
~�

1

�
�

�
� �higher derivatives�; (5.28)

where ~ � �~Jt. Eliminating ~ct in Eq. (5.27), the density
excess is given by

 � � �~: (5.29)

This relation suggests that the super vortex with unit
topological number carries the fractional electric charge
�. Inserting Eq. (5.29) to ~Lnr

CSLG and extracting the vortex
part, the effective Lagrangian for the super vortex is ob-
tained as

 

~L eff � 2��~ci~Ji � ~c�~J�� � �At~�
1
2�

2
Z

~ 
 V 
 ~:

(5.30)

As expected, the super vortex is coupled to the electric
potential with coupling �. In a low energy limit in which
super vortices are approximated as pointlike objects, ~Leff

is written as

 

~L eff � 2�
X
p

�~cpi _xpi � ~cp� _�p�� � V; (5.31)

where (xpi , �p�) denotes the position of the pth super vortex,
and V represents electric interactions between super vorti-
ces. Since ~Leff is formally equivalent to the charged parti-
cle Lagrangian (3.1) with m � 0, the super vortex motion
is similar to the particle motion in the LLL. The equations
of motion for the super vortex are derived as
 

2���~fij _xj � ~fi� _��� � Ei; (5.32a)

2��~fi� _xi � ~f�� _��� � C��E�; (5.32b)

where Ei � �@iV and E� � C��@�V. From these equa-
tions, we obtain the super Hall law for vortex

 E i _xi � C��E� _�� � 0: (5.33)

Thus, the super vortex moves perpendicularly to the direc-
tion in which it is pushed.

VI. SUMMARY AND DISCUSSIONS

We studied SUSY extensions of the CS theory and the
effective field theory for the SUSY QHE. First, a
Lagrangian formalism for the one particle on the super-
sphere in the supermonopole background was explored.
The particle motion exhibits a SUSY generalization of that
on the bosonic sphere in the Dirac monopole background,
for instance, Hall orthogonality, cyclotron motion, and
noncommutative geometry. Next, we constructed a SUSY

CS theory with OSp�1j2� global supersymmetry. Our
SUSY CS theory contains many analogous properties pe-
culiar to the original CS theory, such as U�1� gauge sym-
metry, topological mass generation, and etc. In particular,
we derived a SUSY generalization of the Hopf term, which
is expressed by highly nonlocal interactions. Finally, the
CSLG description for the SUSY QH liquid was presented.
Based on the duality between the super matter currents and
the super vector field strengths, we derived the dual CSLG
theory, in which super vortices are coupled to the dual
SUSY Maxwell-CS gauge fields. It was shown that the
super vortex carries the fractional charge and the vortex
motion is equivalent to that of the charged particle in the
super LLL.

The SUSY CS theory discussed in this paper is a global
OSp�1j2� extension of the simplest CS theory in 3-
dimensional space. It would be quite interesting to see
SUSY generalizations of the CS theory in higher dimen-
sions. Their constructions may be performed based on the
higher dimensional SUSY Lie group, such as OSp�1j4�.
Higher dimensional SUSY CS theories may have deep
connections with supertwistor theory, supermatrix model
in higher dimensions, etc. Because of the incompressible
property of the QH liquid, the low energy excitations are
confined on the edge, and the QH dynamics is well de-
scribed only by the edge states. We hope to report edge
excitations in SUSY QH liquids based on the SUSY CSLG
theory in a future work. The study of the edge excitations
may reveal yet unknown dynamical properties of the SUSY
QH liquid. Since, at present, the SUSY QHE provides a
unique physical setup whose underlying mathematics are
given by the nonanticommutative geometry, it would be
quite worthwhile to accomplish a full analyses of the
SUSY QHE. Such explorations are expected to lead to
the deeper understanding of novel physics in the nonanti-
commutative world.
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APPENDIX A: SEVERAL FORMULAS ABOUT
SUPERMATRIX

When the supermatrix X takes the form of

 X �
M P
Q N

� �
; (A1)

(whereM andN are Grassmann even matrices, P andQ are
Grassmann odd matrices) its superdeterminant is given by
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 s detX �
det�M� PN�1Q�

detN
�

detM

det�N �QM�1P�
; (A2)

and the superadjoint is defined as

 Xz � My �Qy

Py Ny

� �
: (A3)

It is noted that our definition of superadjoint is different
from the conventional one. (In the conventional definition,
the minus sign is placed in front of Py, not Qy.) Similarly,
the supertrace is defined as

 str �X� � tr�M� � tr�N�: (A4)

For instance, for the fundamental representations (2.2), the
supertraces are calculated as
 

str�lalb� �
1
2�ab; (A5a)

str�lal�� � 0; (A5b)

str�l�l�� � �
1
2C��: (A5c)

The inverse of X is given by

 X�1 �

1
M�P1

NQ
� 1

M�P1
NQ
P 1
N

� 1
N Q

1
M�P1

NQ
1

N�Q 1
MP

0@ 1A

�

1
M�P1

NQ
� 1

MP
1

N�Q 1
MP

� 1
N�Q 1

MP
Q 1

M
1

N�Q 1
MP

0@ 1A: (A6)

When X takes the special form

 X �
M P
�Pt N

� �
; (A7)

its inverse is calculated as

 X�1 �
~M � ~MP 1

N
1
N P

t ~M ~N

 !
�

~M � 1
MP

~N
~NPt 1

M
~N

 !
;

(A8)

where ~M and ~N are defined in Eqs. (4.29).

APPENDIX B: SUPER JACOBI AND BIANCHI
IDENTITIES

With arbitrary operators (A, B, C) (any of A, B, C can be
Grassmann even or odd), it is easy to check the super
Jacobi identities
 

��A;B�; C� � ��B;C�; A� � ��C;A�; B� � 0; (B1a)

f�A;B�; Cg � �fB;Cg; A� � f�C;A�; Bg � 0; (B1b)

�fA;Bg; C� � �fB;Cg; A� � �fC;Ag; B� � 0: (B1c)

Substituting �A;B;C� � �Da;Db;Dc� (where Da � @a �
iAa) and �A;B;C� � �Da;Db;D�� (where D� �
@� � iA�) to the 1st Jacobi identity (B1a) respectively,
we obtain the 1st Bianchi identity

 @aFbc � @bFca � @cFab � 0; (B2)

and the 2nd Bianchi identity

 @aFb� � @bF�a � @�Fab � 0: (B3)

Similarly, substituting �A;B;C� � �Da;D�;D�� to the 2nd
Jacobi identity (B1b), the 3rd Bianchi identity

 @aF�� � @�Fa� � @�Fa� � 0 (B4)

is obtained. From the last identity (B1c), with �A;B;C� �
�D�;D�;D
�, we obtain the last Bianchi identity

 @�F�
 � @�F
� � @
F�� � 0: (B5)
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