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We present a new method for the evaluation of the perturbative expansion of the QCD pressure which is
valid at all values of the temperature and quark chemical potentials in the deconfined phase and which we
work out up to and including order g4 accuracy. Our calculation is manifestly four-dimensional and purely
diagrammatic —and thus independent of any effective theory descriptions of high temperature or high
density QCD. In various limits, we recover the known results of dimensional reduction and the hard dense/
thermal loop (HDL/HTL) resummation schemes, as well as the equation of state of zero-temperature
quark matter, thereby verifying their respective validity. To demonstrate the overlap of the various
regimes, we furthermore show how the predictions of dimensional reduction and HDL resummed
perturbation theory agree in the regime T �

���
g
p
�. At parametrically smaller temperatures T � g�, we

find that the dimensional reduction result agrees well with those of the nonstatic resummations down to
the remarkably low value T � 0:2mD, where mD is the Debye mass at T � 0. Beyond this, we see that
only the latter methods connect smoothly to the T � 0 result of Freedman and McLerran, to which the
leading small-T corrections are given by the so-called non-Fermi-liquid terms, first obtained through HDL
resummations. Finally, we outline the extension of our method to the next order, where it would include
terms for the low-temperature entropy and specific heats that are unknown at present.
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I. INTRODUCTION

The most fundamental thermodynamic quantity in the
theory of strong interactions, the QCD pressure
pQCD�T;��, can at large values of the temperature T or the
quark chemical potentials � be computed in a weak-
coupling expansion in the gauge coupling constant g,
defined in the MS renormalization scheme. In the region
where T is larger than all other relevant mass scales in the
problem, the expansion has been extended to include terms
of order g6 lng [1–8], while at T � 0 and � much greater
than the critical chemical potential �c, the pressure is
known up to and including terms of order g4 [9]. In
between these regimes, at 0< T & g�, anomalous contri-
butions from non-Fermi-liquid behavior have been ob-
tained [10], which involve fractional powers and
logarithms of g. The purpose of this paper is to connect
all these disjoint computations through one expression
which gives the pressure at all values of T and � up to
and including terms of order g4.

Ultimately, the reason for the existing results being valid
only in the separate domains described above is that differ-
ent computational methods are practical in different re-
gions of the �-T plane. When T is larger than all other
dynamical scales, one can, in the spirit of effective theo-

ries, integrate out the degrees of freedom corresponding to
nonzero Matsubara modes (having thermal masses of order
�T or higher) to obtain a simpler three-dimensional effec-
tive theory. Formally, the requirement for this is that one
must have1 T � mD which explicitly excludes the region
of T & g�. At these parametrically lower temperatures,
perturbation theory requires a different reorganization
which can be most efficiently performed via the hard dense
loop (HDL) approximation. This approach corresponds to
a different effective field theory which is intrinsically four

1Due to the chemical potential � appearing in the fermionic
propagator with an imaginary unit, this parameter contributes to
the long-distance behavior of the free fermionic correlation
function (i.e. the Fourier transform of the free propagator)
only through an oscillatory phase factor. Therefore, from the
point of view of IR physics it can be identified as an irrelevant
parameter, whose value only affects the validity of dimensional
reduction through the Debye mass scale. Note, however, that this
reasoning does not apply to imaginary values of the chemical
potential, in particular, when its magnitude becomes comparable
to �T. [In this region one is in any case restricted to values �<
�T=Nc due to the loss of periodicity in the pressure as a function
of imaginary � in standard perturbative calculations [11]. This is
due to the explicit breaking of the Z�Nc� symmetry, whose
effects are otherwise partially visible even in the presence of
dynamical fermions.]
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dimensional and whose nonlocal effective action, known
only to one-loop order, was found by Braaten, Pisarski,
Taylor, and Wong [12]. It involves a resummation of
nonstatic self-energies which, in fact, was a crucial ingre-
dient already in the classic calculation of Freedman
and McLerran [9] for the O�g4� zero-temperature pressure.
In practice, even before reaching this limit, at T �
�g�5 exp��3�2=�

���
2
p
g�	 [13], one of course encounters

the nonperturbative pairing instability (color superconduc-
tivity), but in a strictly perturbative calculation these ef-
fects can never be seen.

In view of the fragmented status of the various pertur-
bative results on the�-T plane, there is obvious motivation
for attempting to develop an independent and uniform
method of calculation which would have the power of
both verifying the validity of all the existing computations
and providing a smooth interpolation between them.
Important steps in this direction have already been taken
through recent advances in the analytic calculation of sum-
integrals at arbitrary temperatures and densities [8,14] as
well as in the numerical evaluation of multidimensional
integrals involving the one-loop gluon polarization tensor
[15]. In fact, these techniques provide all the required
machinery for the first purely diagrammatic four-
dimensional determination of the QCD pressure up to order
g4 at arbitrary � and T which is what we set out to perform
in this work. We take as our starting point the systematic
analysis of all relevant classes of Feynman graphs contrib-
uting to the partition function up to and including this order
which implies that our calculation will be independent of
any effective descriptions of the fundamental theory that
are valid only in limited regions of the �-T plane.

As is usual in a weak-coupling analysis, we regard the
coupling g as an in principle arbitrarily small parameter, in
which we set out to expand the pressure around the value
g � 0. In practice, the QCD coupling scale is of course
about 1 at 100 GeV and at 1 GeV even about 2, so for our
results to be applicable we must assume to be working at
sufficiently high temperatures and/or densities. A critical
region where the nature of the perturbative expansion of
the pressure changes both qualitatively and quantitatively
turns out to be that of parametrically small T & mD � g�,
so we have found it useful to quantify the smallness of T by
expressing it in the form T � gx�. We then study the
changes that occur when x is increased from zero to values
larger than 1, where the pressure can be reexpanded in a
series of (fractional) powers and logarithms of g.

Our main results, displayed in Sec. IV, include the
following: In the region T=�� g0, we explicitly recover
the perturbative expansion of the pressure to order g4

which was derived in Ref. [8] using dimensional reduction
(DR). We show that this result is valid up to arbitrarily high
values of the ratio �=T, verifying the nontrivial behavior
of the different perturbative coefficients as functions of this
parameter. In deriving these results, we notice that the

larger we choose �=T to be, the smaller values of g we
have to use in the series expansion of our numerical result
in order to find agreement with the dimensional reduction
one. We interpret this as a demonstration of the fact that
dimensional reduction amounts to expanding the pressure
in powers of mD=T on top of g and is thus inapplicable in
the region T & g�. For temperatures T �

���
g
p
�, which

still fall into the domain of validity of dimensional reduc-
tion, we demonstrate the overlap of the different existing
results by deriving the same expansion for the pressure (in
half-integer powers of g) from both the perturbative results
of Ref. [8] and the hard dense loop resummation scheme of
Refs. [10,16]. At parametrically even smaller tempera-
tures, T & g�, we then show how our new calculation—
the first one entirely independent of the original one of
Freedman and McLerran [9]—smoothly approaches their
famous result for the T � 0 pressure, while at the same
time reproducing the ‘‘anomalous specific heat’’ contribu-
tions to the pressure obtained previously through HDL
resummations. In contrast, the dimensional reduction re-
sult is observed to agree numerically remarkably well with
those of the nonstatic resummations down to T � 0:2mD,
or 2�T � 1:3mD, but it diverges logarithmically in the
limit T ! 0. We explain how this divergence is related to
the behavior of the physical, resummed expression for the
pressure at large but order g0 values of T=�g��.

The paper is organized as follows. In Sec. II, we review
the most important methods applied previously to the
evaluation of the QCD pressure, namely, dimensional re-
duction, hard thermal/dense loop (HTL/HDL) resumma-
tions and zero-temperature perturbation theory. After this,
we present our new scheme in Sec. III, where we identify
the classes of diagrams we need to compute and then write
down our new expression for the pressure as the sum of an
analytic power series in g2 and a logarithmic sum-integral
that is to be treated numerically. In Sec. IV, we then finally
display and discuss our results. We plot them in various
regions of the �-T plane as characterized by the exponent
x in T � gx� and compare our predictions to the existing
results of dimensional reduction [8] and HTL/HDL resum-
mations [10,16]. After this, we summarize our findings in
Sec. V, where we explain in detail the structure of the
perturbative expansion of the QCD pressure on the �-T
plane, and then draw final conclusions and briefly look into
new directions in Sec. VI. Several computational details as
well as the explicit analytic forms of many individual
contributions to our result are finally displayed in the
appendices where, in particular, Appendix D contains de-
tails on the numerical evaluation of the logarithmic sum-
integral introduced in Sec. III.

A. The notation

To conclude the introduction, let us fix our notational
conventions which to a large extent follow those of
Ref. [8]. First, throughout the text we will be working in
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the Feynman gauge, in which many of the existing results
our calculation relies on have been derived. The chemical
potentials of the different flavors, for which we apply the
notation

 �� 

�

2�T
; z 
 1=2� i �� (1.1)

are assumed to be equal, and thus we suppress all sub-
scripts for them. (The renormalization scale will be de-
noted by the symbol �� and should not be confused with the
above ��.) For the analytic result of Eq. (3.20), the general-
ization to several independent chemical potentials is trivial
and only requires the multiplication of the results by
1=Nf

P
f, but for the outcome of the numerical calculation,

this is less straightforward. All of our methods can natu-
rally be applied to any combination of T and the �f’s, but
this will have to be done on a case-by-case basis.

As usual, we denote the most common group theory
constants by

 CA�cd 
 fabcfabd � N�cd; (1.2)

 CF�ij 
 �T
aTa�ij �

N2 � 1

2N
�ij; (1.3)

 TF�
ab 
 TrTaTb �

Nf
2
�ab; (1.4)

 dA 
 �aa � N2 � 1; (1.5)

 dF 
 �ii � dATF=CF � NNf; (1.6)

where the Ta stand for the canonically normalized gener-
ators of SU�N� and the trace is taken over both color and
flavor indices.

Our notation for the special functions that appear in the �
expansions of sum-integrals at finite density follows that of
Ref. [8], which introduced

 � 0�x; y� 
 @x��x; y�; (1.7)

 @�n; z� 
 � 0��n; z� � ��1�n�1� 0��n; z��; (1.8)

 @�z� 
 ��z� ���z��: (1.9)

Here, � stands for the generalized Riemann zeta function
and � for the digamma function

 ��w� 

�0�w�
��w�

: (1.10)

Finally, we will throughout the following sections apply
dimensional regularization at d � 4� 2� dimensions and
(unless otherwise stated) in Euclidean metric, using as the
momentum integration measure

 

Z
p


Z dd�1p

�2��d�1
� �2�

Z dd�1p

�2��d�1




�
e� ��2

4�

�
� Z dd�1p

�2��d�1
; (1.11)

 

ZX
P=fPg


 T
X

p0=fp0g

Z
p
; (1.12)

where �� 
 �4�e���1=2� is the scale parameter of the MS
scheme. The symbol P=fPg refers to bosonic and fermionic
momenta, respectively, for which capital letters stand for
four-momenta and lowercase ones for three-momenta.
Using these definitions, bosonic and fermionic 1-loop
master integrals are defined by

 I m
n 


ZX
P

�p0�
m

�P2�n
; ~Imn 


ZX
fPg

�p0�
m

�P2�n
: (1.13)

The bosonic and fermionic distribution functions at tem-
perature T and chemical potential � are denoted by

 nb�k� �
1

ek=T � 1
; (1.14)

 nf�k� �
1

2

�
1

e�k���=T � 1
�

1

e�k���=T � 1

�
: (1.15)

II. PREVIOUS METHODS

Let us begin by reviewing the main results available for
the QCD pressure through various previous perturbative
calculations in order to summarize the current understand-
ing of the behavior of the quantity in various regions of the
�-T plane. The methods to be covered include dimensional
reduction which has been used to determine the pressure up
to and including order g6 lng at finite T and � [7,8], the
perturbative T � 0 techniques of Freedman and McLerran
[9], and the HDL resummations that have proven to be
highly effective at temperatures nonzero but parametrically
smaller than � [10,16].

Recently there has been some progress to include effects
of nonzero quark masses in the dimensional reduction
approach [17] as well as to the next-to-leading-order pres-
sure at zero temperature [18]. In the following we shall
always restrict our attention to the case of massless quarks.

A. Dimensional reduction

In finite-temperature QCD, dimensional reduction is
based on the observation that at sufficiently high tempera-
tures one has the parametric scale hierarchy mmag 

mD  �T between the magnetic mass �g2T, the Debye
mass�gT, and the smallest nonzero Matsubara frequency,
respectively. One may then integrate out all the nonstatic
degrees of freedom from the original theory (correspond-
ing to the last of the above energy scales), leaving behind a
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three-dimensional effective theory for the static gluon
fields. At leading order, this integration out can be per-
formed explicitly, but beyond that it becomes more conve-
nient to start from the most generic possible three-
dimensional Lagrangian that respects the correct symme-
tries and to determine the values of its parameters by
matching a set of simple physical quantities to their values
in the full theory. This leads to a Lagrangian for the
effective theory, commonly dubbed electrostatic QCD
(EQCD), of the (Euclidean) form [6,19]

 

LEQCD �
1

2
TrF2

ij � Tr��DiA0�
2	 �m2

E TrA2
0

�
ig3

3�2

X
f

�f TrA3
0 � �

�1�
E �TrA2

0�
2

� ��2�E TrA4
0 � �LE: (2.1)

In the above Lagrangian, mE agrees to leading order
with the physical Debye mass mD,

 mD � g

�������������������������������������������
CA � TF

3
T2 � TF

�2

�2

s
; (2.2)

and the last term �LE corresponds to higher-dimensional
operators that can be neglected for most practical purposes,
as they contribute e.g. to the pressure starting only at
O�g7�. The cubic, C-odd term [19,20] in Eq. (2.1) is only
present at finite chemical potentials and contributes to the
pressure at order g6 lng, (but turns out to be responsible for
the leading order result of the off-diagonal quark number
susceptibilities at zero chemical potential [21]). The fields
have been rescaled from their four-dimensional values by����
T
p

to have the canonical dimensionality at d � 3, and the
field strength and covariant derivative contain the three-
dimensional gauge coupling gE 
 g

����
T
p
�O�g3�. The new

theory should be able to describe the physics of the original
one at distance scales of order 1=�gT� and higher.

Assuming g to be sufficiently small (i.e. T sufficiently
high), the above integrating out procedure can be contin-
ued one step further by removing also the massive longi-
tudinal gluon A0 from the theory, thus producing an
effective three-dimensional pure Yang-Mills theory for
the Ai fields. This theory, magnetostatic QCD (MQCD),
is defined by the Lagrangian

 L MQCD �
1

2
TrF2

ij; (2.3)

with the gauge coupling constant gM � gE �O�g3
E=mE�

appearing in the field strength tensor. The perturbative
expansion of the pressure of the full theory can then be
given in the form

 p � pE � pM � pG; (2.4)

where the first term corresponds to the coefficient of the
unit operator of EQCD, not explicitly written in Eq. (2.1),
and can be evaluated through a strict perturbative expan-
sion (implying no resummations) of the full theory pres-
sure. The second term, pM, represents the same thing for
MQCD and can be computed through a diagrammatic
expansion of the pressure of this theory, while the last
piece, pG, corresponds to the (only) fundamentally non-
perturbative contribution to the full theory pressure in the
form of the pressure of MQCD. To order g6 lng—the
current state-of-the-art of the field—the three terms have
been computed at � � 0 in Ref. [7] and at � � 0 in
Ref. [8]. In Eq. (A1) of Appendix A we quote the result
of Ref. [8] to order g5 in a simplified case where equal
chemical potentials have been assumed for all quark
flavors.

Formally, the condition ensuring the validity of dimen-
sional reduction is that the temperature is the largest fun-
damental energy scale in the problem, so that the above
scale hierarchies are satisfied. In the limit of low tempera-

tures T  �, the Debye mass becomes just mD ������������
Nf=2

q
g�=� which shows that the identification of the

static degrees of freedom as the only IR sensitive ones is
justified as long as T  g� or, formally, T � gx�, with
any x < 1. Assuming this to be the case and defining � 

�T=�gx��, one can then extend the validity of the standard
dimensional reduction results to the case of an arbitrary
x < 1 by simply inserting this value of the temperature,

 �T � �gx�; (2.5)

into Eq. (3.13) of Ref. [8] and expanding the result as a
power series in g up to but not including order g6�4. The
expansions of the @ functions appearing in the coefficient
of the g4 term with an argument �=�2�T� can be per-
formed with the aid of the results of Appendix D of the
same reference.

Here, we exhibit the result of the above procedure only
for the case of x � 1=2, and as above we assume all quark
flavors to have the same chemical potential2 �, where we
can use the simplified result of Eq. (A1). After some
straightforward manipulations we obtain

2Here, one cannot simply multiply the result by 1
Nf

P
f in order

to generalize it to an arbitrary number of flavors with indepen-
dent chemical potentials.
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pDR �
dA�

4

�4��2

�
4dF
3dA
� g

8�2dF
3dA

� g2

�
TF

2�2 �
16�4

45

�
1�

7dF
4dA

��
� g3 TF�

2

�2 � g
7=2 4T3=2

F �

3�3

�
g4

576�4

�
72T2

F lng� 32�2CA � 5TF��2�4 � 4CATF

�
71� 33 ln2� 33 ln

��

�

�

� 153CFTF � 4T2
F

�
11� 36�� 36 ln8�� 12 ln

��

�

��
� g9=2 2

������
TF
p
�CA � TF��3

3�2

�
g5�2TF
288�4

�
4�53CA � 6CF � 2TF� lng� 3CF

�
35� 16

� 0��1�

���1�
� 16 ln2�

�

� CA

�
�227� 20 ln2� 48�� 104

� 0��1�

���1�
� 144 ln

TF
�2 � 152 ln�� 132 ln

��

�

�

� 4TF

�
5� 8 ln2� 12�� 16

� 0��1�

���1�
� 12�� 4 ln�� 12 ln

��

�

��

�
g11=2�

72
������
TF
p

�5

�
�33CAT2

F lng� 4C2
A�

2�4 � 8CATF�2�4 � 4T2
F�

2�4 � 54CFT2
F

� 33CAT2
F

�
1� 2�� 2 ln4�� 2 ln

��

�

�
� 12T3

F

�
1� 2 ln2� 2 ln

��

�

��

�
g6 lng�4

864�4

�
166C2

A �
832

5
CATF � 72CFTF �

371

5
T2
F

�
�O�g6�

�
: (2.6)

To test the validity of this expression, one may compare it
with the prediction of other approaches entirely indepen-
dent of dimensional reduction which we will do in Sec. IV.

B. The Freedman-McLerran result for the T � 0
pressure

At exactly zero temperature, important simplifications
take place which resulted in the perturbative expansion of
the QCD pressure being extended to order g4 in this region
already remarkably early, in the late 1970’s [9]. The most
important effects stem from the fact that at T � 0 loop
integrations become much more straightforward than at
finite temperature due to the Matsubara sums reducing to
ordinary integrals. The computation of Ref. [9] was organ-
ized in much the same way as the one to be presented in
this paper, with the exception that most of the technical

details were much less involved. Especially with zero
quark masses, the evaluation of the two-particle irreducible
(2PI) graphs at zero temperature is significantly simpler
than at T � 0, leaving as the real challenge the computa-
tion of the ‘‘plasmon’’ sum, i.e. the resummation of ring
diagrams. This they did in a highly imaginative—and to a
large extent analytic—way, having to resort to numerics
only in evaluating a few low-dimensional integrals.

While the original calculation of Ref. [9] was performed
in the momentum subtraction scheme and moreover using
by now somewhat outdated methods that led to largish
numerical error bars, the result was to a large extent
independently3 rederived in Ref. [8] in the MS scheme.
For Nf flavors of quarks at an equal chemical potential �,
the result reads

 

p��; T � 0� �
dA�4

2�2

�
dF
6dA
�

g2

�4��2
TF �

g4

�4��4
TF

�
4TF ln

g2TF
�4��2

�
2

3
�11CA � 4TF� ln

��

�
�

17

2
CF

�
CA
36
�568� 264 ln2� � 2TF

�
88

9
� 14 ln2�

16

3
�ln2�2 � ��

2�2

3

��
�O�g6 lng�

�
; (2.7)

where � � �0:856 383 209 . . . is defined through a one-
dimensional integral in Ref. [8].

C. Minimal HTL/HDL resummation

At low but nonvanishing temperatures, the Freedman-
McLerran result for the zero-temperature interaction pres-
sure (where the Stefan-Boltzmann result has been sub-
tracted off) to order g4 needs to be corrected by
T-dependent contributions. At two-loop order there are
infrared-safe terms of order g2�2T2 which clearly are

3With the exception of the plasmon sum, for which similar
methods as those in Ref. [9] were used. A translation of the
original result of Ref. [9] to the MS scheme was previously given
in the last reference of Ref. [22] and in Ref. [23].
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more important than the unknown four-loop T � 0 terms
�g6�4 as long as T * g2�. On the other hand, when T
approaches the scale g� from the dimensional reduction
region above, the leading contribution of ring diagrams
Tm3

D � g
3T�3 becomes comparable to g2�2T2. A naı̈ve

extrapolation of the Tm3
D term to temperatures parametri-

cally smaller than g�would even suggest that for T � gx�
with x > 1 these become more important than the two-loop
terms, as Tm3

D � g
3�x�� g2�2x�� g2�2T2. As we

shall see, the T-dependent contributions from ring dia-
grams indeed become more important than the 2-loop
term g2�2T2 here, though they are not enhanced by a
relative factor g��x�1� as suggested by dimensional reduc-
tion, but instead only by a logarithm.

For temperatures T & g�, where dimensional reduction
is no longer applicable, it becomes important to keep the
nonstatic parts of the gluon self-energy in the ring dia-
grams. At low momenta and frequencies of the order g�,
the leading terms in the gluon self-energy are given by the
so-called hard thermal loops (HTL) approximation with
the overall m2

D factor replaced by its zero-temperature
value—a special case occasionally referred to as hard
dense loops (HDL). In the longitudinal gluon propagator,
one can observe the usual Debye screening effect at the
frequency ! g�, but in the transverse propagator the
situation is more complicated. At strictly zero frequency
the magnetostatic HDL propagator is massless, but for
small but nonvanishing frequencies ! q & mD its in-
verse has the form

 q2 �!2 ��HDL
T �!; q� � q2 �

i�m2
D

4

!
q
�O�!2�:

(2.8)

The transverse part of the propagator thus has a pole at
imaginary q and jqj � mmag�!�, introducing a new para-
metrically small dynamical screening mass [24,25]

 mmag�!� �
�
�m2

D!
4

�
1=3
; ! mD; (2.9)

which represents an in-medium version of Lenz’s law. As
soon as the temperature is small but nonvanishing, the ring
diagrams obtain contributions involving the Bose-Einstein
distribution function which leads to sensitivity to this addi-
tional scale. In these contributions, we effectively have
mmag�!� T� � g�2�x�=3� for T � gx� and x > 1. Note
that this is parametrically smaller than mD � g�, but al-
ways larger than the magnetic mass scale of MQCD,
mmag�! � 0� � g2T � g2�x�.

The resummation of the nonstatic transverse gluon self-
energy gives rise to terms nonanalytic in the temperature
which to lowest order in a low-temperature expansion turn
out to be of the order g2�2T2 lnT. This gives rise to so-
called anomalous or non-Fermi-liquid behavior in the en-
tropy and specific heat at low T, because instead of the

usual linear behavior in T the entropy then has a T lnT term
which is the hallmark of a breakdown of the Fermi-liquid
picture (first discussed in the context of nonrelativistic
QED by Norton, Holstein, and Pincus [26]). Indeed, in-
spection of the dispersion laws of fermionic quasiparticles
reveals that there is a logarithmic singularity in the group
velocity at the therefore no longer sharply defined Fermi
surface.4

For a long time, only the multiplicative coefficient of the
T lnT term in the specific heat was known. It was only
rather recently [10] that also the scale under the logarithm
was determined together with the next order terms in
the low-temperature (T  g�) series which in addition
involves fractional powers of T due to the cubic root
in Eq. (2.9). For the pressure, these ‘‘anomalous’’
T-dependent contributions are contained in an expression,
which was first derived in Ref. [16] and which we shall
label by HDL�,
 

1

Ng
�pHDL� � �

g2TF
48�2 �

2T2 �
1

2�3

Z 1
0
dq0nb�q0�

�
Z 1

0
dqq2

�
2 Im ln

�
q2 � q2

0 ��HDL
T

q2 � q2
0

�

� Im ln
�
q2 � q2

0 ��HDL
L

q2 � q2
0

��
�O�g2T4� �O�g3�T3� �O�g4�2T2�;

(2.10)

with �p denoting the temperature-dependent part of the
interaction pressure

 �p 
 �p��pjT�0; �p 
 p� pSB: (2.11)

The expression (2.10) can be viewed as a minimal5 resum-
mation of HDL diagrams, where the HDL self-energies are
only kept in the infrared sensitive part of the ring diagrams
involving the distribution function nb, while infrared-safe
two-loop contributions are treated in an unresummed form.

1. T parametrically smaller than mD

With g 1 and x > 1 in T � gx�, the temperature is
parametrically smaller than the Debye mass mD � g� and
Eq. (2.10) contains the leading contributions to the
temperature-dependent parts of the interaction pressure,

4A systematic calculation of the group velocity beyond the
leading-log approximation has only recently been carried out in
Ref. [27].

5As opposed to the HTL/HDL resummation considered in
[22,28] which aims at improving the convergence of the pertur-
bative series at high temperature by retaining higher-order
effects from HTL/HDL physics beyond what is needed from a
perturbative point of view. The � in HDL� and HTL� is meant
as a reminder that the corresponding quantities are not expressed
in terms of HTL/HDL quantities only, but are combined with
unresummed infrared-safe contributions.
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which ignoring logarithms are of order g2�2T2 �
g2�2x�4, while the higher-order terms in Eq. (2.10) are at
least of order g4�2x�4. The Freedman-McLerran result for
the T � 0 pressure, Eq. (2.7), is accurate to order g4�2 and
its error is of order g6�4 (again ignoring logarithms of g).
Equation (2.10) thus represents the leading correction to
the Freedman-McLerran result as long as x < 2 (i.e., T *

g2�), whereas in quantities such as the entropy density s �
@p=@T and the various specific heats, where the T � 0 part
of the pressure drops out, it is in fact the leading term in the
interaction part for all x � 1.

In Eq. (2.10), g appears only in the combination �g2 

g2TF, and it is therefore convenient to define a reduced
temperature variable

 �� � �T=� �gx��: (2.12)

For x > 1, the perturbative content of Eq. (2.10) is that
given by the low-temperature expansion worked out in
Refs. [10,16]. With the above variables, this reads

 

1

Ng

�pHDL�

m4
D

�
��2 �g2�x�1�

72

�
ln
�

1

�� �gx�1

�
� ln

4

�
� �E �

6

�2 �
0�2� �

3

2

�
�

22=3��83���
8
3�

3
���
3
p
�7=3

��8=3 �g8�x�1�=3

� 8
21=3��10

3 ���
10
3 �

9
���
3
p
�11=3

��10=3 �g10�x�1�=3 �
2048� 256�2 � 36�4 � 3�6

2160�2 ��4 �g4�x�1�

�
ln
�

1

�� �gx�1

�
� ln�� �c

�
�O� �g14�x�1�=3� �O�g2x�; (2.13)

where �c � 4:099 348 5 . . . is given by a numerical integral
defined in Ref. [16]. The latter of the error terms in
Eq. (2.13) corresponds to the leading-order terms to be
expected from three- and higher-loop contributions6 pro-
portional to g4�2T2 which are presumably enhanced by
logarithms of T and g. Depending on the value of x > 1, a
finite number of terms in the low-T expansion remain more
important than this (see Fig. 17 in Sec. V).

When x � 1, i.e. T � g�, the expansion of Eq. (2.13)
clearly breaks down (unless �� 1) and the HDL-
resummed expression of Eq. (2.10) therefore needs to be
evaluated numerically as in Ref. [16]. This expression has
then the form of g4�4 times a function of T=�g��, and is
therefore of the same order as the g4 term of the T � 0
pressure of Freedman and McLerran, to which it is to be
added. As displayed in Ref. [16] for the case of the entropy,
and as we shall see for the pressure in the plots of Sec. IVof
the present paper, the T-dependent terms of Eq. (2.13)
smoothly interpolate between a dominant g2T2�2 lnT be-
havior at low temperature and the terms of order g2T2�2,
g3�3T, and g4�4 lnT of the dimensional reduction pres-
sure which should be the dominant terms at sufficiently

high temperatures and which remain comparable to g4�4

as long as the parametric equality T � g� holds.

2. T parametrically larger than mD

When x < 1 in T � gx�, i.e. T � g�, dimensional
reduction provides the most accurate result available for
the QCD pressure. Up to an error of the order of 3-loop
contributions proportional to g4�2T2 � g4�2x�4, one can
however reproduce its prediction by extending the above
HDL-resummed calculation to include the leading thermal
corrections to the gluon self-energy. In practice, this means
replacing the HDL approximation by the HTL one and also
keeping the order g2T4 terms originating from infrared-
safe two-loop contributions to the pressure that were omit-
ted in Eq. (2.10) because they were of too high order when
x � 1. This possibility was mentioned in Ref. [16] but not
considered further because that work concentrated on the
region of T & g�. For the purposes of the present paper,
however, we write down the straightforward extension of
Eq. (2.10) to the HTL approximation in the form

 

1

Ng
�pHDL� � �

g2TF
48�2 �

2T2 �
g2�2CA � TF�

288
T4 �

1

2�3

Z 1
0
dq0nb�q0�

�
Z 1

0
dqq2

�
2 Im ln

�
q2 � q2

0 ��HTL
T

q2 � q2
0

�
� Im ln

�
q2 � q2

0 ��HTL
L

q2 � q2
0

��
�O�g4�2T2�: (2.14)

Combining the above expression with the Freedman-
McLerran result of Eq. (2.7) to obtain

 �pHDL� 
 pHDL� � pSB 
 �pFMcL � �pHDL� ; (2.15)

we have an expression for the interaction pressure
whose error is of order gmin�4�2x;6� for all T � gx�.
This we shall compare (and thus test) in the following
with our new approach which resums the complete one-
loop gluon self-energy (i.e., not only the leading HTL/
HDL contribution) in ring diagrams. Note that the accuracy
of (2.15) is at least of order g4 for all parametrically small

6There, g2 no longer appears exclusively in combination with
TF.
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temperatures, excluding only the case of x � 0, where
T ��.

III. THE NEW APPROACH

In this section, we introduce our novel and strictly four-
dimensional calculational scheme designed to reproduce
the perturbative expansion of the QCD pressure up to and
including order g4 at all values of � and T. Our guiding
principle is that when faced with the necessity to sum up
graphs with multiple self-energy insertions to circumvent
infrared problems, we consider the entire self-energy and
not only those parts which are identified as relevant in
some effective field theory description, such as the
Debye mass in dimensional reduction or the HTL/HDL
self-energy in the corresponding resummation schemes.
Because we (at present) limit ourselves to order g4 accu-
racy, it will be sufficient to resum only one-loop self-
energies in the infrared sensitive graphs, while IR-safe
diagrams will be treated perturbatively, using bare propa-
gators. This will introduce gauge dependence to our re-
sults, but only at orders beyond g4 which we will explicitly
discard by either considering values of g low enough for
the higher-order terms to be negligible or by performing
numerical series expansions up to O�g4�.

We begin our treatment with a general diagrammatic
analysis where we identify the relevant classes of Feynman
graphs that need to be considered. After that, we describe
their evaluation and show how adding them together leads
to the final result displayed in Sec. III E. Many details of
the calculations as well as the results of several individual
pieces of the result are left to be covered in the appendices.

A. Identification of the relevant diagrams

To determine the QCD pressure up to and including
order g4 on the entire deconfined phase diagram of the
theory, our first task is to identify all Feynman diagrams
that contribute to the partition function at this order. These
trivially include the two-gluon-irreducible (2GI) diagrams
up to three-loop order, displayed in Fig. 1, which a straight-
forward power counting as well as the explicit calculation
of Ref. [8] confirms as infrared finite for all temperatures
and chemical potentials.

In addition to these cases, there are, however, several
other classes of IR sensitive diagrams that need to be
resummed to infinite loop order, as a power counting
reveals that the dressing of (at least some of) their gluon
lines with an arbitrary number of one-loop gluon polariza-
tion tensors does not increase their order beyond g4. These
diagrams are shown in Fig. 2, where the first set corre-
sponds to the well-known class of ring diagrams that leads
to the known g3 and g4 lng contributions to the pressure at
high T [2,3] and to the g4 lng term at T � 0 [9]. Among
others, this class contains the set of all three-loop two
particle reducible graphs of the theory which are missing
from Fig. 1.

As we shall see (in contradiction to the opposite asser-
tion in Ref. [2]), the resummation of the ring diagrams is,
however, not enough to obtain the entire order g4 term
correctly at nonzero T. Although without resummation
starting at orders g6, g8, and g6, respectively, the classes
of Figs. 2(b)–2(d), corresponding to self-energy insertions
in the gluonic two-loop 2GI diagrams 1d and 1g, have the
potential to give rise to contributions of order O�g4T2�2�
and O�g4T4� to the pressure. When T is not parametrically
larger than mD, it turns out that only the class b gives a
nonzero contribution at this order, being proportional to
g2T2m2

D. When T � gx� with x > 0, none of the three
classes contributes to the pressure to order g4�4, but in
the calculation of the low-temperature entropy and specific
heat they have to be taken into account already at order
g4�2T.

For any other classes of diagrams apart from those
shown in Figs. 1 and 2, it is very straightforward to see
that the contributions will be beyond order g4. In particular,
if we were to add an additional gluon line with some
number of self-energy insertions into the graphs of
Fig. 2(b)–2(d) (i.e. dressing the three-loop 2GI diagrams
with self-energies), we would notice that the two extra
insertions of the coupling constant due to the new vertices
(vertex) ensure that these graphs only contribute to the
pressure at order g6. Similarly, one can see that the inclu-
sion of the two-loop self-energy into the ring diagrams
only has an effect on the pressure starting at O�g5�.

a) b) c)

d) e) f g)

h ) i) j ) k ) l )

m) n ) o) p)

FIG. 1. The one-, two-, and three-loop two-gluon-irreducible
graphs of QCD. The wavy line stands for a gluon, the dotted line
a ghost, and the solid line a quark.

a) n =2 b) n 1 ,n 2 =1 c) n 1 ,n 2 ,n 3 =1

d) n1 ,n2 =1

FIG. 2. Classes of IR sensitive vacuum graphs contributing to
the QCD pressure at order g4. The black dots represent the one-
loop gluon polarization tensor given in Fig. 3(a) and the indices
ni stand for the numbers of loop insertions on the respective
lines.
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B. The 2GI diagrams

In Feynman gauge, the sum of the 2GI diagrams in Fig. 1 at arbitrary T and � can be directly extracted from Ref. [8]
with the result

 

p2GI � �2dAT4

�
1

45

�
1�

dF
dA

�
7

4
� 30 ��2 � 60 ��4

��
�

g2

9�4��2

�
CA �
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2
�1� 12 ��2��5� 12 ��2�
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�
g4

54�4��4

�
23C2

A � CATF�29� 360 ��2 � 720 ��4� � 4T2
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� 56

� 0��1�
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� 0��3�
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9� 4

� 0��1�

���1�
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��2

� 432 ��4 � 144�1� 4 ��2�@�1; z� � 3456@�3; z�
�

� 4T2
F

�
�1� 12 ��2�

�
4�5� 12 ��2� ln

��

4�T
� 15� 8

� 0��1�

���1�
� 36 ��2

�
� 144�1� 4 ��2�@�1; z�

�

� 9CFTF

�
35

2
� 16

� 0��1�

���1�
� 4

�
59� 16

� 0��1�

���1�

�
��2 � 664 ��4

� 96�i ���1� 4 ��2�@�0; z� � 2�1� 8 ��2�@�1; z� � 12i ��@�2; z��
���

; (3.1)

where �� 
 �=�2�T� and where we have renormalized the
gauge coupling using the usual zero-temperature renormal-
ization constant Zg. The sum, however, still contains un-
canceled UV 1=� divergences and depends on the choice of
gauge, so that it has no separate physical significance.

C. The ring sum

To order g4, the ring sum of Fig. 2(a) can be separated
into three pieces pVV, pVM, and pring according to Fig. 3 by
decomposing the one-loop gluon polarization tensor (see
Appendix C) into its vacuum (T � � � 0) and matter
parts. Note that only the matter part has to be resummed,
as the vacuum parts contribute to order g4 only through the
two three-loop diagrams in Figs. 3(b) and 3(c).7 The evalu-
ation of pVV and pVM is relatively straightforward, and
fully analytic expressions for them are given in
Appendix B 1.

To evaluate the remaining matter ring sum pring we
define the standard longitudinal and transverse parts of
the vacuum-subtracted polarization tensor at d � 4� 2�

by

 �L�P��ab �
P2

p2 ��
ab
00 �P� ��ab

00 �P�jvac�; (3.2)

 

�T�P��ab �
1

d� 2

�
�ab
���P� ��ab

���P�jvac

�
P2

p2 ��
ab
00 �P� ��ab

00 �P�jvac�

�
; (3.3)

where we have used the fact [29] that the one-loop gluon
polarization tensor is transverse with respect to the four-
momentum P in the Feynman gauge. In terms of �T and
�L, the sum of the ring diagrams is then readily performed
with the result

a) + + + ≡ V + M

b) pVV ≡ V V c) pVM ≡ V M d) pring ≡ n =2

M

M

M

FIG. 3. (a) The one-loop gluon polarization tensor ��	�P�
divided into its vacuum (T � � � 0) and matter (vacuum-
subtracted) parts. (b) The IR-safe Vac-Vac diagram contributing
to the pressure at O�g4�. (c) The IR-safe Vac-Mat diagram
contributing to the pressure at O�g4�. (d) The remaining ‘‘mat-
ter’’ ring sum.

7Take any graph G belonging to the ring sum and having four
or more loops and at least one vacuum tensor insertion and
consider it in the Feynman gauge. Applying Eq. (C4) to it and
contracting the Lorentz indices of the vacuum tensor with one of
its neighboring gluon propagators, we see that G is proportional
to g2 times a similar graph with the vacuum insertion removed.
But this graph is nothing but one of those diagrams that appeared
in the original sum which implies that G has to be proportional to
at least the fifth power of the coupling.
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pring � �
dA
2

ZX
P
fln�1��L�P�=P

2	 ��L�P�=P
2

� �d� 2��ln�1��T�P�=P2	 ��T�P�=P2�g;

(3.4)

which is now explicitly IR safe.
As the functions �L�P� and �T�P� behave at large P2

like (see Sec. B.1.2 of Ref. [30])
 

�L=T�P� !
P2!1

� 2�1� ��CAg
2
ZX

Q

1

Q2 �O�1=P2�


 �UV �O�1=P2�; (3.5)

it is, however, immediately obvious that the sum-integral
of Eq. (3.4) is still logarithmically divergent in the ultra-
violet at T � 0. To regulate the divergence, we add and
subtract a term of the form �1� d� 2���UV�

2=�2�P2 �
m2�2� from the integrand, with m being an arbitrary mass
parameter shielding it from IR divergences. By further
adding and subtracting the corresponding massless term
from the counterterm, we obtain three separate contribu-
tions to pring: an UVand IR finite (at least to order g4 —see
below) m-dependent ring sum pfinite

ring , an UV finite, but IR
divergent and m-dependent pIR

ring, and an UV and IR diver-
gent and massless pUV

ring
 

pring � pfinite
ring � p

IR
ring � p

UV
ring;

pfinite
ring � �

dA
2

ZX
P
fln�1��L�P�=P

2	 ��L�P�=P
2

� C2
Ag

4T4=�72�P2 �m2�2�

� 2�ln�1��T�P�=P
2	 ��T�P�=P

2

� C2
Ag

4T4=�72�P2 �m2�2��g; (3.6)

 pIR
ring 


dAC
2
Ag

4T4

48

ZX
P

�
1

�P2 �m2�2
�

1

P4

�
; (3.7)

 pUV
ring �

1

4
�d� 1�dA��UV�

2
ZX

P

1

P4 : (3.8)

The two first terms can be evaluated numerically at � � 0
while the third one needs to be regulated with finite �. It is
noteworthy that one can set � � 0 even in the formally
divergent pIR

ring due to the fact that its IR divergence origi-
nates solely from the zeroth Matsubara mode of its second
term which vanishes identically in dimensional regulariza-
tion. The explicit values of pIR

ring and pUV
ring are given in

Appendix B 2, while the numerical evaluation of pfinite
ring is

the subject of Appendix D.

D. The double and triple sums

If the sums in Figs. 2(b)–2(d) were to start from n � 0,
these multiple resummations would clearly correspond to
the dressing of the propagators in three two-loop diagrams

with the one-loop gluon polarization tensor. In the present
case, we instead define a four-dimensionally transverse8

tensor �G�	�P� by the equations

 �GL�P� �
1

P2 ��L�P�
�

1

P2 � �
�L�P�

P2�P2 ��L�P��
;

(3.9)

 �GT�P� �
1

P2 ��T�P�
�

1

P2 � �
�T�P�

P2�P2 ��T�P��
;

(3.10)

corresponding to the difference of a dressed (with the
vacuum-subtracted self-energy) and a bare gluon propaga-
tor in the Feynman gauge. It is a straightforward exercise in
combinatorics to show that the symmetry factors of all
graphs in Figs. 2(b)–2(d) equal 1=4 independently of
n—a result particularly obvious in the 2PI formalism. To
order g4, these three classes of diagrams, denoted here by
pb, pc, and pd, can then be written in the forms

 pb �
dACA

4
g2
ZX

PQ

�G��0 �P��G

0 �Q�

�P�Q�2
�g�	�2P�Q�


� g	
�2Q� P�� � g
��Q� P�	��g�
0	�2P�Q�


0

� g	

0
�2Q� P��

0
� g


0�0 �Q� P�	� �O�g6�;

(3.11)

 

pc �
dACA

12
g2
ZX

PQ
�G��0 �P��G

0 �Q��G		0 �P�Q�

� �g�	�2P�Q�
 � g	
�2Q� P��

� g
��Q� P�	��g�
0	0 �2P�Q�


0

� g	
0
0 �2Q� P��

0
� g


0�0 �Q� P�	
0
� �O�g6�;

(3.12)

 pd � �
dACA

2
g2
ZX

PQ
��G���P��G		�Q�

� �G�	�P��G�	�Q�� �O�g6�: (3.13)

All contributions involving the vacuum piece of the polar-
ization tensor have been discarded as being of order g6,
following a reasoning similar to that in footnote 7.

It is worthwhile to first perform a power counting analy-
sis to determine at which order the above sum-integrals
start to contribute to the pressure. In the regime of dimen-
sional reduction, where T � gx� with x < 1, one merely
needs to consider the contributions of the zeroth Matsubara
modes; as for the others the temperature acts as an infrared
cutoff, leading to their values being proportional to at least
g5T�3 � g5�x�4. In the region T � g�, the Debye mass
is, however, of the same order as the temperature, implying

8Thus decomposable into three-dimensionally transverse and
longitudinal parts.
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that all Matsubara modes give contributions to the pressure
parametrically similar in magnitude. Scaling the three-
momenta in the integrals of Eqs. (3.11), (3.12), and (3.13)
by g�, one quickly sees that the results for the sum-
integrals in this regime can up to O�g4� be written in the
form g4T2�2f�T=�g���, where the contributions of the
nonstatic modes to the function f vanish as the parameter
T=�g�� approaches infinity, while in the opposite limit
T=�g�� ! 0 the function approaches a constant. As long
as we are interested in the value of the pressure only to
order g4�4, these graphs can clearly be altogether ignored.
They will become relevant in the determination of the
O�g4�2T� contributions to the specific heats, but this is
outside the scope of the present work.

For now, we can concentrate our attention to the regime
of dimensional reduction and therefore to the zero
Matsubara mode parts of the above sum-integrals. Here,
we encounter an important simplification which results
from the fact that only the longitudinal part of the static
gluon polarization tensor has a nonzero zero momentum
limit at one-loop order. As the finite momentum correc-
tions to the functions �L�P� and �T�P� clearly correspond
to higher perturbative orders, we can simply replace

 �G�	�P� ! �
m2

D

p2�p2 �m2
D�
��0�	0 (3.14)

in the integrals, leading to a dramatic reduction: both pc

and pd then vanish identically. This can, however, be easily
understood from the point of view of the three-dimensional
effective theory EQCD as a demonstration of the fact that
the A3

0 and A4
0 operators in its Lagrangian are not accom-

panied by couplings of order g and g2, respectively, but
only g3 (at nonzero �) and g4.

In contrast to the above, for pb one does obtain a non-
zero value which has a direct parallel in EQCD in the form
of an O�g� coupling between one massless Ai and two
massive A0 fields and a corresponding two-loop diagram
with one Ai and two A0 lines. Applying the limit of
Eq. (3.14) to the sum-integral of Eq. (3.11), it is easy to
see that we can reduce the expression of pb (to order g4) to
the simple form

 pb �
dACA

4
T2m4

Dg
2
Z d3p

�2��3
Z d3q

�2��3

�
�p� q�2

p2�p2 �m2
D�q

2�q2 �m2
D��p� q�2

; (3.15)

which can be solved straightforwardly by introducing three
Feynman parameters and using standard formulas for one-
loop integrals in three dimensions. After some work, we
get
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�4��2
�1� 4 ln2�; (3.16)

which we identify as the entire contribution of the classes
b–d of Fig. 2 to the QCD pressure up to order g4.

E. The result

We are now ready to write down our final result for the
pressure, valid on the entire deconfined phase of QCD and
accurate up to and including order g4. Assembling all the
various pieces, this function reads
 

p � �p2GI � pVV � pVM � p
UV
ring � pb� � �pIR

ring � p
finite
ring �

�O�g5T�3� �O�g6�4� (3.17)

 
 panl � psafe
ring �O�g5T�3� �O�g6�4�; (3.18)

where panl stands for the sum of the first five terms in

Eq. (3.17) and

 psafe
ring 
 pfinite

ring � p
IR
ring (3.19)

is to be evaluated numerically. One should note that in this
notation allm-dependence is contained in the two pieces of
psafe

ring, naturally canceling in their sum. In addition, it is
worthwhile to point out that the inclusion of the term pb in
Eq. (3.17) is inconsistent in the region of T � gx�, x � 1,
where we have neglected several contributions of the same
magnitude. As this term, however, is of order g4�2x�4, i.e.
at least of order g6�4 in the region in question, the incon-
sistency is in any case beyond the order to which our result
is indicated to be valid and can therefore be ignored.

Collecting the expressions for all of its parts from above
and from Appendix B, the function panl reads
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�
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�
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27�4��4

�
�C2

A

�
22 ln
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4�T
� 63� 18�� 110

� 0��1�

���1�
� 70

� 0��3�

���3�

�

� CATF

�
�47� 792 ��2 � 1584 ��4� ln

��

4�T
�

2391

20
� 4

� 0��1�

���1�
�

116

5

� 0��3�

���3�
� 6

�
257� 88

� 0��1�

���1�

�
��2

� 2220 ��4 � 792�1� 4 ��2�@�1; z� � 3168@�3; z�
�
� T2

F

�
�1� 12 ��2�

�
4�5� 12 ��2� ln

��

4�T
� 16

� 0��1�

���1�

�

�
99

5
�

16

5

� 0��3�

���3�
� 312 ��2 � 624 ��4 � 288�1� 4 ��2�@�1; z� � 1152@�3; z�

�

�
9

4
CFTF

�
35� 32�1� 4 ��2�

� 0��1�

���1�
� 472 ��2 � 1328 ��4 � 192�i ���1� 4 ��2�@�0; z� � 2�1� 8 ��2�@�1; z�

� 12i ��@�2; z��
���

: (3.20)

Not only have all the UV divergences canceled between the
different parts of this result, once the renormalization of
the gauge coupling g has been taken care of, but this
expression actually contains all the (explicit) renormaliza-
tion scale dependence of the pressure up to the present
order in perfect agreement with Ref. [8], leaving psafe

ring
entirely independent of the parameter ��. Equation (3.20)
is also valid for all values of T and�; the limit for�! 0 is
given in Eq. (B7) and the limit T ! 0 in Eq. (B8). All
terms nonanalytic in g2 are contained in the piece psafe

ring
awaiting numerical evaluation.

In the following we shall denote our final result for the
pressure—which is accurate to order g4 for all values of T
and � (while also containing some incomplete contribu-
tions of higher order, to be discarded later)—by

 pIV � panl � psafe
ring: (3.21)

F. Numerical infrared issues

Before moving on to examining our result by numeri-
cally evaluating the function pfinite

ring in Eq. (3.6), there is one
more practical issue related to the magnetic mass problem
[31,32] that needs to be dealt with. To wit, in the limit P!
0, the argument of ln�1��T�P�=P

2� becomes negative,
resulting in an unwanted imaginary contribution to the
integral which actually renders pfinite

ring infrared singular
beyond order g4. This problem depends on the choice of
gauge, but is present in all covariant gauges (as well as the
Coulomb gauge).

The origin of the problem can be traced back to the fact
that when dressed with the full one-loop self-energy, the
transverse part of the gluon propagator develops a space-
like pole. For p0 � 0, this pole is determined by the
equation [32]

 p2 ��T�p0 � 0; p� � p2 � g2NcT
8� ��� 1�2

64
p;

(3.22)

where � is the gauge parameter of covariant gauges.9 It is
evidently unphysical and appears only at the nonperturba-
tive magnetic mass scale g2T, which contributes to the
pressure starting at order g6T4. This suggests that we can
in fact eliminate the entire problem by adding by hand a
magnetic mass term to the transverse self-energy in
Eq. (3.6)

 �T�P� ! �T�P� �m
2
mag (3.23)

with (for � � 1)

 mmag � cf
3

32
g2CAT (3.24)

and cf � 1, which only has an effect on the pressure
beyond O�g4�. Indeed, comparing with the effective mag-
netic mass for nonzero frequencies, Eq. (2.9), we find that
the magnetic screening behavior is modified only for
frequencies p0 & g4T when �� T and even p0 &

g4T�T2=�2� when T  �. Note, however, that the intro-
duction of this magnetic mass for the transverse self-
energy alters the UV behavior of pfinite

ring , implying that
both pfinite

ring and pIR
ring have to be modified to account for

this reorganization. In pfinite
ring , this change is crucial because

it renders the result finite, but for the already finite pIR
ring the

effects are beyond the order of interest (see Appendix D).
The numerical evaluation of pfinite

ring is performed along
the lines of Refs. [15,34], with the sum over Matsubara
frequencies being converted to an integration in the usual
way (see e.g. Ref. [35]). Contributions containing the
bosonic distribution function nb are best evaluated in
Minkowski space, as UV problems are cut off by nb, while
the other contributions are evaluated in Euclidean space in
order to numerically exploit the Euclidean invariance of

9Replacing the ordinary one-loop gluon self-energy by one
that includes resummation of the Debye mass does not cure the
problem, but only produces a different gauge-dependent space-
like pole [24,33].
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UV contributions. By varying the parameter cf in
Eq. (3.24), we can verify that the effects of this infrared
regulator are indeed beyond the order g4 we are aiming at.
The remaining part, however, gives rise to yet another type
of unphysical pole, which (at least in the long-wavelength
limit) has been well known since the earliest perturbative
calculations in finite-temperature QCD [36]: in covariant
gauges, the one-loop gluon self-energy, evaluated at the
location of the poles corresponding to timelike propagating
plasmon modes, gives rise to a (gauge-dependent) damping
constant / g2T with negative sign (for all gauge parame-
ters �, though not in Coulomb or axial gauges [29,37]). A
consistent systematic calculation of the plasmon damping
constant to order g2T requires the use of a HTL-resummed
gluon self-energy which finally leads to a positive and
gauge-independent result [24,38]. The corresponding
pole is then on the unphysical sheet where it would cause
no problem for the evaluation of pfinite

ring . With the bare one-
loop gluon self-energy appearing in our integrand we,
however, have poles on the physical sheet, connected to
the light cone by a branch cut, and we need to avoid them
by deforming the contour of the numerical integration in
Minkowski space as sketched in Fig. 18. The details of this
procedure and the entire numerical calculation are de-
scribed further in Appendix D.

IV. NUMERICAL RESULTS

Having the result of Eq. (3.17) for the QCD pressure now
finally at hand, we move on to examine it numerically by
evaluating the function psafe

ring using methods reviewed in
Appendix D and adding to it the analytic part of Eq. (3.20).
The sum total we call pIV as a reminder that its accuracy is
of order g4 for all T and �, while it also includes incom-
plete and gauge-dependent higher-order contributions. For
the most part of the following analysis, we shall explicitly
eliminate the latter effects by either considering suffi-
ciently small values of g or performing numerical expan-
sions of our results in powers of g.

We begin by inspecting the region where the tempera-
ture is parametrically larger than the Debye scale and the
results of dimensional reduction should be applicable, then
continue towards making contact with HDL results on non-
Fermi-liquid behavior at T & mD, and finally the
Freedman-McLerran result for T ! 0. In all plots of the
present section we use the valuesNc � 3,Nf � 2. Because
of the latter, we conveniently have TF � 1 and therefore
� � �� for the reduced temperature variables introduced in
Eqs. (2.5) and (2.12), respectively.

A. T parametrically larger than mD

The first nontrivial check on our result and that of
dimensional reduction is to verify that their predictions
for the pressure agree to order g4 for all temperatures
and chemical potentials that are of equal parametric order

in g. This is particularly important in order to clarify that
the (entirely correct) statement in the literature about di-
mensional reduction being valid as long as �T is the
largest dynamical energy scale does not imply a condition
�T >�, but rather �T � mD (or even �T * mD, as we
shall find to be sufficient below). To this end, we start from
the most widely studied region of� � 0 by comparing our
numerical result to that of the analytic one of dimensional
reduction, and then increase the O�g0� value of �=T up to
�� �T while still having �T � mD � g�.

The results of this comparison are shown in Fig. 4,
where we plot the order g4 lng and g4 contributions of
the ring sum of Eq. (3.6) to the pressure together with the
same quantity extracted from the result of dimensional
reduction (obtained by subtracting the analytic part of
our result from the DR one). The agreement is perfect up
to the numerical accuracy of our result, and only at larger
values of g can one see that the agreement is getting
slightly worse with increasing �=T. This was, however,
to be expected, since there �=T is coming closer to the
value g�1, making mD=T of order one which is parametri-
cally the limit of applicability of dimensional reduction.
Our conclusion is that the result of dimensional reduction
is valid at in principle arbitrarily large O�g0� values of
�=T, though the expansion in g only makes sense at
smaller and smaller values of g as this parameter is in-
creased. This statement will be made more concrete in the
following sections.

The logical next step is to test the validity of dimensional
reduction at temperatures larger than but now parametri-
cally closer to the Debye scale. For concreteness, we
specialize to the case of T �

���
g
p
�, for which the prediction

of dimensional reduction is given in Eq. (2.6). In this
region, the error in our result is of order g11=2�4 and that
of the minimal HTL resummation g5�4, so that the first

10 2 10 1

-12

-10

-8

-6

-4

-2

0

pfinite
ring − pfinite

ring |g3 /g 4

g

dim. red.

numerical

0

4

8

µ/T = 12

FIG. 4 (color online). Comparison of the g4 lng and g4 terms
of the numerical computation and the analytic DR result, for
various values of �=T. The perturbative terms are subtracted up
to order g3.
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one should be able to reproduce the first seven and the
latter the first six terms of the series (2.6). And indeed, a
numerical evaluation of both Eqs. (2.14) and (3.17) and the
subtraction of the first terms of Eq. (2.6) shows the ex-
pected results: as displayed in Fig. 5, we find perfect
agreement in comparing the dimensional reduction result
with the HTL one (2.15) and with that of our new approach
up to order g9=2. In Fig. 6, we see that our numerical
evaluation of pIV is accurate enough to even verify the
g5�4 term in the dimensional reduction result, while the
HTL result starts deviating from the DR one at this order.

B. T comparable to mD

In Figs. 7–9, we plot the temperature-dependent contri-
butions to the interaction pressure �p [see Eq. (2.11)] for
T �mD as extracted from our numerical calculation of pIV

but with no expansions in powers of g. We compare this
with pHTL� as well as with the dimensional reduction
result expanded to orders g2, g3, g4, and g5 which refer
to the counting in powers of g when T ��. For T � g�,
however, the terms g2�2T2, g3�3T, and g4�4 lnT all
become of the same order of magnitude and together
constitute the leading temperature-dependent contribution
to the interaction pressure p� pSB which is contained in
the result marked by the dashed line ‘‘g4.’’ For complete-
ness, we also include the complete dimensional reduction
result to (explicit) order g5, but it should be remembered
that the term g5T�3 is already of the same magnitude as
the unknown g6�4 piece when T � g� and is therefore
both incomplete and beyond our scope which also explains
why the g4 curve seems to produce better agreement with
our results than the g5 one.

The different results are normalized to the leading term
of the T-dependent part of the interaction pressure in the
dimensional reduction result (A1),

 �p�2�DR � �g
2dA

�
TF

16�2 �
2T2 �

5TF � 2CA
244

T4

�
: (4.1)

To understand the structure of these figures, note that the g3

curve goes like �1� �4=3��mD=T for small T and like
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HTL +

IV T = 0 .2 gµ

FIG. 5 (color online). Comparison of the HTL� pressure and
our numerical result pIV in the region of T � �

���
g
p
�, � � 0:2,

with the known perturbative terms from dimensional reduction
subtracted and the entire quantities divided by g9=2. This plot
shows that both the HTL� result and our numerical one are
accurate at least up to order g9=2. The renormalization scale has
been varied between � and 4�. While pIV � pDR is scale
independent, pHTL� � pDR has a scale dependence at order
g4�2T2 � g5�4.

0.2 0.4 0.6 0.8 1 1.2

0

0.2 0.4 0.6 0.8 1 1.2

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025
( p − pDR ) / (g5µ4)

g

HTL +

IV

T = 0 .2 gµ

FIG. 6 (color online). Same as Fig. 5 but normalized to g5.
While the HTL� result is no longer accurate to this order and
diverges logarithmically, our numerical result still correctly
reproduces the dimensional reduction result for the pressure at
order g5�4.
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DR |

τ̄ = T /m T=0
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IV
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FIG. 7 (color online). Thermal contribution to the interaction
pressure �p as a function of T=mT�0

D for fixed chemical potential
� and coupling g � 0:1. For this value of the coupling, the
results of the numerical evaluation of panl � p

safe
ring and HTL�

coincide within plot resolution. The result is compared to the
dimensional reduction pressure at orders g2, g3, g4, and g5

(where the latter is included only for completeness, as neither
pIV nor pHTL� contain contributions of order g5). The effect of
varying the renormalization scale �MS � � . . . 4� is not visible
for this value of the coupling.
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�1� 1:07g for large T. At T  mD it, of course, deviates
from the exact result which is instead dominated by the
leading 2

9 lnT�1 behavior of the low-temperature series of
Eq. (2.13) when normalized by the absolute value of
Eq. (4.1).

For small values of g� 0:1, Fig. 7 shows that the
numerical evaluation of Eq. (3.17) perfectly agrees with
the result of the HTL resummation (the two curves lie
virtually on top of each other). At this value of g, also
the complete dimensional reduction result to (explicit)

order g5 is virtually indistinguishable from the order g4

result. The dimensional reduction result reproduces the
numerical results remarkably well down to temperatures
of about 0:2mT�0

D , but at even lower T severely overesti-
mates the logarithmic growth of �p=T2 as T ! 0. This is
to be expected, since, in the limit T ! 0, the plasmon term
of order g3�3T in the pressure is clearly unphysical, as it
would lead to a nonvanishing entropy at T � 0; the
g4�4 lnT term of the dimensional reduction result, while
evidently crucial for good agreement down to T � 0:2mD,
would even lead to a diverging entropy as T ! 0. The point
at which the dimensional reduction result ceases to be a
good approximation for both pHTL� and pIV seems to agree
rather well with the value of T=mD where �p switches
sign.

In Fig. 8 we consider a larger coupling g � 0:5, for
which we begin to see effects from varying the renormal-
ization scale �MS in our result by a factor of 2 around the
central value 2�, except in the HTL� result, where �MS
appears only in the T � 0 (Freedman-McLerran) part of
the result.10 For small T=mT�0

D , we find good agreement
between the HTL� result and pIV, with the dimensional
reduction result to order g4 lying in between the two in the
range T=mT�0

D � 0:1 . . . 10, but deviating again abruptly
for T=mT�0

D < 0:2, which is where �p changes sign. At this
value of the coupling, the complete order g5 result of
dimensional reduction is still reasonably close to the order
g4 result. While it is certainly unreliable when �p > 0, the
order g5 result suggests that taking into account the next
higher orders in gmay move the onset of non-Fermi-liquid
behavior to slightly larger T=mD.

Figure 9 shows how the final result �pIV is composed of
the infrared-safe piece panl and the ring sum psafe

ring. At
parametrically small T � g�, the T-dependent terms in
the interaction part of panl which are of effective order
g4�4 come just from the terms g2T2�2, so that the shape of
�p in the above figures is mainly determined by �psafe

ring

which is seen to coincide with �pHTL� � �p
�2�
DR up to terms

beyond g4 accuracy.
Finally, in Fig. 10 we consider g � 1 which is roughly

the value of the QCD coupling at 100 GeV. Here the result
for pIV still follows pHTL� for T < mD and the g4 result of
dimensional reduction for T � mD, but there is an overall
shift due to the (incomplete and gauge-dependent) order
g6�4 terms in pIV. At this value of g one also notices that
the dimensional reduction result to order g4 deviates rather

δδ
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FIG. 8 (color online). Same as Fig. 7 but for g � 0:5. The
results of the numerical evaluation of panl � p

safe
ring and HTL� can

now be distinguished due to their different content of higher-
order terms. When two lines of the same type run close to each
other, they differ by changing the renormalization scale �MS �

� . . . 4�.
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ring

panl

psafe
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g = 0 .5
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FIG. 9 (color online). Same as Fig. 8, but with pIV separated
into panl and psafe

ring. As the g4 contribution in �panl only amounts
to a small correction (of effective order g6), the shape of the full
pressure curve as a function of T (beyond the rather trivial g2

contribution) is mainly determined by psafe
ring. The renormalization

scale dependence �MS � � . . . 4� is entirely due to panl.

10In Fig. 8, the value g � 0:5 is kept fixed for all �MS, which
means that the x axis does not correspond to a renormalization-
group invariant variable. The (explicit) dependence of the results
on �MS is here shown only to assess the theoretical error in the
numerical comparison between the different approaches. Taking
into account the implicit �MS dependence of g, the scale
dependence of all the results we are comparing is of the order
of their error, which is O�g6�4� at T � g�.
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strongly from the result to order g5, thus showing poor
apparent convergence, in particular, at high �.

For the remainder of the discussion of our numerical
results at T �mD, we concentrate on the contributions of
order g4�4 to the pressure and explicitly discard all terms
beyond this accuracy, as this helps us to better analyze the
breakdown of dimensional reduction observed in the three
previous plots. To this end, we consider the difference of
the g4�4 term in the DR result at T � g� and the corre-
sponding piece in the Freedman-McLerran zero-
temperature expression. A straightforward evaluation of
this quantity gives
 

1

dA�4 �p
DR

�
�; �� �

T
mD

�
� �

�g4 ��2

16�4 �
�g4 ��

12�5
�

�g4

768�6

� �33� 3�� 12�� 2�2

� 2 ln2�8 ln2� 7�

� 12 ln�� ���	 �O�g6�; (4.2)

which, like the HDL� result, only depends on g and T to
order g4 through the combinations �g 
 T1=2

F g and �� �
�T=� �g�� � T=mD and where � is the numerical constant
appearing in Eq. (2.7). As we have seen, in this region the
g4 content of our pIV agrees perfectly with that of pHDL�

defined by Eqs. (2.10) and (2.11). Therefore, to simplify
our numerical efforts, we compare in Fig. 11 the above
function with the HDL� result for the same quantity �p,
after by hand subtracting the terms proportional to ��2 and ��
of Eq. (4.2) from both results (which correspond to the
terms of order g2�2T2 and g3�3T in the expansion of the
pressure).11 This helps us to expose the term of order

g4�4 lnT, whose divergence at T ! 0 signals the failure
of dimensional reduction to correctly describe the zero-
temperature limit of the pressure.

From Fig. 11, we observe that for �� * 0:2mD there is a
ln �� term in the HDL� result which agrees perfectly with
that of Eq. (4.2). This fact turns out to have a natural
explanation which gives us important insight into the
breakdown of dimensional reduction. The key observation
is that the ultimate reason for this breakdown lies in the
incorrect treatment of low-temperature IR divergences in
DR: in deriving its prediction for the QCD pressure, one
assumes that the temperature acts as the sole IR cutoff for
all nonzero bosonic Matsubara frequencies in the logarith-
mically IR divergent three-loop ring diagrams, so that for
them no resummations are necessary.12 While this indeed
is justified for T � mD, there is an obvious problem in the
region T �mD, ultimately leading to the diverging of the
DR result in the zero-temperature limit where discrete
Matsubara modes no longer exist. In a physically consis-
tent calculation, where one performs a resummation also
for the nonstatic modes, the logarithm of temperature in the
dimensional reduction result above gets replaced by one of
a true IR regulator T � R�g�=T�, where the function R is
linear at large values of its argument and approaches a
nonzero constant as g�=T ! 0. Unlike T, this regulator
therefore does not vanish at T � 0 which explains the finite
��! 0 limit of the HDL� curve in Fig. 11. However, at
large values of �� the logarithm of TR gives rise to the ln ��
behavior with the same coefficient as in the dimensional
reduction result which is what we observe in Fig. 11.
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FIG. 10 (color online). Same as Fig. 7, but for g � 1. At this
value of the coupling, the numerical result for pIV begins to be
visibly affected by the choice of the magnetic mass (3.24) which
here is taken with cf � 1.
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FIG. 11 (color online). Plot of the last term in Eq. (4.2) (dashed
line) in comparison with �pHDL� with the first two terms of
Eq. (4.2) subtracted, in units ofm4

D � �g4�4=�4 and as a function
of ��.

11Note that these terms are not present in the HDL� result at
small values of �� (but that this does not matter, as their effect in
Fig. 11 in any case vanishes as ��! 0).

12Which amounts to expanding the already resummed propa-
gators for the nonstatic gluon modes in these diagrams in powers
of g�=T.

A. IPP, K. KAJANTIE, A. REBHAN, AND A. VUORINEN PHYSICAL REVIEW D 74, 045016 (2006)

045016-16



C. T smaller than mD

In the limit �� � T=mD ! 0, our evaluation of pIV ap-
proaches the Freedman-McLerran result (2.7) as shown in
Figs. 12 and 13, where the difference of pIV�T � 0� and
pFMcL is plotted as a function of g. The agreement to order
g4 and the absence of a g5 term is shown in Fig. 12, where
we normalize the result by g5�4. Figure 13 on the other
hand shows that pIV differs from the Freedman-McLerran
result at order g6, where it contains a term of order g6 lng.
This, however, is incomplete, as the true (unknown) g6 lng
term in the T � 0 pressure gets contributions also from the
two-loop gluon self-energy.

In Fig. 14 we plot the coefficients of the low-temperature
pressure in the perturbative expansion

 

p

�4 � p0 �
g2

4�
p2 �

g4

�4��2
�p4 � p04 lng� �O�g6 lng�

(4.3)

as a function of � � �T=�g�� for Nc � 3 and Nf � 2.
Here, we have again numerically evaluated the HDL�

result which as we have shown agrees with our new ap-
proach to order g4 for T � g�. For � � 0 the coefficients
reproduce the Freedman-McLerran result, whereas for
larger � the coefficients are dominated by Stefan-
Boltzmann contributions T2�2 � g2�4 and T4 � g4�4.

In Fig. 15, we compare the T-dependent contribution to
the interaction pressure, �p, with the extrapolation of the
dimensional reduction result (where pFMcL has been sub-
tracted since pDR does not exist at T � 0) to T  mD in a
linear plot. Here, �p is normalized by m4

D � g
4�4 rather

than divided by a term quadratic in temperature to better
show its absolute magnitude.13 As could already be seen in
the previous plots, the dimensional reduction result works
surprisingly well down to temperatures where �p changes
sign, which happens at T � 0:2mD. At even lower tem-
peratures, the dimensional reduction result overestimates
the leading positive contribution to �p which in reality
goes to zero like (or grows� lnT with the normalization of
Figs. 7–9)

 

�p��; T  g�� �
dATF
72�2 g

2�2T2 ln
cT1=2

F g�
T

�O��g��4=3T8=3� (4.4)

with the constant c � 0:284 794. This expression deter-
mines the total pressure of the normal QCD phase as
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FIG. 13 (color online). Same as Fig. 12, but divided by g6

instead of g5, revealing that pIV contains a term of order
g6 lng�4, which is however incomplete as it is beyond the
accuracy of our setup.
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FIG. 12 (color online). Comparison of our numerical result
pIV and the Freedman-McLerran result. The plot shows agree-
ment to order g5, i.e., agreement in the nonvanishing coefficients
up to and including order g4, and the absence of order g5

contributions.
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FIG. 14 (color online). Dimensionless coefficients of the ex-
pansion of the pressure in powers of g at �T � �g� as a
function of � for Nc � 3, Nf � 2. The coefficients p0 and p04
are constants, p2 is quadratic in �, while p4 shows a �2 ln�
behavior for small �. The renormalization scale is varied through
�MS � � . . . 4�.

13The normalization to �p�2�DR is however more appropriate if
one is interested in the magnitude of the effects to entropy and
specific heat.
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 pnormal��; T  g�� � pnormal��; 0� � �p��; T  g��;

(4.5)

where pnormal��; 0� is given in Eq. (2.7).
For exponentially small T with ln�g�=T� * g�2 the

contribution of Eq. (4.4) can even be larger than the leading
T-dependent14 term / �2T2 in the Stefan-Boltzmann pres-
sure [39]. However, before one reaches temperatures so
small that ln�g�=T� * g�2 in a non-Abelian plasma, one
encounters the nonperturbative pair instability of color
superconductivity and the formation of a gap [13] ��
Tc ��g

�5 exp��3�2=�g
���
2
p
�	 at the parametrically larger

temperatures with ln�g�=Tc� * g�1. In our (resummed)
perturbative approach, we will not directly encounter this
nonperturbative instability, but since at the superconduct-
ing transition temperature the pressures of the normal and
superconducting phases in any case have to be equal, it is
of some interest to evaluate the correction of Eq. (4.4) at
the transition temperature TSC

c . Inserting ln�T=�� �
�3�2=�g

���
2
p
� into Eq. (4.4), one finds

 pnormal��; TSC
c � � pnormal��; 0� �

dATF
24

���
2
p g�2�TSC

c �
2:

(4.6)

Comparing this to the T � 0 pressure of, e.g., the two-
flavor color superconductivity phase from [40] and ex-
pressing it in terms of Tc by replacing �! �e��TSC

c ,
we have

 pSC��; 0� � pnormal��; 0� � e�2�TF�2�TSC
c �

2: (4.7)

Thus we observe that at the temperature where color super-
conductivity sets in, the contribution of resummed pertur-
bation theory is gdAe2�=�24

���
2
p
� � 0:75g times the T � 0

contribution of the gap.

V. SUMMARY OF PERTURBATION THEORY ON
THE �-T PLANE

As we have seen in the previous section, the weak-
coupling expansion of the QCD pressure goes through
changes in its form when T=� becomes comparable to
some positive power of the coupling constant g and this
power is then increased. In particular, at T & g� dimen-
sional reduction ceases to be applicable and a resummation
of the nonstatic parts of the gluon self-energy becomes
necessary, although numerically the dimensional reduction
result works surprisingly well down to the rather small
value T=mD � 0:2. At this temperature, which to leading
order in the coupling reads

 

TNFL

�
� 0:064

������
Nf
2

s
g; (5.1)

the T-dependent contributions to the interaction pressure
change sign, marking the onset of so-called non-Fermi-
liquid behavior. At parametrically even smaller tempera-
tures, one eventually encounters the critical temperature of
color superconductivity, which has been calculated to lead-
ing order in a weak-coupling analysis as [41]

 

TSC
c

�
’ 2

e�

�
e���

2�4�=8�4��4
�

2

Nf

�
5=2
g�5e�3�2=

��
2
p
g (5.2)

for a spin-zero condensate (which gives the largest value of
Tc).
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FIG. 15 (color online). Plot of the T-dependent part of the
interaction pressure �p [see Eq. (2.11)] to order g4 in the regime
�T & mD in units of �mT�0

D �4 � �g4�4=�4 and as a function of
�� � T=mD. The dashed line denotes the dimensional reduction
result to order g4, and the full line the HDL� result which in this
regime coincides with the order-g4 content of pIV.
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FIG. 16 (color online). The dividing line between the regime
of dimensional reduction and that of non-Fermi-liquid behavior
(NFL) as given by Eq. (5.1) for Nf � 3 (full lines) and Nf � 2
(dashed lines), in comparison with the weak-coupling result (5.2)
for the critical temperature of color superconductivity (CSC)
when extrapolated to large coupling.

14Note that in the entropy or in the specific heat these terms
constitute the leading ones.
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In Fig. 16, we compare TNFL and TSC
c when extrapolated

to large coupling (where of course correspondingly large
modifications can be expected). At least for smaller cou-
pling, i.e., sufficiently high densities, there is a clear sepa-
ration of regimes in the �-T plane with qualitatively
different weak-coupling descriptions.

In Fig. 17 we display the structure of the weak-coupling
expansion by showing how the magnitudes of its terms
depend on the power x in the order-of-magnitude equality
T � gx� (which of course removes the superconducting
phase from the picture). The x axis in this figure corre-
sponds to the ratio ln�T=��= ln�g� in the limit g! 0 and
T=�! 0. For each value of xwe give the orders of the first
several terms in the expansion of the pressure in powers of
g, not counting separately terms with an extra factor of
ln�g�. Full lines denote known contributions, while dashed

and dashed-dotted lines correspond to the as-yet unknown
ones.

At x � 0, i.e. T �� the situation is still the same as
with � � 0: the weak-coupling expansion of the pressure
is organized in single powers (and logs) of g. The relevant
effective theory is given by dimensionally reduced electro-
static QCD which for the pressure has been worked out up
to but not including order g6 which is where nonperturba-
tive physics from magnetostatic QCD starts to contribute.
This barrier is indicated by a thick line in the upper left part
of Fig. 17.

Because g is treated as an arbitrarily small parameter,
everything in Fig. 17 with the exception of the border at
x � 0 corresponds to the regime T  �, namely, T � gx�
with x > 0. As long as x < 1, T is parametrically larger
than the Debye mass �g�, and so dimensional reduction
should still be applicable. However, each coefficient of the
original series at x � 0 now has to be expanded in powers
of T=�� gx. The 2-loop pressure contribution, for ex-
ample, yields three different terms for x > 0: one is pro-
portional to �4 and thus is always of order g2, another—
proportional to �2T2 —gives the line y � 2� 2x, and the
third term proportional to T4 produces the line y � 2� 4x.
Starting with the plasmon term which is of order g3 at x �
0, we obtain an infinite series of higher-order terms for x >
0. These arise from the expansion of the third power of the
Debye mass parameter in powers of T=�, and, for subse-
quent terms in the dimensional reduction result, also from
the expansion of the special functions @�n; z�. Because
both the Debye mass and the @ functions can be expanded
in even powers of T=�, the lines emanating from their
starting points at x � 0 come with slopes differing by two
units. The terms proportional to g3 and g5 at x � 0 involve
a single overall power of T, so the lines emanating from
these have slopes 1, 3, 5, . . ., whereas the term proportional
to g4 (or g4 lng) has also T-independent parts and thus
gives rise to lines with slopes 0, 2, 4, . . .. In Eq. (2.6) we
have seen how this gives rise to a new series in g at x �
1=2, and Fig. 17 illustrates how the individual terms of
order 2, 3, 7

2 , 4, 9
2 , . . . are produced from the various

coefficients of the expansion at x � 0.
Moving on to the border of applicability of the dimen-

sional reduction results, x � 1, we see that all lines con-
verge to points corresponding to an expansion in even
powers of g (and also involving lng). As noted before,
for x � 1 the relevant effective theory is the one given by
nonstatic hard dense loops. Their resummation is necessary
to obtain the classic Freedman-McLerran (FMcL) result to
order g4 (again accompanied by a logarithmic term) at T �
0 as well as the leading thermal corrections to the interac-
tion pressure. In a low-T expansion these T-dependent
terms start with a contribution of order g2T2�2 ln�T=g��
and then involve fractional powers T8=3, T10=3, T4 lnT,
T14=3, . . . such that the corresponding lines in Fig. 17
(labeled by the exponent of T) meet at x � 1 and effective
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FIG. 17 (color online). The structure of the weak-coupling
expansion of the interaction pressure p� pSB at parametrically
small T=� as a function of the power x in T � gx�. At T ��,
i.e. x � 0, the expansion involves orders 2, 3, 4, . . . in g
(logarithms in g are not made explicit); at T � g1=2� where
dimensional reduction overlaps with HTL/HDL resummation,
the series in g involves powers 2, 3, 7

2 , 4, 9
2 , . . .; at T � g�, where

dimensional reduction ceases to be applicable, the expansion is
again in even powers of g (and logs) with coefficients that at
even smaller temperatures can be expanded in a series involving
fractional powers of T (beginning with 2, 8

3 , 10
3 , 4, 14

3 , . . .) and
corresponding powers 2� 2x, 2� 8

3 x, . . . of g. While subleading
in the pressure, the latter contributions give the leading-order
anomalous (non-Fermi-liquid) contributions to the interaction
part of the entropy and specific heat at low temperature. Existing
results for the various contributions are represented by full lines,
as yet undetermined contributions by dashed and dashed-dotted
lines. The nonperturbative barrier from the scale of magneto-
static confinement (magnetic screening mass) is indicated by the
thick line marked ‘‘nonperturbative.’’ The region below it and up
to x � 1 is the regime of electrostatic QCD , while for x � 1 the
relevant effective theory is given by nonstatic hard dense loops
(HDL).
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order g4. At this point, the leading T-dependent contribu-
tions are of the same order as the three-loop T � 0 (FMcL)
pressure contribution and remain more important than the
undetermined four-loop T � 0 term even for parametri-
cally lower temperatures as long as x < 2 (i.e. T � g2�).
For the entropy and specific heat, for which the zero-
temperature contribution to the pressure drops out, these
T-dependent terms represent the leading interaction con-
tributions down to arbitrarily low temperatures. The T lnT
behavior of the entropy (as well as of the specific heat) is
characterized by anomalous non-Fermi-liquid behavior,
caused by the only weakly (dynamically) screened quasi-
static magnetic interactions with an effective frequency-
dependent screening mass, displayed in Eq. (2.9).

As suggested by Fig. 17 and shown in detail in the
previous section, the HDL-resummed thermal pressure
contributions responsible for the non-Fermi-liquid behav-
ior at T  g� match smoothly to the perturbative effects
at T � g� described by EQCD. As the temperature is
increased, electrostatic screening replaces dynamical mag-
netic screening as the dominant collective phenomenon
also in the T-dependent contributions. For T parametrically
larger than g� (i.e. x < 1) the resummation of HDL self-
energies needs to be trivially extended to HTL self-
energies to avoid accuracy loss. When added to the zero-
temperature O�g4� result, this gives an expression that
gives the pressure for all temperatures and chemical po-
tentials up to an error of order gmin�4�2x;6� (or g4�x through-
out in the case of the entropy, for which the unknown four-
loop T � 0 pressure drops out).

From the ‘‘flow’’ of the various perturbative contribu-
tions as a function of x in Fig. 17, one notices that a single
expression aiming to be valid both for x > 1 and x < 1
needs to keep track of contributions which are perhaps
higher order and irrelevant in some region but essential
in another. The novel approach we have presented here
does so by resumming the complete one-loop gluon self-
energy in all IR sensitive graphs while treating the infrared-
safe 2GI diagrams perturbatively. To the extent that we
have worked it out, this procedure covers both x > 1 and
x < 1 with an error of order gmin�5�x;6� which improves
over the HTL/HDL result in the region x < 1 by including
the contributions of all relevant three-loop graphs. A draw-
back compared to the HTL/HDL resummation schemes is,
however, that the resummation of the complete gluon self-
energy leads to gauge-dependent higher-order contribu-
tions whose unphysical nature is highlighted by the appear-
ance of spacelike poles in the logarithmic resummation
integrand with momenta �g2T and also of an unphysical
damping constant (with an incorrect sign) / g2T. For our
expression for the pressure, the effect of these problems is,
however, only of the order of the nonperturbative MQCD
contributions, i.e. g6, so it has not hindered us from con-
firming, and thus validating, the results obtained through
dimensional reduction or the HTL/HDL approach.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have constructed a novel resummation
scheme designed to reproduce the weak-coupling expan-
sion of the QCD pressure up to order g4 on the entire �-T
plane. We have used it to provide an independent check of
practically all existing perturbative results. In particular,
we have performed the first explicit test on the validity of
dimensional reduction for values of �=T far beyond the
capability of present-day lattice techniques, thus verifying
that dimensionally reduced effective theories provide a
solid description of the perturbative physics up to in
principle arbitrarily large values of �=T as long as �T >
mD. At temperatures parametrically smaller than the
chemical potential, we have on the other hand reproduced
numerically all the results of the HTL/HDL resummation
schemes, verifying their validity and highlighting the
smooth transition taking place in the perturbative expan-
sion of the pressure as one moves from the region of
dimensional reduction towards the zero-temperature limit.

Based on our numerical results from Sec. IV, the dimen-
sional reduction result for the QCD pressure appears to
provide a remarkably good approximation for this quantity
down to the point where the T-dependent contribution to
the interaction pressure, �p, ceases to be negative
(cf. Figs. 7ff) which happens at T � 0:2mD. Since the
dimensional reduction result to order g6 lng combined
with optimized choices of the renormalization scale has
turned out to agree rather well with lattice results, both at
zero chemical potential [7,42] and for �� T [8,43],
our present findings in fact suggest a remarkably wide
practical range of applicability for the dimensional reduc-
tion method and its results.

Progressing down on the temperature axis to T &

0:2mD, one eventually has to switch to the nonstatic re-
summation schemes provided either by our new approach
or by the calculationally much simpler HTL resummation
of Eq. (2.15). At such low temperatures, the pressure can—
up to but not including order g6 —be approximated by the
Freedman-McLerran result plus positive contributions
from the Stefan-Boltzmann terms as well as the interaction
pressure �p. The latter of these is the source of the non-
Fermi-liquid behavior of the entropy and specific heat.

While we believe to have thoroughly clarified the nature
of perturbative expansions of the pressure in different
regimes of the�-T plane, our new approach is, as of today,
yet to produce results for the pressure beyond what has
already been achieved through either dimensional reduc-
tion at x < 1, the HTL/HDL resummation schemes at x �
1 or the Freedman-McLerran result at T � 0. Its present
relative error of order gmin�5�x;6� can in principle be re-
duced through the inclusion of the two-loop gluon polar-
ization tensor into the resummation of the ring diagrams
and in addition by taking the contributions of nonstatic
modes into account in the multiple sums of Fig. 2(b)–2(d).
For the pressure, this would bring the accuracy of our new
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approach up to the one currently achieved by dimensional
reduction calculations [excluding the already known
O�g6 lngT2�T2 ��2�� term], so that the error, up to loga-
rithms, would be uniformly (for all values of x) of order
g6 lng, corresponding to the line marked ‘‘4-loop T � 0
pressure’’ in Fig. 17. This would then unify all existing
perturbative results for the pressure of QCD, while for the
entropy it would moreover lead to genuinely new results.
Apart from increasing e.g. the accuracy of the entropy
result at x � 1=2 to order g13=2 (third and fourth from
top open circles in Fig. 17),15 it would push the error in
the T-dependent part of the pressure up to the line denoted
in Fig. 17 by ‘‘4-loop T contribution’’ and thus, for x > 1,
include the so far unknown order g4�2T corrections to the
non-Fermi-liquid terms in the entropy and the specific heat.
Considering the difficulties caused by the gauge-dependent
parts of the gluon self-energy, it seems that such an exten-
sion should probably aim at keeping only gauge-
independent contributions such as HTL self-energies in

the ring diagrams and treating corrections to those self-
energies in a perturbative manner. Work towards this goal
is currently in progress.
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APPENDIX A: DIMENSIONAL REDUCTION
RESULT AT FINITE T AND �

To order g5 and simplified by assuming equal chemical
potentials, the result of dimensional reduction for the QCD
pressure at finite T and �, obtained in Ref. [8], reads
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15The highest purely perturbatively calculable order at x � 1=2 is g15=2 which would require a calculation of the contributions of
order g6�2T2 and g7�3T for the pressure.
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APPENDIX B: THE ANALYTIC VALUES OF
VARIOUS PARTS OF THE PRESSURE

In this appendix, we collect some calculational details
on the different pieces of the analytical part of the pressure,
panl, as defined in (3.17). The sum of the 2GI diagrams was
already given in Eq. (3.1) and the piece pb in Eq. (3.16).

1. The Vac-Vac and Vac-Mat diagrams

The evaluation of the two special diagrams of Fig. 2,
dubbed Vac-Vac and Vac-Mat based on their self-energy
insertions, is relatively straightforward. Inserting the form
of �ab

�	�P�jvac from Eq. (C4) into the Feynman gauge

expressions of the graphs, contracting all Lorentz and color
indices and taking into account the symmetry factors 1=4
and 1=2, respectively, we readily obtain
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where we in the latter case have two two-loop sum-integrals to evaluate. These can be taken care of using methods
developed in Refs. [4,8], which leads to the final result
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: (B3)

2. The ordinary ring sum

The UV subtraction term pUV
ring of the ordinary ring sum, defined in Eq. (3.8), is straightforward to evaluate and produces

the result

 pUV
ring � �3� 4��dAC2

Ag
4�I0

1�
2I0

2 �
dAC2

A

48�4��2
g4T4

�
1

�
� 6 ln

��

4�T
�

16

3
� 2�� 4

� 0��1�

���1�

�
�O���: (B4)

With the IR regulating term pIR
ring, we find it most convenient to first transform the Matsubara sum into a contour integral in

the standard way. After the term proportional to a bosonic distribution function is analytically continued to Minkowski
space (see Appendix D), this leads to the result
 

pIR
ring �

dAC
2
Ag

4T4

48

�
�I0

2 ��2�
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�
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Z 1
0
dp0nb�p0� Im

�
1

��p0 � i��2 � p2 �m2�2
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: (B5)

The sum of the first two terms is evaluated with standard methods and gives

 � I0
2 �

�2�

2�i

Z d3�2�p

�2��3�2�

Z i1

�i1
dp0

1

�p2
0 � p

2 �m2�2
� �

2

�4��2

�
ln

m
4�T

� �
�
; (B6)
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while the third term (where one can set � � 0) is left in its present form until Appendix D where it is seen to explicitly
cancel with certain parts of pfinite

ring . Modifications to pIR
ring induced by a magnetic mass are discussed after Eq. (D5).

3. Small and large �=T limits of panl

For convenience, we provide here formulas for various limits of the function panl of Eq. (3.20), derived using the results
of Appendix D of Ref. [8] for the behavior of the @ functions. First, in the limit �! 0 we obtain through an expansion in
�� 
 �

2�T
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which contains e.g. the CFTF-dependent part of the linear quark number susceptibilities found in Ref. [44]. Taking the
opposite limit, T ! 0, we on the other hand get
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(B8)

This yields an entirely finite expression at T � 0, where the scale dependence of the result naturally coincides with that of
Eq. (2.7).

APPENDIX C: PROPERTIES OF THE ONE-LOOP GLUON POLARIZATION TENSOR

For reference, we note that the one-loop gluon polarization tensor in the Feynman gauge can be written in the form

 

�ab
�	�P� � g2�ab

�
CA

�
�d� 2�I0

1��	 � 2�P�P	 � P2��	���P� �
d� 2

2

ZX
Q

�2Q� P���2Q� P�	
Q2�Q� P�2

�

� 2TF

�
2~I0

1��	 � �P�P	 � P
2��	��f�P� �

ZX
fQg

�2Q� P���2Q� P�	
Q2�Q� P�2

��
; (C1)

where we have, as usual, defined

 ��P� 

ZX

Q

1

Q2�Q� P�2
; (C2)

 �f�P� 

ZX
fQg

1

Q2�Q� P�2
: (C3)

The vacuum (T, �! 0) limit of the above formula is

uniquely determined by replacing the sum-integrals by 4�
2�-dimensional integrals which produces

 �ab
�	�P�jvac � ~Ag2�ab

�
�2

P2

�
�
�P�P	 � P2��	� (C4)

with
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(C5)

As all our analytic formulas, the above expressions have
been given in Euclidean space. For the numerical evalu-
ation of psafe

ring it is, however, convenient to also reproduce
the known formulas for the transverse and longitudinal
pieces of the vacuum-subtracted self-energy in
Minkowski space. Following Ref. [25], we obtain

 �L�q0; q� � �g2 Q
2

q2 �2TFHf � CAHb�; (C6)

 

�T�q0; q� �
g2

2

�
Q2

q2 �2TFHf � CAHb�

� �2TFGf � CAGb�

�
; (C7)

where the different functions read

 Gf �
1

2�2

Z 1
0
dknf�k�

�
4k�

q2 � q2
0

2q
L1

�
; (C8)

 Hf �
1

2�2

Z 1
0
dknf�k�

�
2k�

q2 � q2
0 � 4k2

4q
L1

� q0kL2

�
; (C9)

 Gb �
1

2�2

Z 1
0
dknb�k�

�
4k�

5

4

q2 � q2
0

q
L1

�
; (C10)
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1

2�2

Z 1
0
dknb�k�

�
2k�

2q2 � q2
0 � 4k2

4q
L1

� q0kL2

�
; (C11)

with

 L1 � ln
�
2k� q� q0

2k� q� q0

�
� ln

�
2k� q� q0

2k� q� q0

�
; (C12)

 L2 � ln
�
2k� q� q0

2k� q� q0

�
� 2 ln

�
�q� q0

q� q0

�

� ln
�

2k� q� q0

2k� q� q0

�
: (C13)

These expressions are valid for all complex q0 in a rotation
from Euclidean space q0 � i! to Minkowski space q0 �
!� i� with � > 0. For the analytic continuation into the
region with � < 0, see Ref. [45].

The corresponding HTL and HDL expressions for the
above functions can be extracted by demanding that the
external momenta q0 and q be small compared to the
temperature T and/or the chemical potential �. This
amounts to expanding the integrand in inverse powers of
k to leading order, since the main contribution is expected
to come from large loop momenta k. The relevant physical
scale is given by the Debye mass mD. In this limit, the
Eqs. (C8)–(C11) reduce to

 GHTL
f �

T2

6
�
�2

2�2 ; (C14)

 HHTL
f �

�
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6
�
�2

2�2

��
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2q
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��
; (C15)

 GHTL
b �

T2

3
; (C16)

 HHTL
b �

T2

3

�
1�

q0

2q
ln
�
�q� q0

q� q0

��
: (C17)

The HDL expressions are obtained by setting T � 0 here
which makes both GHDL

b and HHDL
b vanish.

APPENDIX D: NUMERICAL EVALUATION OF
pfinite

ring

The numerical evaluation of the sum-integrals intro-
duced in Sec. III is performed by converting the sums
over Matsubara frequencies into contour integrals where
the integrand is multiplied by cot�!n=2T� and the contour
encircles the poles of this function (which lie on the real
axis at !n � 2�nT and have the residue 2T). We then
change the integration variable from q0 � i!n, with real
!n, to q0 � i�, with real q0 and � > 0, deforming the
integration contour in the usual way (for more details on
this, see e.g. Ref. [35]). Through this procedure, we obtain
the generic result

 T
Xn2Z

!n�2�nT

f�i!n� �
Z 1

0

dq0

�
coth

�
q0

2T

�
�i
2
ff�q0 � i��

� f��q0 � i��g

�
Z 1

0

dq0

�
�1� 2nb� Imf�q0 � i��;

(D1)

where we have used the identity cothq0

2T � 1� 2nb. This is
valid for any function f satisfying f�q0 � i�� � f��q0 �
i�� � f��q0 � i�� � f���q0 � i��, provided that the
great arc contribution to the integral vanishes and there
are no other poles or branch cuts between the Euclidean
and Minkowskian axes.

After these standard manipulations, we split the above
integral into the UV safe ‘‘nb part’’ which we calculate in
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Minkowski space, i.e. along the real q0 axis, and the
‘‘non-nb part’’ that we rotate back to Euclidean space16

before integration through

 

Z 1
0

dq0

�
Imf�q0 � i�� !

Z 1
0

d!
�

Ref�i!�: (D2)

In this way, we take full advantage of the UV cutoff
properties of nb in Minkowski space while the possibly
UV problematic non-nb parts are treated respecting the
Euclidean symmetry. Further discussion on the reasons
for this separation can be found from Refs. [15,34].

Specializing to the evaluation of the function pfinite
ring ,

there is a further subtlety in the non-nb part that we have
to take into account. As discussed in Sec. III F, there is an
unphysical pole in the integrand of Eq. (3.6) which implies
that we cannot deform our integration path from the
Euclidean to the Minkowskian axis quite as suggested by
Eq. (D1). Instead, we have to try to avoid numerically
dangerous singularities on the complex q0 plane by encir-
cling them at a safe distance. This aspect of our calculation
is discussed in more detail below in Appendix D 2 a.

After all the separations, we can write the function pfinite
ring

as the sum of several individual contributions according to

 pfinite
ring � pE

1 � p
E
2 � p

M
L � p

M
LD � p

M
T � p

M
TD � p

M
m :

(D3)

Here, pE
1 and pE

2 denote two distinct parts of the Euclidean
integral that are separated by a momentum cutoff �. The
pieces pM

L and pM
T on the other hand stand for longitudinal

and transverse Minkowskian contributions to pfinite
ring inte-

grated along specific segments of the real q0 axis and pM
LD

and pM
TD for the corresponding quantities integrated along

deformed paths (see Fig. 18). In addition, m refers to
corrections due to the IR regulator mass introduced in
Sec. III C that can be explicitly extracted from the rest.
Each of these terms will be discussed in detail in the
following.

1. Euclidean space contributions

For practical numerical reasons, we divide the Euclidean
space non-nb contribution to Eq. (D3) into two parts pE

1 �
pE

2 by introducing a four-momentum cutoff � and having
the first piece correspond to the contribution of momenta
with jQj<�. For this, we obtain by first performing the
integration over an Euclidean four-sphere

 pE
1 � �

dA
2�3

Z �

0
dQQ3

Z �=2

0
dsin2Re�pE

int�!; q��;

(D4)

with ! � �iq0 � Q cos and q � Q sin. The integrand
pE

int�!; q� is given by
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�
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mag
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�
�CAg2T2 � 6m2

mag�
2

72�q2 �!2 �m2�2

�
1
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�
ln
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1�
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q2 �!2

�
�

�L

q2 �!2

�
C2
Ag

4T4

72�q2 �!2 �m2�2

�
(D5)

where the magnetic massmmag, introduced in Eq. (3.24), is
needed in the transverse part in order to prevent a negative
argument of the logarithm as !2 � q2 ! 0. This provides
a cutoff for IR divergences at the scale mmag �

cf
3
32g

2CAT, with cf � 1 being a ‘‘magnetic factor’’ that
we can vary to verify that the dependence of the result on it
is beyond O�g4�.

In addition to regulating IR divergencies, the inclusion
of the magnetic mass alters the UV behavior of the first
term of the above integrand which is why we included it
also in the coefficient of the UV regulating last term of the
first line of Eq. (D5). In order to keep the final result
independent of the arbitrary mass parameter m, we have
to take the magnetic mass mmag into account also in the
calculation of the function pIR

ring of Eqs. (3.7) and (B5),
which amounts to replacing C2

A in those equations as well
as later in Eqs. (D10) and (D15) by C2

A � 8g2CA �m2
mag �

24g4 �m4
mag, as shown below in Eq. (D7).

a. High-momentum expansion in Euclidean space

To obtain the high-momentum Euclidean contribution
pE

2 to Eq. (D3) in the most effective way, we first integrate
over , then expand �T and �L in the limit of large
momenta (which is possible analytically order by order
in Q=T) and finally perform the integration over Q. This
produces a series of the general form

 pE
2 � pE

high;0 � p
E
high;2 � p

E
high;4 � . . . ; (D6)

where the lowest orders are given by

 pE
high;0 � �

dA
768�2 g

4T4�C2
A � 8g2CA �m2

mag � 24g4 �m4
mag�

�

�
ln

�2

m2 ��2 �
m2

m2 ��2

�
;

(D7)

16The quantities evaluated in Minkowskian metric
��;�;�;�� (implying Q2 � q2

0 � q
2) are denoted by an upper

index M, while Euclidean pieces, where q0 is analytically
continued back to Euclidean space (q0 ! �iq0 
 !), are in-
dicated by the use of the ‘‘Matsubara variable’’ ! and the upper
index E. We have dropped the index n from !n as it now has
become a continuous variable.
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with �mmag 
 mmag=�g
2T� � cf

3
32CA (with cf � 1) and

�� 
 �=�2�T� as before. In our numerical implementa-

tion, we included terms up to pE
high;10 and used a cutoff ��

160
������������������
T2 ��2

p
, for which the error in the sum of pE

1 and pE
2

due to the introduction of the cutoff and the use of a high-
momentum expansion in the second part is negligible.

b. IR mass in Euclidean space

The IR regulating mass m only appears in Eq. (3.6) in
two terms that are independent of the self-energies, and
thus the difference of pfinite

ring evaluated with masses m0 and
m is given by
 

pfinite
ring �m� � p

finite
ring �m0� � �

dAC
2
Ag

4T4

48

ZX
P

�
1

�P2 �m2�2

�
1

�P2 �m2
0�

2

�
: (D9)

From Eq. (B6), we see that the Euclidean contribution to
this sum-integral is

 pfin;E
ring �m� � p

fin;E
ring �m0� �

dAC2
Ag

4T4

24�4��2
ln
m
m0

; (D10)

which implies that the cancellation of m in the sum of the
Euclidean contributions to psafe

ring can be tested indepen-
dently of the Minkowskian ones by verifying that the m
dependence of the numerical result for pE

1 � p
E
2 is exactly

of the above form. We have done so with the expected
positive result.

2. Minkowski space contributions

a. Contour deformation

As discussed in Sec. III F, even after the introduction of
the magnetic mass in pfinite

ring , there is an unphysical pole
remaining on the complex q0 plane which prohibits the use
of the preferred nb integration path along the Minkowskian
axis. Instead, we have to choose our integration contour so
that we avoid the unphysical pole, illustrated in Fig. 18.
Since a standard path along the Minkowskian axis would
fail at the branch cut from q0 � q to the unphysical pole,
our numerical integration contour goes around the prob-
lematic zones at a safe distance, so that (given the vanish-
ing great arc contribution) the final integration is
equivalent to integrating along the Euclidean axis—or
just summing the discrete Matsubara frequencies we
started from. The validity of this procedure can be checked

afterwards by varying the safety distance between our
integration path and the branch cuts.

The unphysical poles are expected to appear in the
vicinity of the light cone. We thus want our integration
path to avoid the region jq2

0 � q
2j � r2 where r is chosen

to be of the order of the Debye mass r � fcmD and fc > 1
is an arbitrary cutoff factor on which the final result should
not depend. We will, however, not integrate exactly along
this path, but instead choose a rectangular encasing bound-
ary. To determine the shape of this optimal rectangular
path, we write the condition

 jq2
0 � q

2j � j�a� ib�2 � q2j< r2 (D11)

in terms of the real quantities a � Req0 and b � Imq0

which gives the relation

 4a2b2 � �a2 � b2 � q2�2 < r4: (D12)

Solving for the extremal points for a and b from here and

denoting x 

����������������
r2 � q2

p
, y 


�������������������
jr2 � q2j

p
, z 
 r2=�2q�, we

find the three cases
 

q <
r���
2
p : q0 2 f0; iy; x� iy; xg �big circle�

r���
2
p � q < r: q0 2 f0; iz; x� iz; xg �eyeglasses�

q � r: q0 2 fy; y� iz; x� iz; xg �two circles�

where the notation q0 2 fu; v; w; zg implies that the inte-
gration path on the complex q0 plane proceeds along
straight lines through these points. In practice, it is conve-
nient to start the integration along the Minkowskian axis
also in the two first cases, so from 0 to q=2 the integration

no singularities,
branch cuts, ..
in hereE

uc
lid

ea
n 

ax
is

Minkowski axis

q0

q

branch cuts

Numerical integration contour

unphysical pole

FIG. 18 (color online). Symbolic illustration of the analytic
structure of the integrand of pfinite

ring on the complex plane. The
unphysical pole is avoided by using the complex integration path
described in the text.
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is always performed in Minkowski space. The three con-
tours are depicted in Figs. 19–21.

With the above integration paths, the notation in
Eq. (D3) becomes obvious. The pieces pM

L and pM
T denote

the integrations performed along the Minkowskian axis
(dashed lines), making use of optimizations [34], while
pM

LD and pM
TD are computed using the deformed paths (full

lines or dashed-dotted lines) for complex q0. The
Minkowskian contributions pM

L and pM
T are calculated as

 pM
L=T � �

dA
2�3

Z 1
0
dqq2

Z 1
q0;min

dq0 Im�pM
int�q0; q��;

(D13)

where q0;min denotes the starting point of the green dashed
lines in Figs. 19–21 (with the exception of the two circles
shape for which the integration contour is composed of two
disjoint pieces) and pM

int is the straightforward analytic
continuation of Eq. (D5) from Euclidean to Minkowski
space. In Minkowski space, the Boltzmann factor nb pro-
vides a natural UV cutoff and the IR mass-dependent term
can be evaluated separately (see below).

The contribution of the deformed paths, pM
LD � p

M
TD, is

computed similarly as

 

pM
LD=TD � �

dA
2�3

Z 1
0
dqq2

Z
Detour�path

dq0 Im�pM
int�q0; q��:

(D14)

b. IR mass in Minkowski space

The so far unevaluated last contribution to Eq. (D3) is
pM

m which is the IR mass correction term corresponding to
the m-dependent terms of Eq. (3.6). This integral can be
computed separately from the other Minkowskian pieces,
since the bosonic distribution function provides a natural
UV cutoff for the Minkowski space calculations, making
the subtraction of the quartic term from pfinite

ring unnecessary.
Writing pM

m down explicitly (see the discussion below
Eq. (D5) on how to include mmag), we obtain

 pM
m �

dAC
2
Ag

4T4

24

Z 1
0

dq0

�

Z d3q

�2��3
nb Im

1

�Q2 �m2�2
;

(D15)

which, not surprisingly, is observed to exactly cancel the
third term of Eq. (B5). Thus we see that all dependence on
the regulator mass m cancels between the different
Minkowskian contributions to psafe

ring which together with
our observation after Eq. (D10) explicitly verifies the
independence of our final result pIV of m.
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FIG. 21 (color online). The parameters in this figure are
chosen (c) for the two circles shape (q � 1:2r).
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FIG. 20 (color online). The parameters in this figure are
chosen (b) for the eyeglasses shape (q � :97r).
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FIG. 19 (color online). The shape of the Debye mass cutoff
and the numerical integration contour chosen on the complex q0

plane, in units of r. The full line shows the deformed integration
path along complex q0 while the dotted line indicates usual
Minkowski space integration, extending to q0 ! 1. The dashed-
dotted line shows the integration path if it is restricted to stay in
Minkowski space up to q0 � q=2. The parameters in this and the
following two figures are chosen (a) for the big circle shape (q �
:5r).
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