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We study a problem of systematical evaluation of the quantum corrections for general 4D super-
symmetric Kähler sigma models with chiral and antichiral superpotentials. Using manifestly reparamet-
rization covariant techniques (the background-quantum splitting and proper-time representation) in the
N � 1 superspace we show how to define unambiguously the one-loop effective action. We introduce the
reparametrization covariant derivatives acting on superfields and prove that their algebra is analogous to
algebra in super Yang-Mills (SYM) theory. This analogy allows us to use for evaluation of the effective
action in the theory under consideration methods developed for SYM theory. The divergencies for the
model are obtained. It is shown that on general Kähler manifold the one-loop counterterms have the
structure of supersymmetric WZNW term in the form proposed in Ref. [16]. Leading finite contribution in
covariant derivative expansion of the one-loop effective action (superfield a3 coefficient) is calculated.

DOI: 10.1103/PhysRevD.74.045010 PACS numbers: 11.10.�z, 11.30.Pb, 12.60.Jv

I. INTRODUCTION

Nonlinear sigma models play a significant role in many
areas of the field theory. An important class of such models
is presented by 2D conformal field theories, which are
exactly solvable (in a sense that S-matrix, the correlation
functions of the different fields and the anomalous dimen-
sions are completely determined on the base of conformal
invariance) [1] and consistent at the quantum level [2].
Two-dimensional supersymmetric nonlinear sigma-models
possess many remarkable properties. They are renormal-
ized field theories. Moreover for a field theory on the world
sheet the correlations between conformal invariance, (ex-
tended) supersymmetry and geometry of the complex
manifolds of the full quantum theory yield to powerful
restrictions on the background fields geometry in each
order of the perturbation theory [3].

The remarkable properties of supersymmetric 2D non-
linear �-models inspired interest to constructing the geo-
metrical nonpolynomial theories of the supersymmetric
matter in 4D space-time and studying their properties
[4,5]. Supersymmetric nonlinear sigma-models have been
formulated both for simple and for extended supersymme-
tries (see e.g. [6–8] for review). It was proved that in 4D
the target space of rigid supersymmetric nonlinear
�-models must be the Kähler manifold [9] for N � 1
supersymmetry and hyper-Kähler manifold [2,3] for N �
2 supersymmetry. A number of supersymmetric sigma-
models has been constructed within superstring theory
[10] where the extra dimensions are wrapped up into a

coset space. Unlike 2D models, the 4D nonlinear super-
symmetric sigma-models are nonrenormalizable in power-
counting as well as their 4D nonsupersymmetric predeces-
sors. This is a main reason why the quantum aspects of
such models are not well studied (see however some at-
tempts in Refs. [11]).

Another large class of nonlinear sigma-models is formed
by the 4D low-energy effective phenomenological theo-
ries. Dynamics of these models is invariant under a global
group G, whereas a vacuum is invariant only under some
subgroup H [12]. It is well known that such models are
nonrenormalizable under a power-counting analysis and
requires the introduction of new couplings in each order of
the loop expansion. However, the higher order loop terms
involve higher powers of the momentum, and thus, the low-
energy behavior is controlled only by the lower order terms
which are unambiguous and do not undergo further renor-
malization (see e.g. [13]). These models possess the global
anomalies which can be reproduced at the low-energy scale
by the four-derivative Wess-Zumino-Novikov-Witten
(WZNW) action [14].

Manifest N � 1, 4D superfield form of the WZNW term
has been considered in [15] but the proposed construction
requires an infinite number of unspecified constants that
appear in an undetermined function �ij �k. In addition the
auxiliary fields become propagating fields. The alternative
form of the 4D, N � 1 ungauged supersymmetric
WZNW model has been given in [16]. The interesting
superfield sigma-models using the CNM (chiral/nonmini-
mal) formulation have been constructed in [17] where
chiral superfields exist in a tandem with complex linear
superfields. The physical superfields �, �� and �, �� in these
models should be regarded, respectively, as a coordinates
of the Kähler manifold and a tangent vector at a point �, ��
of the same manifold [18]. The models are closely related
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to phenomenological models of pion physics and admit
interpretations as low-energy stringlike models associated
with QCD. Supergraph technique for these models was
given in Ref. [19]. Next natural step here should be a
development of a background field expansion in terms of
normal coordinates and constructing of a computational
procedure for finding counterterms and finite contributions
to the effective action (see the references for early litera-
ture in [20,21]). This is one of our motivations to study
quantum properties of the Kähler sigma model, which is a
part of CNM sigma models.

One-loop divergencies for the standard N � 1 and
N � 2 supersymmetric nonlinear sigma models on the
Kähler and hyper-Kähler manifolds, respectively, demon-
strate an existence of divergent terms with four order
derivatives of background fields. The origin of such diver-
gences is the nonrenormalizability of the model, and,
therefore, to make quantum theory multiplicatively renor-
malizable we have to write terms with four order deriva-
tives in the action from the very beginning. Such a situation
is analogous e.g. to the relation between nonrenormalized
Einstein quantum gravity and asymptotically free renor-
malized R2 quantum gravity (see e.g. [22]). Unfortunately
a detailed analysis of quantum properties of generic 4D
N � 1, 2 supersymmetrical models with some set of
chiral supermultiplets has not been carried out so far.

The goal of this paper is to describe quantum aspects of
the 4D generic chiral superfield model including super-
symmetric sigma-model as a particular case. To be more
precise, we formulate the heat kernel approach for the
covariant computations of the one-loop effective action
in the 4D generic chiral superfield model. Modern interest
to this problem was inspired by recent development of
generic chiral superfield models on nonanticommutative
(NAC) superspaces (see e.g. [23–25]). Classical structure
of such models has been thoroughly studied while their
quantum properties requires a further analysis. In addition
to the problems inherent with nonanticommutative models
there is a known general difficulty in superfield sigma-
models: the absence of chiral and simultaneously holomor-
phic normal coordinates on the generic Kähler manifolds
does not allow to develop a loop expansion preserving all
symmetries of the theory. This fact has been already men-
tioned in the pioneering papers [2,3]. Some papers were
directly addressed to treatment of the above difficulty
[26,27]. Unfortunately this difficulty can not be overcome
in general since neither chiral metric nor chiral Levi-Civita
connection do not exist on the Kähler manifold (even
having isometries). Therefore the geodesics also do not
exist in a subspace of chiral superfields and we can not
utilize an expansion on a nontrivial superfield background
in a way which preserves the chirality of the model.
However as it has been pointed out some time ago (see
e.g. [5]) this problem is unessential for one-loop calcula-
tions because the deviation from chirality �D�i �O��2� is

quadratic over quantum fluctuations and therefore the
above difficulty arises only in the higher loops.

The paper is organized as follows. In Sec. II we present
some mathematical grounds related to the model under
consideration and discuss classical properties of the model.
In Sec. III we consider the normal coordinate expansion for
the Kähler potential and superpotentials. Then we intro-
duce the specific covariant derivatives, formulate an alge-
bra of these derivatives, study their basic properties and
observe the analogies with SYM theories. As a result, we
prove that the 4D superfield sigma-models are character-
ized by the objects which are analogues to superfield
strengths in SYM theory. These objects have well-definite
transformation properties and naturally arise as the build-
ing blocks for constructing the effective action. In Sec. IV
we fulfil the one-loop calculations and find the divergen-
cies and some finite corrections. Discussion and conclu-
sions are given in Sec. V.

II. GENERIC CHIRAL SUPERFIELD MODEL

In this section we briefly discuss the basic notions of the
generic chiral multiplet model in superspace (see e.g. [6])
which will be used further.

The model under consideration is a map from N � 1
superspace into the Kähler space and is described by chiral
�i and antichiral ��

�i superfields whose components, the
complex scalars�i, ���i, play the roles of coordinates on the
Kähler manifold, whereas the fermions  i, � �i transform as
vectors on a target manifold. The corresponding super-
space action is written in terms of the Kähler potential
K��; ��� and chiral and antichiral superpotentials P���,
�P� ��� and has the form

 S �
Z
d8zK��; ��� �

Z
d6zP��� �

Z
d6 �z �P� ���: (1)

This action is invariant under holomorphic reparametriza-
tion of superfields

 �i ! �i0 � fi���; ��
�i ! ��

�i0 � �f �i� ���: (2)

and the Kähler transformations

 K��; ��� ! K��; ��� � F��� � �F� ���; (3)

with some F, �F. The Kähler potential K��; ��� defines the
metric of the target manifold

 gi �j �
@2K��; ���

@�i@ ��
�j
� K;i �j��; ���: (4)

This metric allows to find the components of the Levi-
Civita connection

 �ikl � gi �m@lg �mk; ��i
�k �l
� g�im@�lgm �k;

gi �j;k � gi �j; �k � 0:
(5)

Using the above connection we introduce the standard
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covariant derivatives of the geometrical objects with target
space indices

 Ai;l � @lAi � �iklA
k; A�i

;l � @lA
�i;

Ai
; �l
� @�lA

i; A�i
; �l
� @�lA

�i � ��i
�k �l
A �k:

(6)

The Lagrangian for the component fields is obtained as
the lowest component of the superfield L � D� �D2D�K.
The component form of the Kähler D-term is written from
the expression

 KjD � �igi �j@
� _��i@� _�

��
�j � gi �j�D� _�D

��i� �D _� ��
�j

� gi �jD��i�D� _� �D _�
��

�j� � 2igi �j �F
�jF i

�
i
2
Ri�l �kmD

��mD��iD _� ��
�kD _�

��
�l: (7)

Here we have introduced the reparametrization covariant
derivatives

 D �Ai � D�Ai � �ilkD
��kAl;

D _� �A �j � D _� �A �j � �
�j
�l �k
D _� ��

�k �A�l;
(8)

which will be important ingredients for constructing the
effective action. The curvature tensor of the Kähler mani-
fold has the form R�ikl �m � �g�ij@ �m�jkl and we use following
definitions for combinations of the auxiliary and spinoral
fields that transform as tangent vectors

 F i �
1

2
D�D��i; �F

�i �
1

2
D _�D _�

��
�i: (9)

Projection of (7) to the lowest superfield components re-
sults the most general 4D N � 1 second-order
Lagrangian [6,7] in the component form. The F-term
superpotential defines of the scalar potential and Yukawa
couplings.

The equations of motion for the model (1) in superfield
form are given by

 

�D 2K;i � P;i; D2K;�i � �P;�i: (10)

In Sec. IV we study the one-loop effective action for the
model (1).

III. BACKGROUND-QUANTUM SPLITTING

Covariant calculation of the quantum corrections for the
model (1) is based on the loop expansion with help of
background-quantum splitting which preserves the sym-
metry of the model. For construction of such a splitting it is
useful to compare the superfield �-model with conven-
tional �-model. The background-quantum splitting for
conventional �-model is realized in terms of Riemann
normal coordinates what allows to retain the general coor-
dinate invariance (for references in early literature, see e.g.
[2,20]). Therefore the Riemann normal coordinates are the
basic ingredient in constructing covariant loop expansion

for �-model effective action due to the following property:
the geodesics passing through the origin have the same
form d2yi=d�2 � 0 (here � is a affine parameter, ‘‘time’’
along the geodesic) as the equations of straight lines pass-
ing through the origin of a Cartesian system of coordinates
in a flat geometry.

The superfield �-models are associated with Kähler
geometry which possess a complex structure. The
Riemann normal coordinates mix the holomorphic and
antiholomorphic coordinates and hence violate the repar-
ametrization symmetry since the set of holomorphic coor-
dinate transformations (2) is only subset of a full set of
general coordinate transformations on manifold parame-
trized by the coordinates �i and ��

�i. As a result, a general
covariant loop expansion of the effective action preserving
the complex structure is impossible in principle.

The problem of building a manifestly covariant
background-quantum splitting for supersymmetrical
�-model was discussed by a number of authors (see e.g.
[26,27]). In this section we compare two various ap-
proaches to this problem and demonstrate that for one-
loop calculations such a problem does not exist really.

A. Chiral coordinate expansion

First of all we shortly discuss a well-known decompo-
sition (see e.g. [26,27]) of the complex (anti)chiral super-
fields into background superfields �i, ( ���i) and quantum
superfields �i, ( ���i) fluctuating around them:

 �i�z� � �i�z� � �i�z�; ��
�i�z� � ���i�z� � ���i�z�:

(11)

In (11) the quantum fields �i� ���i� are differences between
coordinates on the manifold and therefore do not transform
as the vectors under general coordinate transformations.
Hence the expansion of the geometric objects on the mani-
fold in a power series in �� ��� will not be covariant at each
order. Instead we consider the velocity vectors �i���,
���i� ��� which are chosen to play the role of the quantum
fields. According to Ref. [26] we consider an affine pa-
rameter � (0 � � � 1) along an arbitrary path from
��0� � � to ��1� � �� � and expand the field in the
chiral coordinates

 �i��� � �i �
X1
n�1

�n

n!
�i
�n�: (12)

Coordinate transformations on the curve are described by
��i��� � fi������. Because of the transformation rule
� @�i���

@� � fi;j������
@�i���
@� the quantity like @�i���

@� is a con-
travariant chiral tangent vector at each value of �, includ-
ing the quantity �i � @�i���

@� j��0. The coefficients �i
�n�,

( ���i
�n�) can be obtained directly from analysis of the geo-

desics equation
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d2�i

d�2
� �ijk��;

���
d�j

d�
d�k

d�
� 0; (13)

which, of course, is incompatible with the chirality condi-
tion on �i, since the �ijk depends on both �i and ��

�i.
Substituting the expansion in affine parameter for the
curves (11) to above equation, we find the recursive for-
mulae for the coefficients �i

�n�, ( ���i
�n�). For example

 �i
�2� � ��ijk�

j�k;

�i
�3� � ���

i
jk;l � 2�ijm�mkl��

j�k�l:
(14)

In the this paper we concentrate only on one-loop analy-
sis where we need only in the second order in an expansion
of the classical action in quantum superfields. It is well-
known (see e.g. [26]) that Taylor expansion of the Kähler
potential in normal coordinates has the form

 K��� �; ��� ��� � K��; ��� � K;i�
i � K;�i ���i

�
1

2
K;ij�

i�j � K;i �j�
i �� �j

�
1

2
K;�i �j ���i �� �j � . . . ; (15)

where subscript semicolon means covariant derivatives (6).
The expansion of (anti) holomorphic superpotentials P���,
�P� ��� can be also written down:

 P��� �� � P��� � P;i����
i �

1

2
P;i;j����

i�j � . . . ;

�P� ��� ��� � �P� ��� � �P;�i� ��� ���i �
1

2
�P;�i; �j� ��� ���i �� �j � . . .

(16)

It should be noted that the Eq. (13) for (11) defines a
transformation to holomorphic normal coordinates.
However the superfields �i lose the chirality properties
�D _��

i � �D _��
i � �ijk �D _��

j�k � 1
2R

i
jk�l

�D _�
���l�j�k � . . . �

0. That means, the deviation from chirality is quadratically
in quantum superfields �. It leads to higher powers of � in
expansion of action and hence gives contribution beyond
one loop. Therefore for one-loop calculations we can con-
sider the � as chiral superfiled.

However, that presented above background-quantum
splitting is not a single one because except of widely
used scalar multiplet representation by means of chiral
scalar superfield there are the representations by means
of chiral spinor superfield and by means of unconstrained
complex scalar superfield prepotential. All mentioned rep-
resentations are classically equivalent. Their quantum
equivalence was studied in [28] (see also [6]).

B. Unconstrained field expansion

We already pointed out that manifestly supersymmetric
expansion of the action (1), preserving the chirality prop-

erties on the base of Riemann or Kähler normal coordi-
nates, is impossible in principle. Now we provide
expansion of the Kähler potential using unconstrained
complex scalar superfield prepotential Ui��� (see
Ref. [29]) and compare the result with described above
normal coordinate expansion. Let the prepotential Ui��� is
such that �i � �D2Ui and defined by the equation of par-
allel transport for dUi

d� along arbitrary nongeodesic curves
�i���:

 

d2Ui

d�2
� �ijk��;

���
d�j

d�
dUk

d�
� 0: (17)

This equation can be solved subject to the initial condition
Ui�� � 0� � Ui

backgr,
dUi

d� �� � 0� � �i where Ui
backgr is a

background prepotential and �i is a quantum field which
again is an unconstrained superfield. Explicitly:

 Ui � Ui
backgr � ��

i �
�2

2
�ijk �D2�j�k � . . . (18)

We observe that all higher order terms in the expansion
(18) involve the background field via� (notUbackgr) so that
the substitution of (18) into the Kähler potential will yield a
Lagrangian which depends on�i and the quantum field �i.
Though the chiral normal coordinates do not exist, it is
easy to show that this expansion is reparametrization co-
variant. The expansion coefficients at all orders in the
quantum field �i are constructed from geometrical objects,
which are functions of the background field �i. The lead-
ing terms in the expansion �i are given by

 �i��� � �i � �i

� �i � � �D2�i �
�2

2
�D2��ijk �D2�j�k� � . . .

and for Kähler potential we obtain
 

K��� �; ��� ��� � K � K;i �D2�i � K;i
1

2
�D2��ijk �D2�j�k�

� K;�iD
2 ���i � K;�i

1

2
D2���i

�j �k
D2 �� �j �� �k�

�
1

2
K;i;j �D2�i �D2�j �

1

2
K;�i; �jD

2 ���iD2 �� �j

� K;i; �j
�D2�iD2 �� �j: (19)

One can see that the two expansions (15) and (19) are
coordinated at the one-loop level and therefore it is no need
to worry about nonchirality of the quantum superfields �i.
Further we will use the chiral superfields approach
[6,7,30].

To conclude this subsection we point out that though the
above procedure is appropriate to construct a covariant
background field expansion, use of the unconstrained pre-
potential means that the action (19) is invariant under
quantum field gauge transformation ���i � 1

2 �ijk �D2�j�k �
. . .� � �D _�!i

_�, ��i � 0. That means we have to impose the
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gauges and introduce the corresponding ghosts following a
quantization scheme for gauge theories with linearly de-
pendent generators [31]. The treatment of an infinite tower
of ghosts for a nonlinear sigma-model defined in terms of
the nonminimal scalar multiplet has been carried out in
[32] and it was found that the classical duality of the
formulations in terms of chiral scalar superfields and in
terms of complex general scalar superfileds takes place at
least at the one-loop level.

C. The algebra of the covariant derivatives

In this section we consider algebra of covariant deriva-
tives (8) related to general coordinate transformations (2).
Covariant derivatives DA transform every tensor superfield
again into tensor superfield. As in global supersymmetry,
spinor covariant derivatives D� and �D _� generate the full
superalgebra of covariant derivatives DA. We demonstrate
that this algebra is equivalent to the algebra of covariant
derivatives for SYM theory. This fact allows us to use the
general methods developed for finding the one-loop effec-
tive action in SYM theory.

Components of curvature tensor in Kählear geometry
satisfies the relation Rijkl � 0. It leads to the following
property for anticommutators of covariant derivatives

 fD�;D�g � f �D _�; �D
_�g � 0: (20)

This relation can be treated as a representation-preserving
constraint that make possible the existence of chiral scalar
superfield �D _�A � 0. The other anticommutation relations
as conventional constraints means a definition for the
vector component of the superconnection
 

fD�; �D _�gAi � iD� _�i
kA

k;

D� _�i
k � @� _��ik � i

�D _���ijkD
��j�;

fD�; �D _�gA�i � iD� _� �i
�k
A �k;

D� _� �i
�k
� @� _���i

�k
� iD����i

�j �k
�D _� �� �j�:

(21)

The commutators of the covariant derivatives define the
spinor superfield strengths

 	D�;D
� _�
A�i � i���D

2���i
�j �k

�D _� �� �j�A �k � ����
�W

_� �i
�kA

�k;

	 �D _�;D
� _�
Ai � i� _�

_�
�D2��ijkD

��j�Ak � �� _�
_�
W �i

kA
k:

(22)

and the conjugation properties:

 	D�;D
� _�
Ai � gi�igk �kW

_� �k
�iA
k;

	 �D _�;D
� _�
A�i � gk �kg

i�i� _�
_�
W �k

iA
�k:

Finally, a commutation relations of vector derivatives gives
the definition for the vector component of the strength
superfield:

 i	D� _�;D
� _�
 � �

1

2
� _�

_�
D��W

�� �
1

2
���

�D� _�
�W

_��

� �
1

2
G� _�
� _�
: (23)

Thus all the superfield strengths for the theory are ex-
pressed in terms of spinor superfields

 W �i
k � �i

�D2�gi �mD�g �mk�

� Ri
jk�l
@� _��j �D _�

���l � iRi
jk�l
D��j �D2 ���l

�
i
2

�D _�R
i
jk�l
D��j �D _� ���l;

�W
_� �i

�k � �iD
2�g�im �D _�gm �k�

� R�i
�j �k l
@� _� �� �jD��l � iR�i

�j �k l
�D _� �� �jD2�l

�
i
2
D�R

�i
�j �k l

�D _� �� �jD��l:

(24)

The spinor superfield strengths W � and �W
_� evidently

obey the Bianchi identities

 

�D _�W � � 0; D�
�W _� � 0;

D�W � �
�D _� �W _� � 0:

(25)

Using the above covariant derivatives we introduce two
basic covariant differential operators acting on covariantly
(anti)chiral superfields. These operators are obtained by
covariantization of the identity �D2D2� � �� (where �
denotes the free d’Alembertian)

 ��A
i � �D2D2Ai

� �covA
i � iW �i

kD�A
k �

i
2
�D�W

�i
k�A

k;

(26)

where �cov �
1
2D

� _�D� _� and Ai is covariantly chiral
superfield. Analogously for covariantly antichiral super-
field A�i ones get

 ��A
�i �D2 �D2A�i

� �covA
�i � i �W

_� �i
�k

�D _�A
�k �

i
2
� �D _�

�W
_� �i

�k�A
�k:

(27)

The operators �� and �� obey the useful properties

 D 2�� � ��D
2; �D2�� � ��

�D2:

As we will see further the operators (chiral and antichiral
d’Alambertians) �� and �� play the crucial role for
calculating the effective action.

We see that the strength superfields W , �W demonstrate
the properties similar to the SYM superfield strength prop-
erties. It is useful to compare spinor strengths definition for
generic chiral superfiled model with the definition of the
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superstrengths for the supersymmetry gauge model W� �
i �D2�e�VD�e

V�. One can note that the metric of the sigma
model plays the same role as a prepotential for a gauge
model. Then taking into account U�n� gauge transforma-
tions of metric g! e ��� ���ge�����, we see that a corre-
sponding connection should be defined as g�1D�g. Such
a connection will have the gauge transformation
e�D�e��: Therefore one can impose ‘‘Wess-Zumino’’
gauge and in particular for the metrics this means

 gi �j��; ��� � gi �j�0� � Ri �jk�l�0��
k ���l � . . .

Such a choice of gauge fixing is nothing but the Kähler
normal coordinate expansion [27].

Thus, the obtained algebra of covariant derivatives is
analogous to the algebra of covariant derivatives for N �
1 SYM theory and then we can use the powerful results
developed for quantum SYM theory [6,7]. But it should be
kept in mind that many important results for SYM one-
loop effective action were found in the constant back-
ground field approximation (constant strength approxima-
tion). However this approximation is not very appropriate
and interesting for the model under consideration since it
effectively means that ether all background fields �, �� are
constant or Ri �jk�l � 0 and, therefore, a geometrical charac-
ter of the model disappears.

IV. ONE-LOOP CALCULATIONS

We define the effective action �	�; ��
 on the base of
background field generating functional Z	�; ��
 �
e�i=@��	�; ��
 by integrating over the quantum fluctuations
�I, I � fi; �ig. This definition leads at one loop to
 

Z	�
 � ei�	�
 � eiS0

Z
D�det1=2�gi �j��; ����ei

R
�IH IJ�J

� eiS0 det��1=2�	H J
I 
; (28)

where H J
I �H IKgKJ, while H IK is the second func-

tional derivatives of the action (1) over quantum fields

 H IJ �
�2S��; ���

��I��J
: (29)

In the previous sections we obtained background-quantum
splitting (15) and (16) for the classical action (1). It allows
us to calculate the above functional derivatives and find the
operator H IK in an explicit form.

A. One-loop reparametrization invariant counterterms

In this subsection we find the divergent part of one-loop
effective action ��1�. This functional is expressed in terms
of functional determinant of the operator (29)

 H �

�2S
��i�z���j�z0�

�2S
��i�z�� �� �j�z0�

�2S
� ���i�z���j�z0�

�2S
� ���i�z�� �� �j�z0�

0@ 1A
�

H���z; z0� H���z; z0�
H���z; z

0� H���z; z
0�

� �
:

The two-point functions H���z; z0� are covariantly chiral
(� ) or covariantly antichiral (� ) with respect to the
corresponding superspace argument. The functional de-
rivatives for covariantly chiral (antichiral) superfields
have following forms

 

��i�z�
��j�z0�

� �ij
�D2�8�z� z0� � ���z; z0�;

� ���i�z�

� �� �j�z0�
� ��i

�jD
2�8�z� z0� � ���z; z0�

Using the expansion (15) and (16) ones obtain the explicit
form for the matrix of the second functional derivatives

 H J
I �

M
�j
i

�D2 �ji
�D2D2

�
�j
�iD

2 �D2 �Mj
�iD

2

 !

�
�8�z� z0� 0

0 �8�z� z0�

� �
; (30)

where we have used the covariant derivatives defined in the
previous section and [33]

 M
�j
i �

�D2Ki;mgm
�j � P;i;jgj

�j;

�Mj
�i �D2K�i; �mg

�mj � �P;�i; �jg
j �j:

(31)

It is easy to show that the M and �M obey chirality
properties �D _�M � 0, D�

�M � 0. The matrix H J
I can

be rewritten as a product of two matrix

 

M �D2

D2 �M

 !
�D2�8�z� z0� 0

0 D2�8�z� z0�

 !

�
M �D2

D2 �M

 !
���z� z

0� 0
0 ���z� z0�

� �
; (32)

In further transformations we act as follows (see e.g.
[6,30]). Using the definition (26), (27), and (32) we rewrite
the one-loop correction in the form

 � i��1� � Tr ln
0 �D2

D2 0

 !
� Tr ln

1 1
��

�D2 �M
1

��
D2M 1

 !

�
1

2
Tr ln

�� 0
0 ��

� �
�

1

2
Tr ln

 
1�

1
��

�D2 �M 1
��

D2M 0

0 1
��

D2M 1
��

�D2 �M

 !!
: (33)
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Then using the chiral d’Alambertian properties and the (anti)chirality properties of M, �M one rewrites the the second
term in a form which can be combined with the first term in (33) and obtains the expression

 ��1� �
i
2

Tr ln
�� �

�D2D2 �M 1
��

M 0

0 �� �D2 �D2M 1
��

�M

 !

�
i
2

Tr� ln
�
�� �

�D2D2 �M
1

��
M

�
�
i
2

Tr� ln
�
�� �D2 �D2M

1

��

�M
�
: (34)

Two independent (anti)chiral functional traces in the last
expression can be treated separately by expanding the
logarithm in the power series.

Further, we use the superspace Schwinger-De Witt tech-
niques and explore the structure of the effective action
superfunctional, including the analysis of divergences
and finite contributions. For these goal we use the methods
developed for SYM theory [6,7] (for recent development
see e.g. [30,34,35]) and a covariant expansion of the cor-
responding propagator in powers of the superfield strengths
W �, �W _� and their covariant derivatives.

First of all we study a structure of divergences. One can
show (analogous to SYM theory) that the divergences are
given by the following expression
 

��1�div�
i
2

Tr
Z
d6z ln���

�6�
� �z� z

0�

� j�
i
2

Tr
Z
d6z �D2 �MM

1

�2
�

D2��6�� �z� z
0�j� c:c:

(35)

Explicit evaluation of the divergences (35) is based on
expansion of the logarithm of the operator in the second
power in D derivatives and integrates by parts in order to
release �4�	� 	0�. Note that W should not be differenti-
ated in the divergent terms because of dimensional reasons.
We omit the the details of the calculations, just note that a
heat kernel representation and a dimensional regularization
scheme were used [6]. It leads to a simple and compact
expression for the divergences

 ��1�div � �
��!�

2�4��2�!

�
m



�
�2!

�Z
d6z

1

2
W �i

kW �i
k

� tr
Z
d8z �MM� c:c:

�
; (36)

where m, 
 are IR and UV the mass scales, respectively,
and ! � �4� d�=2 is a regularizaton parameter. It should
be noted that this result is valid for arbitrary Kähler poten-
tial and superpotential. Such form of for the one-loop
effective action looks like a supersymmetric version of
the known result [36] of Boulware and Brown.

Let us analyze the structure of the obtained divergent
contributions. First of all we point out that the term in (36)
which is given by integral over chiral subspace can be
written in form of the 4D, N � 1 supersymmetric unga-
uged WZNW action [16]:

 Z
d8z�ijk�D

��j�

�
Rkli �m

�D _� �� �mi@� _��l � Rkli �m
�D2 �� �mD��l

�
1

2
�D _�Rkli �m

�D _�
�� �mD��

l
�
� c:c:: (37)

Moreover, the first term in (37) has a form similar to the
manifestly supersymmetric expression of WZNW term
proposed by Nemeschansky and Rohm in Ref. [15]

 SWZNW � ic
Z
d8z��ij �k��; ���D��i@� _��

j �D _� �� �k � c:c:�;

(38)

where the bosonic parts consist of the bosonic WZNW
term and an additional four-derivative term. Note that in
contrast to the earlier analysis of supersymmetric WZNW
term [15] where an infinite number of unspecified con-
stants appeared in calculations of matrix elements based
upon the N-R WZNW action (38) our action (37) is com-
pletely expressed only in terms of well defined geometric
quantities.

It is known that for the higher derivative terms in this
form of supersymmetric WZNW action a serious problem
appears: the auxiliary fields became dynamical. In
Ref. [37] a possibility to eliminate derivative terms of the
auxiliary fields was examined and it was found that the
condition for disappearance of these terms is equivalent to
a condition of the term (38) vanishing �ij �k;�l � � �k �l i;j � 0.
Another possibility to overcome this problem was consid-
ered by Gates and his collaborators who suggested a new
nonconventional form of the supersymmetric WZNW term
consisting in doubling the chiral superfields to chiral and
complex linear superfields [17]. In the recent work [16] it
was constructed the actual 4D, N � 1 superspace
WZNW action related to the non-Abelian consistent anom-
aly
 

SWZNW � C0

�
1

4�2

�
Re

Z
d8z�T ij �kD

��i@� _��
j �D _� �� �k

�T i �j �kD
2�i �D _� �� �j �D _�

�� �k

�T ij �k �lD
��iD��

j �D _� �� �k �D _�
���l�: (39)

Comparison this action with the obtained expression (37)
demonstrates one to one conformity. One can conclude that
on a general Kähler manifold the one-loop counterterms
have the form of supersymmetric WZNW term [16], while
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on the constant curvature superspace and on-shell D2�i �
0 we get an expression analogous to N-R term [15]. The
second term in (36) represents the fourth-order supersym-
metric action for the nonlinear sigma model [5] with
particular definition of the allowed tensors �G;A; T;H�
[5] in terms of geometrical quantities and superpotential.

B. Finite contributions

In this section we present a method for calculation of
next to leading Schwinger-De Witt coefficients for the one-
loop effective action expansion on an arbitrary
background.

Finding the superfield effective action is based on cal-
culations of the chiral operator functional trace like

 Tr�A �
Z
d6zA���z; z

0�; (40)

In the model under consideration one has
 

��1� �
i
2

Tr� ln�� �
i
2

Tr� ln��

�
i
2

Tr� ln
�
1�

1

��

�D2 �M
1

��
D2M

�

�
i
2

Tr� ln
�
1�

1

��
D2M

1

��

�D2 �M
�
: (41)

The above expression contains four terms, two of them are
chiral and two other are antichiral. Therefore it is sufficient
to study only chiral terms and use conjugation to obtain
others. Let us consider the contributions going from terms
with Tr� for example. The first term can be rewritten via a
proper-time integral

 Tr� ln�� �
Z 1

0

ds
s
e�sm

2
Z
d6zes�����z; z

0�jz�z0

�
Z 1

0

ds
s
e�sm

2
K��s�; (42)

where we have introduced an IR cutoff m. The heat kernel
has an asymptotic expansion in powers s and can be ex-
pressed as a series

 K��s� �
1

�4��2s2

X1
n�2

an�z�s
n: (43)

It is known that the coefficients a0 � a1 � 0 and the first
nontrivial coefficient a2 defines the divergences. So we
know that finite contributions can be given by integral
over full superspace. In particular it means that the con-
tributions from any coefficient an with n  3 are expressed
as �D2 acting on field strengths and their covariant deriva-
tives and, therefore, they can be transformed to a gauge
invariant superfunctional on the full superspace. It is al-
lows us to write the following differential equation for the
kernel K�

 

dK��s�
ds

�
1

�4��2
X1
n�3

�n� 2�sn�3an�z�

�
Z
d6z �D2D2es�����z; z0�jz�z0

� K�
��s�

�
Z
d8zD2es�����z; z

0�jz�z0

�
1

�4��2s2

X1
n�0

sncn�z�: (44)

We see that it is convenient to redefine the coefficients in
the series (43) in the form an �

1
n�2

�D2cn�1.
There are the various methods for evaluations of super-

field heat kernels [38]. Here we adopt for our aims one of
such methods [34]. First of all ones present the covariant
chiral delta-function by integral
 

���z; z0� � �D2�8�z; z0�I�z; z0�

� ��4����2���I�z; z0�

� �
Z
d6�eip� _��� _������I�z; z0�; (45)

where d6� � d4p
�2��4 d

2� and I�z; z0� is an operator of the

parallel displacement [30]. Invariant superintervals are
defined as

 �� _� � �x� x0�� _� �
i
2
	� �	 _�0 �

i
2
	�

0 �	 _�;

�� � �	� 	0��; �� _� � � �	� �	0� _�:
(46)

The resulting K�
� from (44) is rewritten using integral

over momenta

 K�
��s� �

Z
d8zD2es�����z; z

0�jz�z0

�
Z
d8z

Z
d6�
�1

2
X�X�es��I�z; z0�jz�z0 ; (47)

where �� �
1
2X

� _�X� _� � iW
�X� �

i
2 �D

�W ��, and op-
erators XA defined as

 X� _� � ip� _� �D� _�;

X� � �� �
1

2
p� _�� �	� �	0� _� �D�:

(48)

One can verify that an algebra of these operators has the
same form as the algebra of covariant derivatives given in
Subsec. III C:

 fX�; X�g � 0; 	X�; X
� _�
 � ���

�W
_�;

	X� _�; X
� _�
 �

i
2
G� _�
� _�
;

(49)

and XA � �DA� � ��1�jajjXjAX. Note that the shift
� 1

2p� _�� �	� �	0� _� in X� always vanishes in the coincidence
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limit. Since no any �D _� operators appear during calcula-
tions, we can consider all expressions in the coincidence
limit from the very beginning.

Next, expanding the exponent in (47) and using the
properties of the integral over bosonic and fermionic mo-
menta as well as the action of the covariant derivatives on
the parallel displacement operator in the coincidence limit
[30]

 I�z; z0�j��0 � 1; D�I�z; z
0�j��0 � 0;

D�D�I�z; z0�j��0 � 0; D� _�I�z; z0�j��0 � 0;
(50)

we obtain (after omitting contributions equal to total de-
rivative) for the coefficient a3 the following expression
 

a�1�3 � �
1

8m2

Z
d8z

�
1

6
�D�W

���D�W
��

�
1

6
� �D _�

�W
_�
�� �D _�

�W
_�
� � �DW ��DW �

�
: (51)

However this is only one part of the result. Other finite
contributions having the same order on power s go from the
second term in trace Tr� of logarithm expansion up to
second order in (41). The results look like

 a�2�3 �
1

4m2

Z
d8zD� _� �MD� _�M; (52)

and

 a�3�3 �
1

4m2

Z
d8z �MM �MM: (53)

The final result is a sum a�1�3 , a�1�3 , a�3�3 obtained by sub-
stitution of (24) and (31) into (51)–(53). For the partial
case DAM � 0 and D� _�W � 0 we obtain known in

SYM theory G2 term ��1� �
R
d8z 1

M �M
G� _�
� _�
G� _�
� _� [35].

To conclude this section we point out that the theory
under consideration can be treated as a fenomenological
N � 1 supersymmetric model following e.g. from some
fundamental superstring theory [10] for description of low-
energy effects. In such a case the forms of Kähler and
(anti)chiral potentials are dictated by the fundamental the-

ory. In particular, finite terms in the effective action stipu-
lated by a3-coefficient allow to find contributions to
S-matrix of six order in momenta which are determined
by the forms of Káhler and (anti)chiral potentials.

V. SUMMARY

In this paper we developed an approach for studying the
quantum aspects of the 4D generic chiral superfield model.
The model is given in terms of the Kähler potential and
chiral and antichiral potentials. Effective action for the
model under consideration is formulated on the base of
background-quantum splitting and in one-loop approxima-
tion preserves all symmetries of the classical theory.

We introduced the reparametrization covariant deriva-
tives acting on superfields and constructed their algebra in
terms of commutators and anticommutators. It was proved
that structure of this algebra coincides with ones for the
covariant derivatives in SYM theory and the Kähler metric
plays the role analogous to the prepotential in the SYM
theory. We also constructed the chiral and antichiral
d’Alambertians. These results open the possibilities to
apply the methods, developed for evaluation of the effec-
tive action in SYM theory, for study of the effective action
in 4D generic chiral superfield model.

We formulated the superfield proper-time techniques for
covariant computations of the one-loop effective action.
Both divergent and leading finite contributions to the one-
loop effective action were found in an explicit form in
geometric terms. It was showed that the divergent term
reproduces the supersymmetric WZNW term [16] and
fourth-order supersymmetric nonlinear sigma model [5].
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