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We construct a new off-shell N = 8, d = 1 nonlinear supermultiplet (4, 8, 4) proceeding from the
nonlinear realization of the N =8, d =1 superconformal group OSp(4*|4) in its supercoset

OSp(4*]4)
SUQ)r®{D,K}®50(4)

The irreducibility constraints for the superfields automatically follow from appropriate

covariant conditions on the osp(4*|4)-valued Cartan superforms. We present the most general sigma-
model type action for (4,8,4) supermultiplet. The relations between linear and nonlinear (4,8, 4)
supermultiplets and linear N = 8 (5, 8, 3) vector supermultiplet are discussed.
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I. INTRODUCTION

During the last few years it has become clear that in
Supersymmetric Quantum Mechanics (SQM) with ex-
tended N = 4, 8 supersymmetries the nonlinear super-
multiplets play an essential role [1-6]. The main reason for
resort to nonlinearities is the presence of too strong re-
strictions on the bosonic target-space metrics, in the case of
theories with linear supermultiplets. Indeed, the general
consideration of d = 1 sigma models with N = 4 and
N = 8 supersymmetries reveal the following possible
bosonic target geometries: hyper-Kéhler with torsion, for
N = 4 supersymmetric theories with four physical bo-
sons, and octonionic-Kéhler with torsion for N" = 8 ones,
in the case of eight physical bosonic fields [7]. Moreover,
the detailed analysis of the components and superfield
actions for N = 4, 8 cases with diverse numbers of physi-
cal bosonic degrees of freedom shows that only confor-
mally flat geometries, with the additional restriction on the
metrics of bosonic manifolds to be harmonic functions,
may arise [8§—15]. Being quite general, these results keep
open only a unique way to have more complicated bosonic
target-space geometries—i.e. to introduce nonlinear
supermultiplets.

When dealing with nonlinear supermultiplets one should
be able to overcome at least two obstacles:

(i) it is not clear how to find the proper superfield
constraints defining the irreducible nonlinear
supermultiplets

(i1) the construction of the invariant superfield actions is
not evident.

One should mention that the dimensional reduction is
not too useful for obtaining the invariant d = 1 superfield
actions and the irreducible constraints on the superfields.
Although any d = | super Poincaré algebra can be ob-
tained from a higher-dimensional one via dimensional
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reduction, this is generally not true for d = 1 super con-
formal algebras [16,17] and off-shell d = 1 multiplets. For
instance, no d = 4 analog exists for the N =4, d =1
multiplet with off-shell content (1,4, 3) [14] or (3,4,1)
[11,13]. Moreover, there exist off-shell d = 1 supermul-
tiplets containing no auxiliary fields at all, something
impossible for d = 3 supersymmetry.

However, a convenient superfield approach to d =1
models which does not resort to dimensional reduction
and is self-contained in d = 1 exists. It is based on super-
field nonlinear realizations of d = 1 superconformal
groups. It was pioneered in [14] and recently advanced in
[1,18,19]. In this approach the physical bosons and fermi-
ons, together with the d = 1 superspace coordinates, prove
to be coset parameters associated with the appropriate
generators of the superconformal group. The conditions
which identify the fermionic components of the bosonic
superfields with the cosets fermionic parameters are just
the irreducible constraints singling out the proper
supermultiplets.

Using the nonlinear realizations approach, in [1] all
known linear off-shell multiplets of N =4, d=1
Poincaré supersymmetry were recovered and a two novel
nonlinear ones were found. Concerning N =8, d = 1
supermultiplets, in [19] a similar analysis has been started
along the same line. It has been shown that the (5, 8, 3) and
(3,8, 5) multiplets come out as the Goldstone ones, pa-
rameterizing the specific cosets of the supergroup
OSp(4*|4). Consequently, in [20] a superfield description
of all other linear off-shell N = 8, d = 1 supermultiplets
with 8 fermions, in both N' = 8 and N' = 4 superspaces,
was given. Finally, the first N" = 8 nonlinear supermulti-
plet (2, 8, 6) has been constructed in [4]. However, the task
of deriving an exhaustive list of off-shell N = 8 super-
multiplets and the relevant constrained N =8, d =1
superfields is much more complicated as compared to the
N = 4 case, in view of the existence of many nonequiva-
lent N =8 superconformal groups (OSp(4*|4),
0Sp(8]2), F(4) and SU(1, 1|4), see e.g. [16]), with a large
number of different coset supermanifolds. Moreover, the
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explicit construction of linear [21] and nonlinear [4]
(2, 8, 6) supermultiplets demonstrates that the constraints
which follow from the nonlinear realization approach
should be accompanied by additional, second order in
spinor covariant derivatives, constraints, in order to define
irreducible N = 8 supermultiplets.

The subject of the present paper is the study of the
nonlinear N = 8 supermultiplet with field content
(4,8,4) obtained by a nonlinear realization of the

OS p(4*|4) supergroup on a particular coset supermanifold
OSp(4*14)
SU(z)RoafD, K1®S0@) *

N =38, d=1 superspace and the Lie superalgebra
osp(4*|4) in Section I we give a N = 8 superfield for-
mulation of the nonlinear multiplet (4, 8, 4). In Sec. III we
obtain the superfield constraints defining irreducible linear
and nonlinear (4, 8,4) supermultiplets by the reduction
procedures from the (5, 8, 3) vector multiplet. Using these
results in Sec. IV we construct the most general action for
our nonlinear supermultiplet and provide a detailed analy-
sis of its bosonic part. A summary of our results and an
outlook are the contents of the concluding Sec. V.

After reviewing some basic facts on the

II. THE N = 8 (4, 8, 4) NONLINEAR MULTIPLET

Like the N' = 8 tensor and vector supermultiplets [19],
the new nonlinear N = 8 multiplet we are going to con-
sider can be obtained from a proper nonlinear realization of
the N = 8, d = 1 superconformal group OSp(4*|4) in
N =8, d =1 superspace. After exposing some basic
facts in Subsections IT A and II B, in Subsection IIC we
will give the details of the relevant nonlinear realization
procedure giving rise to the nonlinear (4, 8, 4) multiplet.'
Our basic notations follow those of Ref. [19].

A. The N = 8, d = 1 superspace

The eight real Grassmann coordinates of N = 8,d = 1
superspace R(!!® can be arranged into one of three 8-
dimensional real irreps of SO(8)—the maximal automor-
phism group of N =8, d = 1 super Poincaré algebra.
However, the constraints defining the irreducible N = 8
supermultiplets in general break this SO(8) symmetry. So,
it is preferable to split the 8 coordinates into two real
quartets

RIS = (1, 0,,, Fun),
m = 19&/4’

(eia) = 6ia’
La a,A=1,2,

Q2.1

in terms of which only four commuting automorphism
SU(2) groups will be explicit. The further symmetry break-
ing can be understood as the identification of some of these
SU(2), whereas additional symmetries, if existing, mix

"We use the notation (m, 8, 8-m) to identify an off-shell N =
8, d = 1 supermultiplet with m physical bosons, 8 fermions and
8-m auxiliary bosonic components.
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different SU(2) indices. The corresponding covariant de-
rivatives are defined by
Di¢ = + 049, VA =

+ i949,. (2.2)
ia a1901A !

By construction, they obey the algebra®:

{D'®, DI’} = 2i€li ey, {VeA VBBY = 2jeBerBy,.
(2.3)

Thus all our /N =8, d=1 superfields depend on

(t, 6,4, ¥,4) and the differential constraints on the relevant

superfields will be defined directly in terms of the spinor
covariant derivatives (2.2).

B. The superalgebra osp(4*(4)

Let us briefly recall some basic facts about the Lie
superalgebra osp(4*|4) [17,19]. It contains the following
16 spinor generators:

iaA’ iaA’ ( iaA) = €..€ ij’
1 Q2 Q ij abQ (24)
(i,a, 0, A=1,2),
and 16 bosonic generators:
TAB, T, T, TPy (25)

Here, the indices A, i, a and « refer to fundamental
representations of the mutually commuting s/(2, R) ~
TAB and three su(2) ~ T4, T, T$? algebras. The four
generators U“¢ belong to the coset SO(5)/S0O(4) with
SO(4) generated by T¢ and T5*.

The commutators of any SU(2)-generators with Q have
the standard form

[T, 0] = —S(eQ" +eQ"),  (26)

where a, b refer to some particular sort of indices (with
other indices of Q being suppressed).

The commutators with the coset SO(5)/SO(4) genera-

tors U%% mix the Q!4 and Q%*4 generators
[Uaa, QlibA] — _iEabQéaA’
aa IBA7 _ _: _aBiadA (27)
[U » &9 ] - le Ql .

Finally, the anticommutators of the fermionic generators
read

{ tiaA’ Q{bB} — —Z(EijeabTéB _ 2€ij6ABTilb + Eab EABTU),

{QéaA’ QéBB} — _2(6ij6a,BT6XB _ zeijEABT;lﬂ + EaBEABTij)’
{Qie4, 0)*"r =26l erB A, (2.8)
For what follows it is convenient to pass to another nota-

*We use the following convention for the skew-symmetric

. jk — sk — 21 =
tensor €: €;;€/* = 07, €, = €~ = 1.
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tion,

P=T2 K =T}, D= -T}, V=T?2
V=rll Vy=TR Qit = —Qie2,

Qia = —pia2 Sia = Qial, Sia = Qial (2.9)

One can check that P and Q¢, Q@ constitute a N = 8,
d = 1 Poincaré superalgebra. The generators D, K and
Sia, Sl stand for the d = 1 dilatations, special con-
formal transformations and conformal supersymmetry,
respectively.

C. A new supercoset of OSp(4*|4)

Our goal is to construct the nonlinear supermultiplet
with off-shell content (4, 8, 4). In the nonlinear realization
approach the physical bosonic components parameterize
some coset of the given supergroup. So the first task is to
identify such a four-dimensional bosonic coset in the
supergroup OSp(4*|4). One of the possible choices is the

0Sp(4*14)
UM ®50(5)
superfields parameterize the coset D ® SU(2). The corre-
sponding supermultiplet includes the dilaton and three
fields living on the sphere SU(2). It is just the linear
(4, 8, 4) supermultiplet [20].

Another possibility is to consider the supercoset

m. As it can be easily seen, it contains the

bosonic coset SO(5)/S0(4); the four physical bosonic
fields of the resulting multiplet are nothing but the parame-
ters describing the 4-sphere S$* = SO(5)/SO(4). Dif-
ferently from the previously mentioned supercoset, the
dilaton associated with the dilatation generator D will
not appear. Therefore, despite the fact that the supercon-
formal group OSp(4*|4) is perfectly realized on our super-
coset there is no possibility to construct superconformally
invariant action in our case, because without dilaton there
is no possibility to compensate the dilatonic weight of the
superspace measure. Nevertheless, the N = 8 supersym-
metric sigma-model type of the action can be constructed
for the supermultiplet in question.

Thus, we are going to realize the superconformal group

OSp(4*|4) in the coset superspace % pa-
rameterized as

supercoset . For this case the bosonic Goldstone

g= etP p0ia Q" + 910 QU i S +£iaS™ piv U™ (2.10)
As usual, in order to find the covariant irreducibility
conditions on the coset superfields, we must impose
the inverse Higgs constraints [22] on the left-covariant
osp(4*|4)-valued Cartan one-form Q = g 'dg. Con-
cerning the treated case, the relevant constraints are

w3 =0, @2.11)

where | denotes the spinor projection. These constraints are
manifestly covariant under the left action of the whole
supergroup OSp(4*|4). Indeed, with respect to the action
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of this supergroup by a left multiplications on the coset
element (2.10), the Cartan forms are rotated by the ele-
ments of the stability subgroup SU(2)z ® {D, K} ® SO(4).
Clearly, the constraints (2.11) are invariant under such
rotations. Explicitly, the Cartan form w{ reads

aa —

2
U T o
+ Vfa)ﬂa],

[idV, + (8585 + VEVD)Qp, + Viw,,
(2.12)
where

Qog = —2dOia Pl + dO;y€L), Wap = —4d0; b},
wap = —4da €l (2.13)

2 2

Ve = Vpar v? = eePu,vg,.  (2.14)

Selecting the d#,;, and d;, projections of the constraints
(2.11) we will get
iD™V,, + 285(&L + VEyl) + 2VE(W, + VEEL) = 0,
(2.15)

iVIBV . + 2VE(EL + VEPL) + 285y + VI EL) = 0.
(2.16)

Equations (2.15) and (2.16) allow one to express the eight
fermions /,, &, in terms of the covariant derivatives of the
four bosonic superfields V,,,, and therefore such equations
properly constrain the V,,’s. These constraints may be
written in two equivalent form

(D@ —VEVBVY) =0, (Vie —vieD")VP =0,
2.17)
or
Diex?) — XPavVi X =0,
(2.18)

Vitax® — xblapixp o,
where, as usual, the round brackets denote the symmetri-
zation of the enclosed indices, and we introduced

2
X

aa = 2_—V2Vaa' (219)

As it can be seen, such constraints are nonlinear, and
therefore the considered N = 8, d = 1 multiplet may be
referred to as the (4, 8, 4) nonlinear supermultiplet. Let us
observe that discarding of the nonlinear terms in (2.18)
yields the linear (4, 8, 4) supermultiplet [20].

Besides ensuring the covariance of the constraints
(2.18), the coset approach gives the easiest way to find
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the transformation properties of the coordinates and super-
fields under the supergroup OSp(4*|4).

The N = 8, d = 1 Poincaré supersymmetry is realized
in the standard way

ot = _i(niaem + niaﬁm)’
0Via = Mia

80iu = Niaw
(2.20)

and V,, is a scalar with respect to these transformations.
For what concerns the transformation properties of the
coordinates and superfields V¢ under the conformal su-
persymmetry generated by the left action of the element

gy = eMaS"+ S (2.21)

one should note that the coordinates of the superspace are
transformed in the same way as in [19]

8t = —it(n“0iy + 0" Vig) + (077 + 1)
X (00" + 0;59%),
8010 = 1m0 — k0,07 + 2im)600,, — inid;, 00
+ 2in9 ;00
= 1o — inh 00’ + 2inl 9P 9,

— 50,0 + 2inh089;,,

(2.22)
89,

while the superfield V,, transform as

Vo = 2i(8585 + VEVE)A g, + 2iA,,VE + 2iA,5VE,
(2.23)

where

Aaa = 01’(17751 + "91'01772! Aab = 9m’7§, + Hibnil’

Aaﬁ = ﬁianlﬁ + 19!',877[0(' (224)
The transformations with respect to other generators of the
supergroup OS p(4*|4) can be easily found from (2.20) and
(2.22) since all bosonic transformations appear in the anti-
commutators of the conformal and Poincaré supersymme-
tries. For the reader’s convenience we will present here the
explicit form of the transformations under the left action of
the SO(5)/S0O(4) element represented by

gy = eMal™ (2.25)
which read as follows:
00y = an, 97, 8Wiq = agab; (2.26)
V2
8V, = <1 — —>aw + agyVPPV 40,
2 (2.27)

5Xaa = dyg + ZaBbXbﬁXaa.

Thus, the quartet of the N = 8 bosonic superfields V;,
subjected to the nonlinear constraints (2.17) defines the
nonlinear (4, 8, 4) supermultiplet.
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III. REDUCTION FROM N = 8 VECTOR
SUPERMULTIPLET AND N = 4 SUPERFIELD
FORMULATION

Our construction of the nonlinear (4, 8, 4) supermultiplet
is very similar to the consideration of the (5, 8, 3) super-
multiplet in [19]. The only, though crucial difference, is the
absence of the dilaton among the components of our super-
fields V;,. One may wonder whether it is possible to
reconstruct the nonlinear (4, 8, 4) supermultiplet by a direct
reduction from the (5, 8, 3) one, as in the case of N = 4
supermultiplets [23]. Next we demonstrate that such re-
duction indeed exists. Moreover, there are two different
reductions from N = 8, d = 1 vector multiplet (5, 8, 3) to
the supermultiplets (4, 8, 4)—one reproducing the linear
supermultiplets, while second giving rise to the nonlinear
one.

A. Two reductions from /N = 8 vector supermultiplet

In order to properly analyze such reductions, it is con-
venient to recall some basic facts on the N = 8 vector
multiplet (see [19] for further elucidation). The N = 8
multiplet (5, 8, 3), already considered in [24], has been
obtained in [19] from a nonlinear realization of the same
N =8, d =1 superconformal group OSp(4*|4) in the

OSp(4*]4)

coset superspace W

parameterized as
g = P 0@+ Q" ghiuS "+ £iuS™ pizK piuD ive, U (3 1)

Beside the 4-dimensional bosonic coset SO(5)/S0(4), the
physical bosonic field content of the vector multiplet in-
cludes the dilaton superfield associated with the generator
D. In this case, the invariant constraints read

wp =0, o = 0. (3.2)
Thus we see that, besides the same constraints on the
Cartan forms SO(5)/SO(4), there is an additional one
which nullifies the dilaton form wj,. The constraints (3.2)
allow one to express the Goldstone spinor superfields and
the boost superfield z in terms of the spinor and
t-derivatives of the remaining bosonic Goldstone super-
fields u, v,,. Moreover, they also imply the following
irreducibility constraints:
DV, + 8:ViU =0 ViBY,, +85DiU =0,

(3.3)
where

2V 0s
2+ Vv

with V,, defined in (2.14).

Let us now consider the reductions of the (5, 8, 3) vector
multiplet.

The first reduction procedure is rather trivial. We can
start by replacing Di, U and ViU in (3.2) by arbitrary

Vou=e" U= e“<2 — Vz), (3.4)

2+ V2
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fermionic superfields ¥¢ and E!; Egs. (3.2) will then
define such superfields in terms of covariant spinor deriva-
tives of the Goldstone bosonic superfields V,,, by con-
straining them as follows:
D@V =0, ViV =y (3.5)
Such constraining conditions are nothing but the ones
defining the N = 8 linear (4, 8,4) supermultiplet [20].
From the previously performed replacement, it is clear
that this reduction procedure corresponds to ‘“‘removing”
the first bosonic component of the superfield U from the
set of physical bosons and replacing it by an auxiliary field.
The second reduction corresponds to the “‘removal” of
the real dilaton superfield u. It is clear from (3.4) that, in
order to do this, one has to define the new superfields X,
as follows:

Vaa
U
The rewriting of the constraints (3.2) in terms of X, gives
rise to nothing else than the constraints (2.18).
Summarizing, starting from the multiplet (5, 8, 3), the
dimensional reduction along the first bosonic component
of the superfield ‘U yields the linear (4, 8, 4) supermultiplet
[20], whereas the removal of the dilaton u yields the
previously introduced nonlinear (4,8, 4) multiplet. The
existence of such a reduction is very useful for the con-
struction of the superfield action (see Sec. IV). Here we
will use this reduction, in order to provide a N =4
description of our nonlinear supermultiplet.

Xoa = (3.6)

B. N = 4 superfield formulations

The use of the N = 8 superfield formalism is rather
convenient when considering the transformation proper-
ties, the invariance of the basic constraints, etc. At the same
time the JN° = 4 superspace description is preferable for
constructing the action. In order to find the N = 4 super-
fields content of our nonlinear supermultiplet we will use
its previously established connection with the linear
(5, 8, 3) supermultiplet.

In order to formulate the nonlinear (4, 8, 4) supermulti-
plet in terms of N = 4 superfields, it is convenient to
recall the N = 4 splitting of the N' = 8 vector multiplet
[20]. For our purposes, we just need to define all super-
fields in the N =4, d = 1 superspace R('® which is
parameterized by the coordinates {z, 8;,}. The constraints
(3.2) imply that the spinor derivatives of all involved super-
fields with respect to 1, are expressed in terms of the
spinor derivatives with respect to 6;,. Consequently, the
essential N =4 superfield components in the
U-expansion of the physical Goldstone bosonic superfields
V 4 and ‘U of the vector multiplet are only the first ones

ﬁ/aa = Vaalﬂ:(]’ ﬂ = ulﬂZO' (37)
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These five bosonic N = 4 superfields, expressing the
whole off-shell component content of the (5, 8, 3) vector
multiplet, are subjected by (3.2) to the following irreduci-
bility constraints in R1'¥ [20]:

DV =,

Thus, by adopting such a N = 4 superspace perspective,
the N = 8 vector supermultiplet may be considered as the

sum of the N =4, d =1 hypermultiplet V,, (with
(4,4,0) off-shell component content) and the N =4
“old” tensor multiplet U (with (1, 4, 3) content).

Beside the explicit N = 4 Poincaré supersymmetry
directly yielded by the considered N = 4 superfield for-
malism, one should also take into account the additional,
implicit N = 4 supersymmetry (completing the explicit
one to N = 8). It is easy to check that the transformation
properties of the above defined N = 4 superfields read

D@p? U =o. (3.8)

5*Vaa = T]iaDél,iL 6*"(1 = %UiaDsz' (39)

After recalling such facts about the (5, 8, 3) vector mul-
tiplet and considering the definition (3.6), it is now rather
easy to get the formulations of the new nonlinear (4, 8, 4)
supermultiplet in terms of N = 4 superfields. Indeed, one
just needs to introduce the new N = 4 superfields

L= V“ Wia = b Aru. (3.10)
Uu Uu

By rewriting the basic /N = 4 constraints (3.8) in terms of
such N = 4 superfields, one obtains

Dila fha 4 pal@ybi — 3.11)

DWWl Wit) = g,

It is then immediate to recognize that the constraints (3.11)
describe a nonlinear version of the (4, 4, 0) multiplet, while
the constraints (3.12) define a nonlinear version of the
(0,4, 4) supermultiplet. The transformations of L,, and
‘Wi under the implicit /N = 4 supersymmetry may be
easily found by recalling their definition (3.10) and using
Eq. (3.9)

(3.12)

o Laa = T]iawﬁl - Enjﬁ'ﬁaa(DjCEE + LEWJC)’
Ay 1 . . . .
8>.<'Wta — _EnjaDm(D]b-ﬁg + £g'ij)' (3 13)
Thus we see that our nonlinear (4, 8, 4) supermultiplet is
constructed from two N = 4 nonlinear supermultiplets,
both of which were never considered before. It also be-
comes clear what is the role of the dilaton in the “lineari-
zation” of our supermultiplet. Indeed, representing the
fermionic superfield W as in (3.10) one may easily
“linearize’’ both constraints (3.11) and (3.12), while keep-
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ing the fermionic superfield W* independent there is no
way to have a linear supermultiplet.

IV. ANALYSIS OF THE BOSONIC SECTOR OF THE
ACTION

As usual, for constructing the most general superfield
action for nonlinear (4, 8, 4) supermultiplet one should start
from the general Ansatz for the N =4 superfield
Lagrangian and impose its invariance with respect to im-
plicit N = 4 supersymmetry (3.13). This is not so easy
because among N = 4 superfields spanning the (4, 8, 4)
supermultiplet there are bosonic £, and fermionic "W
superfields.

The starting point for the dimensional reduction proce-
dures outlined in Subsect. III A is the most general sigma-
model type action for the (5, 8, 3) supermultiplet written in
the terms of the /N = 4 superfields defined in (3.7) [19]

S = K/drd4eﬁ(vaa, U, (4.1)
with the additional constraint that the Lagrangian L be a
harmonic function
2 2
aV“©aV,, ol
Performing the #-integration in (4.1) and disregarding all
fermionic terms, one obtains the bosonic action

4.2)

| R,
o= 6k [ dig(v,, 0] i+ 20005, ~ £ CIC |
4.3)
where
u= Uy,

Cii = DD Ulpey

Voo = Vaa|0=0’ (4 4)

and the metric g(v,,, u) of the 5-dim. physical bosonic
manifold is defined as
0> L
g(vaow M) = TXaa <. (45)
aV eIV, =0

and obeys the constraints

92 02
_°8 4228,
V40V, du

(4.6)

One may wonder whether we can learn something from all
this for the cases of (4,8,4) supermultiplets, keeping in
mind the existence of the reductions from (5,8, 3) to
(4,8,4). Now we are going to demonstrate that starting
from (4.3) we are able to construct the most general sigma-
model actions for (4, 8, 4) supermultiplets together with a
particular potential term, in full analogy with N =4
supersymmetric cases [23]. For the sake of simplicity, we
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will consider only bosonic sectors. The fermionic terms

can be easily restored, if needed.

A. Reduction to the linear (4, 8, 4) supermultiplet

Such a reduction corresponds to constraining the metric
g(v,4, 1) to be independent on u
g(vaw Lt) = 81 (Uaa)- (47)

This functional restriction, when inserted in Eq. (4.2),

allows one to write the Lagrangian density £(V,,, U)
in (4.1) as

LV W= £,V + VU + ;0T 48)

with the additional constraints

a%f a%f>
Saa < |8 Zaa<, |, =0
aV oV, 16=0 AV oV, 16=0
1 82g1
0= —-81 —=0. 4.9
f3lo=o 18 FRCTEI. 4.9)

Thus, in order to perform the reduction to the linear (4, 8, 4)
supermultiplet, the metric g,(v,,) must obey the 4-
dimensional Laplace equation.

Next, we follow the same procedure exploited in the
N = 4 case in [23]. We replace i by a new auxiliary field
B in the action (4.3) and add the simplest Fayet-Iliopoulos
(FI) term (linear in B)

1 .
Sl = —6detg1(vaa)[82 + 21)““1.][“1 - 8C”Clji|

— 6deth.

Eliminating the auxiliary fields in (4.10) by their equations
of motion, one obtains the following action for physical
bosonic components:

2
S, = —12det[gli1“”‘vm - m—}
8g1

The action (4.11) corresponds to the general action for the
(4,8,4) linear supermultiplet [25] with the specific potential
term.

(4.10)

4.11)

B. Reduction to the nonlinear (4, 8, 4) supermultiplet

In order to perform the reduction to the nonlinear super-
multiplet, it is convenient to introduce the new variables
paa u Ci J

— Al —
’ y=_) Cj=_'
u u u

jaa =

(4.12)

By substituting such definitions in the action (4.3), one gets
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S, = —6k f dtg(v,q, u)uz[(l + 212)y? + 20°¢],,

+ 4y19ej,, — - CIC;; } (4.13)

OOI'—*

It is easy to conclude that the action (4.13) will correspond
to the nonlinear (4, 8, 4) supermultiplet iff

g(vaw u)u2 = gZ(Zaa)-

Equation (4.2) implies the metric g,(I) to satisfy the fol-
lowing differential equation:

(4.14)

2 82
gy () + 2191°F —— g, (I) + 121%¢
al“"‘alaa g2() al““&lbﬁ g2()

d
[
7@ g2(0)

+12g,() = 0. (4.15)

When the condition (4.14) is fulfilled, one can introduce
the simplest Fayet-Iliopoulos term (linear in y)

- 6detmy

and eliminate the auxiliary field y by its equation of
motion, obtaining the following bosonic action:

aa i (1 l4q)’
S, =—12 dt 1990, — 2—7F>
2 K/ {g2|: aa 1+ 212 :|

(4.16)

m? 1
- __ 4.17
8 g (1+ 212)} (17
Moreover, by defining the new fields
2
a = —\/_ e, (4.18)
1++1+2°

one can rewrite the action (4.17) in the following nice
form:

_ ) om? (1-2%)
Sf'z“fmh WZZ“'E&a+ﬂJ
4.19)

It is interesting to notice that, by performing the change of
variable (4.18), the differential Eq. (4.15) can be rewritten
in the remarkably simple form

02 1+ 22
4.20
azaaazaa |:(1 2)2 gZ(Z)i| ( )
which is nothing but the 4-dim. Laplace equation
2
m =0 4.21)
azaa aZaa

for the redefined metric function
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1+ 72

G(z) = W&(Z) 4.22)

By inserting the redefinition (4.22) in the action (4.19), one
finally gets

_ G B 1
S, = 24det[ T ZZZ *Zaa 16 Q( T Zz)}
(4.23)

Thus, we see that the net effect of using the nonlinear
(4, 8,4) supermultiplet is the deformation of the metric
and potential term in the bosonic sector (together with
the deformation of the fermionic terms).

Finally, it is interesting to note that the particular solu-
tion of (4.21)

(4.24)

gives rise to the action

m2 ZZ
— 2« [d ST @25
R KB e B

The metric Ziz is the solution of the four-dimensional

Laplace equation and therefore the sigma-model part of
the action (4.25) coincides with the action (4.11) for the
linear (4,8, 4) supermultiplet with g, = %. Nevertheless,

the potential term in (4.25) is completely different.

V. CONCLUSIONS

In this paper we constructed a new nonlinear off-shell
N = 8 supermultiplet with (4, 8, 4) components content.
We showed that this multiplet can be described ina N =
8 superfield form as properly constrained Goldstone super-
fields associated with suitable cosets of the non-
linearly realized N =8, d = 1 superconformal group
OSp(4*|4). The N = 8 superfield irreducibility condi-
tions were derived as a subset of covariant constraints on
the Cartan super one-forms. The superconformal transfor-
mation properties of these N =38, d =1 Goldstone
superfields were explicitly given, alongside with the trans-
formation of the coordinates of N" = 8, d = 1 superspace.
Although the whole superconformal group OSp(4*|4) has
a perfect realization on the nonlinear (4, 8, 4) supermulti-
plet the most general action is invariant only under N = 8
Poincaré supersymmetry.

Apart from the N = 8 superfield description, we pre-
sented also N = 4 superfield formulations of this multi-
plet. We also established the relations of this new nonlinear
supermultiplet with the linear (5,8, 3) one. More con-
cretely, there exist reductions from (5,8,3) to (4,8,4)
linear and nonlinear supermultiplets. Moreover, these re-
ductions being applied to the action give rise to the most
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general sigma-model type action for (4, 8, 4) supermultip-
lets with some sort of potential terms.

The present considerations provide another proof of the
statement that the N° = 4, 8 supermultiplets which do not
contain the dilaton among their components fields are all
nonlinear. In this respect, it seems interesting to analyze
the nonlinear supermultiplets related with the other N =
8, d =1 superconformal groups OSp(8|2), F(4) and
SU(1,114) [16,17]. The corresponding R-symmetries
groups are SO(8), SO(7) and SO(6). Therefore one might
expect to, respectively, obtain (7, 8, 1), (6, 8,2) and (5, 8, 3)
nonlinear supermultiplets.

In this paper, when constructing the superfield actions,
we preferred to deal with N = 4, d = 1 superfields. Thus,
only half of the supersymmetries were manifest. Of course,
it would be nice to have a description with all N = 8
supersymmetries manifest. This can be achieved only in
harmonic superspace [26].
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