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We consider the problem of a scalar field, nonminimally coupled to gravity through a —&¢?R term, in
the presence of a brane. Exact solutions, for a wide range of values of the coupling parameter £, for both
¢-dependent and ¢-independent brane tension, are derived and their behavior is studied. In the case of a
Randall-Sundrum geometry, a class of the resulting scalar field solutions exhibits a folded-kink profile. We
go beyond the Randall-Sundrum geometry studying general warp factor solutions in the presence of a kink
scalar. Analytic and numerical results are provided for the case of a brane or for smooth geometries, where
the scalar field acts as a thick brane. It is shown that finite geometries with warp factors that asymptoti-
cally decrease exponentially are realizable for a wide range of parameter values. We also study graviton
localization in our setup and find that the localizing potential for gravitons with the characteristic
volcanolike profile develops a local maximum located at the origin for high values of the coupling &.
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I. INTRODUCTION

The idea of realizing our Universe as a defect in a higher
dimensional spacetime, although not new [1], has received
a lot of attention in recent years in the framework of string
theory where D-branes [2], i.e. membranes on which the
fundamental string fields satisfy Dirichlet boundary con-
ditions, play a significant role. In the framework of
string/M-theory [3] or the AdS/CFT correspondence [4],
brane models [5—8] have revealed new possibilities for the
resolution of the hierarchy problem of particle physics as
well as for the relation of gravity to the rest of fundamental
interactions. In D-brane models, standard model fields are
trapped on the brane, while gravitons propagate in the full
higher dimensional space (bulk). In an interesting case of a
brane model with an infinite extra dimension, gravitons are
localized on the brane due to the curvature of the extra
dimension [9]. A solution to Einstein’s equations of motion
with a flat metric on the brane and AdSs geometry in the
bulk exists, provided the positive brane tension is finely
tuned versus a negative bulk cosmological constant.

Although the standard model fields are assumed to be
localized on the brane, gravity is not necessarily the only
field propagating in the bulk. A number of brane models
with bulk scalar fields have been constructed [10,11],
either from a theoretical or phenomenological viewpoint
[12]. Actually, the brane itself could be a defect substan-
tiated by a bulk scalar field configuration (a kink) [13]. The
presence of a bulk scalar field opens the possibility of a
direct coupling of this field to the curvature scalar. A
specific form of this coupling corresponds to the gravita-
tional term appearing in the so-called tensor-scalar theory
of gravity [14]. A bulk scalar field nonminimally coupled
through a coupling of the form ¢2R has also been consid-
ered in the Randall-Sundrum framework and numerical
solutions have been discussed [15].

In the present article we consider a 3-brane embedded in
5D space endowed with a bulk scalar field ¢, nonmini-
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mally coupled to gravity through a —&@>R term. We
investigate analytically the existence of solutions to the
coupled system of equations of motion for the metric and
the scalar field in the framework of a metric ansatz
diag(e"("i)nw, 1). In the case of the Randall-Sundrum
form of the metric, we derive analytically a complete set
of exact solutions for a range of values of the nonminimal
coupling strength &, corresponding to specific choices of
the scalar potential. Scalar fields, with or without non-
minimal coupling, are often introduced against a given
Randall-Sundrum background under the assumption that
their effect on the background geometry will not be im-
portant. We do find exact nonsingular scalar field solutions
compatible with an exact Randall-Sundrum background,
taking into account the full backreaction of the field.

We show the existence of a class of solutions for a
general warp function with an asymptotic Randall-
Sundrum AdSs behavior. In all these considerations, we
allow for a field-dependent brane tension. Furthermore, we
discuss the existence of smooth AdSs solutions for which
the role of the brane is played by a kink configuration of the
bulk scalar field itself. Both numerical and an approximate
analytic treatment of the problem are provided. In particu-
lar, we calculate the warp factors for smooth geometries in
the presence of the kink for different boundary values at the
origin and obtain various solutions. Although we concen-
trate on Z, symmetric solutions, smooth asymmetric so-
lutions are also possible. Through an analytical investi-
gation we verify that, for a wide range of values of the
parameters, we can get warp factors that decrease expo-
nentially and thus provide us with finite geometries. We
also find analytical solutions for certain special values of
the parameters and different ranges of £. In the final section
of this paper, we study graviton localization in our setup
and check the form of the localizing potential for gravitons
with the characteristic volcanolike profile. We find that for
¢& higher than some specific value the potential develops a
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local maximum at the origin, which gradually increases as
we move towards higher values of the coupling parameter.

II. THE FRAMEWORK

Consider a general 5D theory of a real scalar field
coupled to gravity. Allowing only for terms linear in the
Ricci scalar, we may write the general action as

S = f dsxm{ﬂcﬁm - S (92 = V(g) - Lm},
(n

where f(¢) is, for the moment, a general smooth positive-
definite function of the scalar field ¢p. Gy is the five-
dimensional metric, not to be confused with the Einstein
tensor. In the case of a constant f, we have the Einstein
action. The last term corresponds to ¢-independent
matter. Note that, the above action can always be trans-
formed through a conformal transformation Gy —
G ynf($)/2M? into an action where the Ricci scalar enters
in the Einstein fashion as (2M3)R. Nevertheless, a
¢-dependence will arise in the matter term giving a theory
different than the one we would get in the absence of f(¢).
The equations of motion resulting from (1) are

F(@)Ryun — 3GunR) — ViV f(d) + Gy V2 f()

_ ( m
= 17300 + Ty, )

VLR 3)

Vie ¢ " dé

with
T = V¢ Vnd — GGV + V() @)

the energy-momentum tensor of the scalar field ¢ and T(M"}),
the energy-momentum tensor of (other) matter.

At this point we shall restrict the metric Gy introduc-
ing the warped ansatz

Ay 0
= uv
Gun ( 0 1) %)

where xM = (x#,x°) = (x#,y) and 7n,, is the 4D
Minkowski metric with signature (—1, 1, 1, 1). We can al-
ways choose A(0) = 0.

The presence of a brane introduces an extra term,

- ] B/ —Go(d)s(y) = — ] dxo(d),  (6)

where the brane tension o(¢) is, in general, ¢p-dependent.
Introducing this term in the action modifies Ty in
Einstein’s equations as

8Tyn = =G, 0y 030($)8(y) = —n,,8),050($)5(y).
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In what follows we shall ignore the presence of (extra)
matter beyond the bulk scalar field. Substituting this metric
ansatz into the equations of motion and assuming that the
scalar field is just a function of the fifth coordinate, i.e.

¢ = ¢(y), we obtain
3P +2A [ = {d) -1V, (7

SFA+3FAP +3fA+f=—Ld)? -1V —Lo(h)8(y).

(®)
. . dvodf . o do _
é +24 ¢ EJF%( 44 — 5(A)?) d¢8(y) 0.

)

The dot signifies differentiation with respect to the fifth
coordinate y.

The junction relations at the point y = 0 where the brane
is located are

_fo' —taf

Ad(0) = $(+0) — $(—0) = W (10)

. . . lo+2fq
AA(0) = A(+0) — A(—0) = —<¥> (11)
FHI0Y
The prime signifies differentiation with respect to ¢». By o
and ¢’ we indicate the values at ¢(0).

Among the above three equations of motion in the bulk,
only two are independent. They can be written as

V(p) = —3fA2 —3fA—IAf~F, (12)

Lg2 — S3fA + LA f - (13)

Let us now restrict the coupling function f(¢) to be a
function quadratic' in ¢. Introducing a dimensionless
parameter ¢ and normalizing it appropriately, we may
write

f¢) =2 - g2 (14)

The scale M is related to the 5D Newton’s constant G as
2M3 = (167rG)~!. With this choice, we have

f=—¢(dd,  [=-Ed-E0d

and the equations of motion in the bulk become

"Even for a general coupling function, we may consider an
expansion in even powers of the field f(®) =~ f(0) +
3/(0)¢? + - - - and retain the lowest nontrivial term. Such an
expansion would be valid for small field values [¢ <K

(12£0)/f O],
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V(g) = — %<2M3 - §¢2>(2A2 +A) + 77§A b b
+Epg + E47 (15)
1, _ 3 ¢ . € . .
B =500 =S8 )i - SAd e+ Eda + ed
(16)
The junction relations take the form
con @M = £4%0)a’ + 4 o p(0)
MO = - ti-spe0) )
. Lo — 2400’
M) = (37— 3¢ . a8
e e v S

Again, o and o are the corresponding values at ¢ = ¢(0).
Note the simplification of the denominator at the D = 5
conformal value* ¢, = 3/16.

ITI. RANDALL-SUNDRUM METRIC

In this section we shall make the definite choice of the
warp function A(y) to be the standard Randall-Sundrum
warp function A(y) = —«k|y| and impose Z, symmetry on
the scalar field [d(—y) = ¢(y), d(+0) = —H(—0)].
Substituting, we obtain the equation for ¢(y) in the y >0
bulk

L= loorebsred a9
The values on the brane will have to obey (1 — 2£)$2(0) =
£¢(0)(kh(0) + 2¢(0)). Thus, the boundary value ¢(0) =

0 is possible only with & = 1/2. We proceed distinguish-
ing the two cases [¢(0) = 0 and ¢(0) # 0].

A. Special case with ¢(0) = 0

In this case, possible only for £ = 1/2, we have the
solution

2¢(+0
b = 2200 (1 _ sty (20)
K
The junction relations give
o = 12kM>, o' = 2¢(+0). 21

Note that this solution is possible only with field-dependent
brane tension. Note also that the first is the standard
Randall-Sundrum relation. This special solution has the
shape of a folded kink as plotted in Fig. 1. Beyond a small
region near the brane it reaches a constant value ¢(+o00) =
2k (+0) (Fig. 1).

(D-2)

100" See

>The conformal value in D dimensions is fﬂ,D) =
Ref. [16].
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The required positivity of the coupling function

3

F(#) =201 =S ()

=2M? — 2(h(0)/k)2(1 — e *DI/2)2 >0 (22)
imposes the boundary value constraint
((0))? < kM = (o) < ko (23)

The scalar potential corresponding to this solution can be
obtained to be

V(¢) = —2ko — 40 + Ik + o) (24)

In the expression above, we have made use of the junction
relations. If we were to start with a general quadratic
potential V(¢) = A + C;¢ + C,¢2, the solution (20)
and A(y) = —«|y| is possible for A = —2ko + 0*/8,
C, = kd'/2, and C, = k*/4.

B. General case

In the general case ¢(0) # 0, the equation of motion can
be written as

1 ¢ &
5(1 _25)5_ KE

and leads to the solution

$() = GO + a4 — £7)(1 — e~ b2 RO/,
(26)

P
—£-=0 25
§¢ (25)

where
_ ¢(+0)
kp(0)

The junction relations take the form
@M° — 5 ¢*(0) 0’ + F o (0)
2M° =51 = £ 6$*(0)

Lo =% (0)0’ (28)
M = 5(1 = 2 £)$(0)
These two constraints can be rewritten as

o' = 2k(0)(a — 48),

oY 27)

2kad(0) =

’

2K =

o= 6K<2M3 - g ¢2(0)> + 4ékad?(0). 29)

In order to study whether the positivity of the coupling

function and the requirement of a positive tension brane

(o > 0) can be simultaneously satisfied, we consider the

four possible sign choices of the nonminimal coupling

strength parameter ¢ and the boundary values parameter .
They are satisfied”

3We choose ¢(0) > 0.
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FIG. 1.

(1) If € >0, a >0, always.
2) If £ <0, a <0, always.
3) If £ <0, @ >0, only if

3 3IM3
0<a<2* e (30)
4) If £>0, a <0, only if
3 3M3
1 g0 3D

1. Field-independent brane tension (o' = 0)

To simplify our analysis we may consider separately the
case of field-independent brane tension (¢ = 0). In this
case the junction relations simplify to

(o

6K =
TR L1 -5 H¢20)]

(32)

and
a = 4¢. (33)

Notice that the positivity of the brane tension is always

satisfied, since 2M> — £¢2(0)/2 + 8£2¢*(0)/3 is positive

if the coupling function is positive 2M> — £¢2/2 > 0).
The relation @ = 4¢ simplifies the solution (26) to

6() = GOL1 +4(4£ — 1)(1 — e7*DI2)]COMGED,
(34)
For £ > £, = 3/16, the quantity in brackets 16(& — £,.) —
16(¢£ — &, — 1/4)e<D1/2 is positive.
Note that for the special value & = 1/2, if ¢(y) is the

solution, o is ¢(y) + const. Also, in the special case & =
1/4, the solution takes the form

$(y) = p(0)e2 =), (35)
This is shown in Fig. 1.
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Solutions for a field-independent brane tension and different values of £.

The requirement of the positivity of the coupling func-
tion, in the allowed range &, << ¢, corresponds to the
inequality 2M> =5 2(0)[1 + 4(4¢ — 1)]49/4=D_ For
the special value & = 1/4, this corresponds to 2M3 =
£ 4%(0).

For the conformal value £, = 3/16, the solution reduces
to an increasing exponential

b.(y) = $(0)e/Dl, (36)

For values of the coupling parameter in the range 0 <
& < &, the quantity in brackets vanishes at y, = i% X
In[1 + (£, — £)7'], while the exponent is negative, i.e.
2§ _

Py T e < 0. Thus, in this range the solution is

singular.
For ¢ negative, the solution

$(y) = BONA( + Alg)eDI/2 = (3 + 16]¢]) KD/ lel b
(37

is characterized by an exponent between 0 and 1, while the
expression in brackets vanishes at yo = =2 In[1 + (3 +
16/£])~"']. Note that ¢(y,) = —o0. As we shall promptly
see, these solutions are not acceptable since the scalar
potential, possessing negative powers of the scalar field,
is singular.

The scalar potential corresponding to the solutions
found can be immediately obtained from Eq. (15). In order
to do that it is useful to obtain the derivatives of the
solution. They are

3 = 40355

X [(1 +4(4¢ — 1))(%)“45)/(25) - 1} (38)

and
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b0 = ~d0)(775)

-1 B (y)\(1-48)/2¢)
x[Hema v - o (53) +1]
(39)
Substituting the above into (15), we obtain
V(d) = —6:M° + ¢2<C1 N Q(ﬁ)(pm/@s)
¢ \(1-40)/¢
—= \ 40
) “0)
where
_ K2 & & \2
C1—7<3+74§_1+4<4§_1> ) @l
Cy = —4&K2(1 + 4(4é — 1))(4;_ 1),
— 2
€= 32822

All powers are positive in the range 0 < ¢ <j. In the
special case & = 1/4, the scalar potential includes loga-
rithmic terms. It is

V($) = —6k>M> + k[ = + 7In(¢/ ¢(0))
+5(In(¢/¢(0))°] (43)

For the special value & = 1/2, the scalar potential has the
quadratic form

V(¢) = —6k>M> + 36*(3p? — 8 (0) + 25¢%(0)).
(44)

For the limiting conformal value &, = 3/16, all of the
above coefficients vanish and we obtain a constant poten-
tial V = —6k>M?. For negative values the appearing
powers ¢'/% and ¢(1/972 are negative and, since the
solution ¢(y) vanishes at a finite point, the potential is
singular.

2. General case with field-dependent brane tension
(a’' #+0)

In order to investigate the behavior of the scalar field
solution (26), we first consider the case & > 0. In this case
we have a solution increasing near the origin, since ka =
é(+0)/$(0) > 0. The quantity in brackets is positive,
provided a(4 — &7')> —(1 — ¢ *bI/2)~1 The lower
limit of the right-hand side is —1, which corresponds to
the range ¢ > ﬁ. As examples, consider the cases & =
a =1 and £ = o = 1/8. The first one corresponds to a
positive exponent 2/3, while the second corresponds to the
exponent —1/2. They are both shown in Fig. 2.
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FIG. 2. Solution profiles for a field-dependent brane tension.

For values of ¢ below this bound, there is a point for
which the expression in brackets vanishes and, since the
exponent is negative, there is a singularity. This point is
yo = —21n[1 — &/a(l — 4£)]. For the special value & =
757 the singularity is pushed to infinity and we obtain a
purely exponential form for the solution, namely

() = $(0)exall. (45)

Before we move to consider negative values, let us
mention again the special value & = 1/4 which corre-
sponds to

B (y) = p(0)e2x1=e ), (46)

As we have remarked earlier, for £ > 0 and « > 0, the
positivity of the brane tension (o > 0) is always true.
However, the requirement of a positive coupling function
introduces a constraint on the parameters. It is sufficient to
have 2M3 > £ $2(0)[1 + a(4 — £71)]#/4-D, For the
special value & = 1/4, this constraint has the form 2M3 >
& ¢2(0).

For negative values & < 0 (and still @ > 0) the solution
takes the form

d() = GO)[1 + a(d + €711 — embl2)jeleb/tlen,
(47)

Note that although the scalar potential has negative
powers (¢~ '/2él and ¢ 27 1/I€l)  there is no singularity,
since the scalar field does not vanish anywhere. Note also
that for & < 0 and & > 0 the positivity of the brane tension
introduces a constraint a < % + Ifib%'

Let us move now to consider the case & < 0. Writing the
solution as

d() = dO)1 — |al@ — ffl)(l — e*KIyI/Z)](Zf)/Mf*I)’
(48)

we see that, for & > 1/4, the exponent is positive. For
| <% the quantity in brackets stays positive. However,
for |a| > 1 it is necessary to limit the range of £ to ¢ <

1

o
4_ﬁ' 4lal—1"

comes a decreasing exponential, namely

For the critical value & = the solution be-
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— ~No=-1/2, &=1/3
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FIG. 3. Field-dependent brane-tension solutions with negative
.

B (y) = p(0)e~lelbl, (49)

As examples of the solution in the above range, let us
consider « = —1/8, £ =1 and a = —1/2, £ =1/3,
shown in Fig. 3

For |a| > 1/4 and £ outside of the above range, i.e. & >

ﬁ, we obtain solutions that vanish at a finite distance
lal

from the brane, namely |yo| = —2 In[1 — &/la|(4¢ — 1)].
This, again, corresponds to a singular scalar potential due
to the negative power ¢'/¢~2 that appears in it.

For values below 1/4 but positive, the solution takes the
form

$() = GON1 + lal(¢7! = 4)(1 — e~ *bl/2)]lea/1=40)]
(50)

and gives a smooth decreasing profile, just as seen above.
Before we move to consider negative values of £, let us
consider the special case ¢ = 1/4. In this case, we have

$(y) = p(0)e el (51

shown for « = —1 in Fig. 4

The positivity of the brane tension, for ¢ > 0 and a <0,
as was found earlier, introduces the constraint

3. 3M°
s

4 £°(0)
On the other hand, the positivity of the coupling function,
since ¢(y) is a decreasing function, is covered by 2M?> >

(52)

-

£¢2(0).
For negative values ¢ < 0, the solution can be written as
d(y) = ¢(0)
=[1— |a|(|&]~" + 4)(1 — e~ «bI/2)]@ED/@lgl+D),
(53)

It is easy to see that, for || > 1/4, the scalar field vanishes
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o(y)
1 ¢

1 ) 2 1 Y
FIG. 4. Profile of the solution for the special value & = %.
at a finite distance from the brane, namely |y,| = —2 X

K

In[1 — |€]/]a|(4|£] + 1)]. This, again, amounts to a sin-
gular scalar potential due to the negative powers ¢~ /I¢l
and ¢~ (/161+2),

The scalar potential has exactly the same form as in the
o' = 0 case (a = 4¢), the only difference being a slight
change in the coefficients C, and C3 which become

C, = —4§K2(1 + §(4§ - 1))(45‘5_ 1),
3
C=ppa

(54)

IV. BEYOND RANDALL-SUNDRUM

Let us consider again our original set of the two inde-
pendent equations (12) and (13) for the specific choice of
coupling function f(¢) = 2M> — £¢>/2. If we do not
impose any restriction on the scalar potential function
V(¢), we can consider the first equation as an equation
that determines the scalar potential in terms of the func-
tions ¢(y) and A(y). Concentrating on the second equation,
we can view it as an equation for the warp factor, giving a
different A(y) for every different choice of ¢(y) configu-
ration. Motivated by the form of the solutions found in the
Randall-Sundrum case, we may start by introducing a
scalar field configuration in the form of a folded kink
with Z, symmetry*

@(y) = ¢, tanh(alyl), (55)

where ¢, = a~'¢(+0). For the positivity of the coupling
function it would be sufficient to require ¢*(0) <
AM3a/é.

Substituting (55) into the junction relations, we obtain,
since ¢(0) = 0,

*A(+0) = —A(=0), H(+0) = —$H(—0).
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o

AGO ==y

$(+0) = % (56)

Note that the positivity of the brane tension requires
A(+0) <0.

In the y > 0 bulk, we have ¢ = ady(1 — ¢p2/d2), b =
—2a’¢(1 — ¢?/p3). Substituting these into the equation
of motion, we can write it in the form
3 M3 — € 0 \y ¢ 2
380200 =587 X6+ 5 00X () + 206

4 a¢(2)<% - §><1 - %;) =0, (57)

where X = A(y) and A = X = ¢$X'(¢). This differential
equation can be integrated to give

2
x@=c1-4) "
&4 2 arf?
" ¢{C1<1 4M3) JF1(1/2,1/3,3/2, €% /4M°)
+ cz}, (58)

where C; and C, are given by

_ o4 %%
€= ¢0[§ BRIy )} 59)
¢
Cy=—| &7} 0.2
v= e e e
and the integration constant Cy = A(+0) = —o/12M>

should be negative in order to have a positive brane
tension.

The metric warp factor will be given by eAY) =
exp[ [ dyX(¢)]. Near the brane, i.e. for y — 0 or ¢ — 0,
we have

g
[P7ER

eA(,V) ~ exp|: — 0()72) i|, (60)

which is a pure Randall-Sundrum behavior.

In the asymptotic region [y— 0= ¢~ ¢, =
a~'¢(0)], we have

AV = exp|: ago)” ljm ((l))}

- 1 de _
2| age | = g7 K@ * (6 = b0

X X!(po) + - - -)} ~ e Rg(y), (61)

with k = —X(¢,) and
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g(y) = 27[1/Qa)X(o) exp[ bo X’(¢0)

# 52 Xd0) + 200X o 4|6
a

Thus, in the asymptotic region we have a behavior expo-
nentially close to a Randall-Sundrum behavior, provided
the parameter k is positive. This parameter is
2\1/3
k= <1 - —§¢0>

2M3 ap) &M, (63)

where we have introduced a function f(¢, x) defined by

2
fl&x) = (6 —E - 1))
X (1 — x2/4)1/3 F (1/2,1/3,3/2, £x%/4)

+§1—6+ (25—1) (64)
The coupling function is positive if £¢3 < 4M>. The pos-
itivity of k can always be satisfied with a large enough
brane-tension parameter ¢. Nevertheless, we can be more
concrete by making a choice of ¢(+0). We can take ¢p2 =
M?. Then, the positivity of the coupling function restricts
the values of £ to & < 4. The function f(&, 1) is negative
for all allowed values of £. Thus, the warp factor will
always be decreasing. The plot of this function of ¢ is
shown in Fig. 5.

We can construct numerical solutions for the function
A(y) and study the profile of the warp factor 40 for
different values of the parameters of the model. In this
case, the brane tension determines the value of the deriva-
tive of A(y) at y = 0, so it fixes one of the two initial
conditions needed for the numerical evaluation. The de-
rivative of the brane tension with respect to the field, o”, is
proportional to a¢,. Thus, changing it corresponds to a
new value for ¢(0). Note that, although we have restricted

f&€.1)

—4 t

-5 -

FIG. 5. A graph of the function f(&, 1) plotted for all values of
&. The function maintains a negative value.
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PHYSICAL REVIEW D 74, 045003 (2006)

A

0.8
0.6
0.4

=1, AQ)=-1, a=3, =2
02 I3 ©) a=3, ¢,

02 0.4 0.6 0.8 1 12 Y

FIG. 6. The warp factor for different choices of A’(0), a, &, and ¢ in units of 2M>.

ourselves on Z,-symmetric solutions, asymmetric solu-
tions are also possible. The profile of characteristic solu-
tions is plotted in Fig. 6.

We see that, in general, the warp factor resembles the
Randall-Sundrum decreasing exponential. Yet, for a range
of values in the parameter space we get solutions which
deviate slightly from this form. As the brane tension be-
comes smaller and ¢ takes higher positive values, the warp
factor exhibits a peak close to the brane, before it starts
decreasing again. This peak is amplified as we approach
the value of ¢ for which the coupling function f(¢) tends
to zero.

V. SMOOTH SPACES

As we saw in the last example, the presence of the brane
was not essential to obtain a localized warp factor. In this
section we shall consider solutions A(y) when the brane is
the scalar field configuration itself. Such an example is
well known in the £ = 0 case. Introducing a standard kink
[¢ = ¢, tanh(ay)] into the & = O equation of motion, we
obtain in the Z, symmetric case [A(0) = 0]

eA0) = (cosh(ay)) 7 e~ (/4tanh’(ay)

with y = ¢3/9M°.

Smooth solutions of the bulk equations of motion are
also present for & # 0. It is not difficult to see that the
metric choice,

(65)

eAY) = (cosh(ay))~?, (66)

corresponds to the same scalar field solution ¢(y) =
¢ tanh(ay) with

y=2&"1-0),

6(1 — 6¢) 7

£ —2¢)

This solution exists for 0 < & < 1/6 and only for the above
specially chosen value of ¢, The curvature scalar of this

do = a”'$(0) = 2M) "

Note that this solution exists for the fine-tuned value of ¢ in
(67) and cannot be connected to the solution for & = 0 shown in
(65). In fact & — 0 corresponds to ¢(0) — .

space is R = 4a’>y(1 — (1 + 5v/4) ﬁ—i). The scalar poten-
0

tial corresponding to this solution is a quartic function of
the scalar field with tuned £-dependent coefficients. Note
that this solution is a particular case of (58). The above
choice of ¢, together with the choice C; = 0, corresponds
to

2a

C —_
SNITYVE

VE (1= 20)(1 - 69).
(68)

It is interesting that the same metric choice corresponds
also to the solution

¢(y) = #(0)(cosh(ay)) ™! (69)

with ¢2(0) = 12M3*(£7! — 6)/(3 — 16&) defined in the
same £-range.
Another interesting solution for the metric is defined by

the choice ¢, = 24/&~'M?, for which (58) gives
A = 2atanh(ay){-2 + 18 — &)

X cosh™23(ay),F,(1/2,1/3,3/2, tanh%(ay))}.  (70)

Integrating, we obtain
A(y) = —4In(cosh(ay)) + 18 — £71)
X tanhz(ay)FPFQ({l, 1,7/6},{3/2, 2}, tanh?(ay)).
(71)

The warp factor e” is plotted in Fig. 7 for & = 1/4 and for
£E=1/9.

For larger ¢ the behavior does not change drastically.
Note though that for values £ > 1/2 the warp factor devel-
ops a maximum beyond the origin. In Fig. 8 we plot the
cases £ = 1 and £ = oo.

As already seen, the equation of motion for a kinklike
scalar cannot be solved analytically for general boundary
conditions. It is however possible to obtain numerical
solutions. We expect to find a set of Z,-symmetric solu-
tions for eA®) that reduce to the known & = 0 solution
mentioned in [13]. As an example, we consider numerical
solutions of the warp factor equation, imposing the bound-
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ary values A(0) = 1, A’(0) = 0 and taking different values
for ¢(. The resulting warp factors for £ = —2 and £ = 0.8
are shown in Fig. 9. We have taken ¢»; = a = 1 in units of
2M?3. For this choice of boundary values and units, & = 2
corresponds to the limiting value for which the function
f(¢) becomes zero at the origin, so higher values of £ are
forbidden. Notice the peak beyond the origin in the second
plot.

FIG. 7. Warp factors for ¢(y) = ¢(0)(cosh(ay))™!, £ < 1/2.
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VI. GRAVITON LOCALIZATION

It would be interesting to check if gravity is localized in
the geometries we calculated and especially those that
deviate from the original Randall-Sundrum. Let us quickly
provide a general argument and then study some specific
examples. We consider a perturbation

3GMN = Sﬁlll/laxlh,uv(x) )’); Sd) =0, (72)

for the gauge hsy = 0. Imposing transversality (hf, =
d,h*” = 0), we obtain to first order

d? _ " .
<_ e A2 + A(y) + Az(y)>h,w =0, (73)
where 9> = 7 up 097, Notice that this result is indepen-
dent of the coupling function f(¢). If we introduce a trial
solution of the form of a product /1, * e’?*i(y), we get a
Schrodinger-like equation

2
(-5 A0) + 20 Jplo) = e Wity), (7
where we have introduced the mass m?> = — p?. In order to
study the spectrum of this equation, it is more convenient
to transform it into a conventional Schrodinger equation. In
order to eliminate the exponential, we may introduce the
transformation

d d -
i Ve B = A4y, 75
i = L0 e A )
The resulting equation is
d? - 7
(— i U(z))w = 2, (76)
dz

with the potential

3d’A 9 [dA\?
=-—+—(—]. 77
Ve =372 16<dz> 77
Note that this equation can be put into the form
d 3dA\/d 3dA)\- 57
-\ = . 78
( dz 4 dz)(dz 4 dz)l// my (78)

This is supersymmetric quantum mechanics and the trans-

A

-4 -2 2 4

FIG. 9. Smooth numerical solutions.
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formed graviton wave function (zero mode) corresponds to
the supersymmetric ground state. This form also excludes
the existence of tachyon modes. The zero mode is just
Yo(y) = NeA® and it is normalizable. We also have to
know if there is a gap between the zero mode and the
continuum of eigenstates. For this, we have to know the
behavior of the potential U(z). Although for most of the
cases above the change of variable z = [ dye40)/2 is not
analytically integrable, we may draw some conclusions
with the help of the asymptotic behavior (61). Since, for
y — 00, we may have

z= fdye‘A/2 ~ fdyeky/z(g(y))‘”2 (79)

or z « eX/2, As a result,

limU(z) = e* — 0. (80)
y—00

Therefore, the continuous spectrum starts from zero mass
and there is no gap.

Next, we may check the profile of the localization
potential U(z) for various values of &. For & = é we
have A(y) = —41In(cosh(ay)). In this case, the integration
can be done analytically and the transformed coordinate is
z = 2 sinh(2ay) + 3. For ¢ =0, the warp function be-
comes A(y) = —%(4 In(cosh(ay)) + tanh?(ay)). We can
only proceed numerically to perform the change of coor-
dinates and calculate the potential. The resulting profiles
are depicted in Fig. 10. The localizing potential has the
familiar volcanolike shape we also encounter in standard
Randall-Sundrum.

It turns out that the volcanolike profile of the potential is
not maintained for all values of £. For the boundary value
and unit choices made for the smooth numerical solutions
of Sec. V depicted in Fig. 9, we find that at the value ¢ =
(+/193 — 9)/16 =~ 0.306 the global minimum at the origin
y = 0 changes into a local maximum. Thus, as we move
towards higher £’s, a central spike is developed. For & =
1/2 the potential becomes zero on the brane, while as &
goes to infinity the potential at that point approaches unity.
The corresponding graphs are shown in Fig. 10.

Vi)
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VII. CONCLUSIONS

In the present article we investigated the existence of
solutions for a nonminimally coupled bulk scalar field in a
warped brane-world framework. For a scalar field coupling
to gravity of the form — 1 £¢?R, we derived a set of non-
singular solutions for a wide range of the coupling parame-
ter £. We demonstrated the compatibility of the usual
Randall-Sundrum warp factor with the presence of a non-
trivial scalar field for a suitably chosen scalar potential.
This was done for either a scalar field-dependent or inde-
pendent brane tension. The profile of the scalar field solu-
tion in the field-independent brane-tension case is that of a
folded kink [ tanh(a|y|)]. The scalar field acquires its mini-
mum value on the brane, approaching a constant value as
we move towards infinity in the y direction. The conformal
value of the coupling parameter £, separates the above-
mentioned solutions from singular solutions. Thus, for the
Randall-Sundrum warp factor, nonsingular scalar field so-
lutions exist only for £ > £, and they are, in general, of the
above folded-kink shape. For negative values of the cou-
pling parameter ¢ the scalar field solutions found corre-
spond to a scalar potential with negative powers of the
scalar field and, therefore, singular. A field-dependent
brane tension allows for a more diverse range of behavior
including scalar field solutions which exponentially de-
crease at infinity.

Guided by the scalar field set of solutions with a folded-
kink type of profile, we investigated the existence of gen-
eral warp factor solutions that are different from the exact
Randall-Sundrum case but still localized. Thus, assuming a
scalar field solution of the form tanh(aly|), we derived
corresponding warp factor solutions which we analyzed
semianalytically and numerically. Our analytical treatment
further showed that for a wide range of values in the
parameter space of the model we get finite geometries
which are well-behaved for large y, as long as the brane
tension we introduce is large enough. Furthermore, we
considered smooth warp factor solutions in which the
role of the brane is played by the scalar field itself. In
this setup we considered some special solutions and pro-
ceeded to study numerically general finite geometries. We
concentrated on Z,-symmetric solutions, although asym-
metric ones are also possible. We considered a class of

Uy

, N
\ It /
/ / \

FIG. 10. Localizing potentials for various values of ¢ and o = 0.
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solutions which asymptotically reduce to decreasing ex-
ponentials of the Randall-Sundrum type. These solutions
exist for a coupling parameter ¢ within a range of values.
For a subset of these localized solutions, the warp factor is
not a monotonous decreasing function but exhibits a sec-
ond maximum close to but beyond the origin and subse-
quently decreases. We have also derived analytically
special exact solutions existing for special choices of
boundary values and for a range of the coupling parameter.
For these solutions, the same warp factor corresponds to
either a kink scalar solution or the solution ¢ = ¢(0) X
(cosh(ay))~!.

Finally, we considered the localization of gravitons near
the brane. Although the Schrodinger-like equation for
gravitational perturbations is the same as in the minimal
case, the warp factor detailed profile depends on the cou-
pling parameter and the details of the localized spectrum
should depend on it. Of course, again the spectrum has no
mass gap and does not contain any tachyonic modes. The
form of the localizing (volcano) potential depends on the
detailed profile of the warp factor. It was studied numeri-

PHYSICAL REVIEW D 74, 045003 (2006)

cally in a number of cases but also analytically in special
cases. For a particular choice of boundary scalar field value
and the special coupling parameter value & = %, the local-
izing potential has the typical & =0 volcano profile.
Nevertheless, for values of & larger than a certain value,
the localizing potential develops a spike at the origin, that
increases along with £. For ¢ = % the spike reaches zero,
while it tends to one for very large values of £. This
behavior is currently being studied and will be the subject
of a future publication.

ACKNOWLEDGMENTS

This research was cofunded by the European Union in
the framework of the Program IIY®AT' OPAZ, — I1 of the
“Operational Program for Education and Initial
Vocational Training” (EIIEAEK) of the 3rd Community
Support Framework of the Hellenic Ministry of Education,
funded 25% from national sources and 75% from the
European Social Fund (ESF).

[11 V. A.Rubakov and M. E. Shaposhnikov, Phys. Lett. 125B,
136 (1983); 125B, 139 (1983); K. Akama, Lect. Notes
Phys. 176, 267 (1982).

[2] J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995).

[3] P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996).

[4] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Phys.
Lett. B 428, 105 (1998); E. Witten, Adv. Theor. Math.
Phys. 2, 253 ( 1998).

[5] I. Antoniadis, Phys. Lett. B 246, 377 (1990).

[6] I. Antoniadis, S. Dimopoulos, and G. R. Dvali, Nucl. Phys.
B516, 70 (1998).

[7] N. Arkani-Hamed, S. Dimopoulos, and G.R. Dvali, Phys.
Lett. B 429, 263 (1998); Phys. Rev. D 59, 086004 (1999);
Phys. Lett. B 436, 257 (1998).

[8] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[9] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690

(1999); M. Gogberashvili, Mod. Phys. Lett. A 14, 2025
(1999).

[10] O. De Wolfe, D.Z. Freedman, S. S. Gubser, and A. Karch,
Phys. Rev. D 62, 046008 (2000).

[11] G.R. Dvali and M. A. Shifman, Phys. Lett. B 396, 64
(1997); 407, 452(E) (1997).

[12] A. Kehagias and K. Tamvakis, Phys. Lett. B 628, 262
(2005); H. Davoudiasl, B. Lillie, and T. G. Rizzo, hep-ph/
0508279.

[13] A. Kehagias and K. Tamvakis, Phys. Lett. B 504, 38
(2001); Mod. Phys. Lett. A 17, 1767 (2002).

[14] See, for example, L. Mendes and A. Mazumdar, Phys.
Lett. B 501, 249 (2001); L. Perivolaropoulos, Phys. Rev. D
67, 123516 (2003).

[15] K. Farakos and P. Pasipoularides, Phys. Rev. D 73, 084012
(2006); Phys. Lett. B 621, 224 (2005).

[16] B.C. Xanthopoulos and T.E. Dialynas, J. Math. Phys.
(N.Y.) 33, 1463 (1992).

045003-11



