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We present improved worldline numerical algorithms for high-precision calculations of Casimir
interaction energies induced by scalar-field fluctuations with Dirichlet boundary conditions for various
Casimir geometries. Significant reduction of numerical cost is gained by exploiting the symmetries of the
worldline ensemble in combination with those of the configurations. This facilitates high-precision
calculations on standard PCs or small clusters. We illustrate our strategies using the experimentally
most relevant sphere-plate and cylinder-plate configuration. We compute Casimir curvature effects for a
wide parameter range, revealing the tight validity bounds of the commonly used proximity force
approximation (PFA). We conclude that data analysis of future experiments aiming at a precision of
0.1% must no longer be based on the PFA. Revisiting the parallel-plate configuration, we find a mapping
between the D-dimensional Casimir energy and properties of a random-chain polymer ensemble.
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I. INTRODUCTION

Recent years have witnessed remarkable qualitative and
quantitative progress in the understanding of the Casimir
effect [1] both experimentally and theoretically.
Measurements of the Casimir force have reached a preci-
sion level of 1% [2–7]. Further improvements are currently
aimed at with intense efforts, owing to the increasing
relevance of these quantum forces for nano and microscale
mechanical systems. Also from the perspective of funda-
mental physics, Casimir precision measurements play a
major role in the search for new submillimeter forces,
resulting in important constraints for new physics [8–12].

On this level of precision, corrections owing to surface
roughness, finite conductivity, thermal fluctuations, and
geometry dependencies have to be accounted for [13–
17]. These corrections may be classified in terms of mate-
rial corrections on the one hand; they are induced, for
instance, by surface roughness and finite conductivity
which may be viewed as a deviation from the ideal
Casimir configuration. On the other hand, corrections due
to geometry dependence are of direct quantum origin and
thus universal, i.e., independent of the microscopic details
of the interactions between the fluctuating field and the
constituents of the surfaces. Since material corrections are
difficult to control with high precision, force measure-
ments at larger surface separations up to the micron range
are intended.1 Though this implies stronger geometry de-
pendence, this universal effect is, in principle, under clean
theoretical control, since it follows directly from quantum
field theory [21].

Straightforward computations of geometry dependen-
cies have long been conceptually complicated, since the
relevant information is subtly encoded in the fluctuation
spectrum. Generically, analytic solutions are restricted to
highly symmetric geometries. This problem is particularly
prominent, since current and future precision measure-
ments predominantly rely on configurations involving
curved surfaces, such as a sphere above a plate. Curved
configurations help to circumvent the difficulty of main-
taining parallelism as it occurs in the parallel-plate con-
figuration; the latter has been mastered so far only in one
experiment [22] with a precision level of �15%. As a
general recipe for curved configurations, the proximity
force approximation (PFA) [23] has been the standard,
though uncontrolled, tool for estimating curvature effects
for nonplanar geometries in all experiments so far.

In recent years, various new techniques have been de-
veloped for computing Casimir effects in more involved
geometries [21,24–30], each with its own merits and limi-
tations. This includes improved approximation techniques
which can deal with curved geometries more reliably, such
as the semiclassical approximation [24] and the optical
approximation [27], as well as exact field-theoretic meth-
ods based on functional-integral techniques [25,29,30] or
scattering theory [21,28].

In this work, we use and further develop worldline
numerics [26,31], which facilitates Casimir computations
from field-theoretic first principles. Worldline numerics
builds on a combination of the string-inspired approach
to quantum field theory [32] with Monte Carlo methods. As
a main advantage, the worldline algorithm can be formu-
lated for arbitrary geometries, resulting in a numerical
estimate of the exact answer [26]. The inherent use of
Feynman path-integral techniques circumvents the prob-
lem of determining the Casimir fluctuation spectrum [33],
which is often encountered in other approaches. The re-
sulting algorithms are trivially scalable and computational

1Measurements at larger surface separations are also aimed at
in order to resolve a recent controversy about thermal correc-
tions, see [18,19] and references therein. Even though thermal
contributions are also universal in the ideal Casimir limit, they
can mix nontrivially with material corrections in a way that may
affect any real experiment [20].
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efforts increase only linearly with the parameters of the
numerics.

Here, we present worldline algorithms to examine the
Casimir effect in a sphere-plate and cylinder-plate geome-
try for a fluctuating scalar field, obeying Dirichlet bound-
ary conditions (‘‘Dirichlet scalar’’). We compute the
Casimir interaction energies that give rise to forces be-
tween the rigid surfaces. This allows for a quantitative
determination of validity bounds of approximation meth-
ods such as the PFA, some results of which have already
been presented in a recent paper [34]. We detail significant
improvements of the numerical algorithms which facilitate
high-precision calculations. Apart from numerical discre-
tization errors which are kept at or below the 0.1% level, no
quantum-field-theoretic approximation is needed. Our re-
sults further strengthen the agreement with recently ob-
tained analytic solutions for medium or larger curvature
[28,29] and for small curvature [30].

We emphasize that the Casimir energies for the Dirichlet
scalar should generally not be taken as an estimate for
those for the electromagnetic (EM) field, leaving espe-
cially the experimentally most used sphere-plate case as
a pressing open problem. Nevertheless, a comparison with
other techniques can meaningfully be performed, and the
validity constraints that we derive, e.g., for the PFA hold
independently of the type of boundary condition, since the
PFA approach makes no reference to the nature of the
fluctuating field. If an experiment is performed outside
the PFA validity ranges determined below, any comparison
of the data with theory using the PFA has no firm basis.

We also revisit Casimir’s classic parallel-plate configu-
ration, first because further algorithmic strategies can
easily be illustrated here; and second, we thereby obtain
a mapping between the D-dimensional Casimir effect and
characteristic properties of a random-chain polymer en-
semble (say, in 3 space dimensions), due to the use of path
integrals in the worldline method.

Our work is organized as follows: in Sec. II, we briefly
review elements of the worldline formulation for Casimir
configurations as well as the basic ideas of worldline
numerics. In Sec. III, the construction of our new worldline
algorithms is detailed for various Casimir configurations.
We present our conclusions in Sec. IV. We close this
introduction with a brief review of Casimir curvature ef-
fects and the PFA; the latter is not only a simple (though
potentially misleading) approximation, but also provides
for a useful normalization for our numerical results.

A. Casimir curvature effects and proximity force
approximation

An intriguing property of the Casimir effect has always
been its geometry dependence. As long as the typical
curvature radii Ri of the surfaces are large compared to
the surface separation a, the PFA is assumed to provide for
a good approximation. In this approach, the curved sur-

faces are viewed as a superposition of infinitesimal parallel
plates [16,23]. The Casimir interaction energy is obtained
by an integration of the parallel-plate energy applied to the
infinitesimal elements. Part of the curvature effect is in-
troduced by the choice of a suitable integration measure
which is generally ambiguous, as discussed, e.g., in [27].
For the case of a sphere with radius R at a (minimal)
distance a from a plate, the PFA result at next-to-leading
order reads

 EPFA�a; R� � E�0�PFA�a; R�
�
1� f

1
3
g
a
R
�O

��
a
R

�
2
��
; (1)

 E�0�PFA�a; R� � �cPP
�3

1440

R

a2 ; (2)

where the upper (lower) coefficient in braces holds for the
so-called plate-based (sphere-based) PFA. They represent
two limiting cases of the PFA and have often been assumed
to span the error bars for the true result. Furthermore,
cPP � 2 for an EM field or a complex scalar, and cPP � 1
for a real scalar field.

The first field-theoretic confirmation of the zeroth-order
result E�0�PFA�a; R� has been obtained within the semiclassi-
cal approximation in [24]. We will use this zeroth-order
interaction energy (and its analogue for the cylinder-plate
configuration) as a normalizer for our numerical estimates.
As an advantage, any deviation from this result can be
interpreted as a true quantum-induced Casimir curvature
effect. Future experiments are indeed expected to become
sensitive to the first-order curvature correction, which
therefore is of particular interest to us.

Conceptually, the PFA is in contradiction with
Heisenberg’s uncertainty principle, since the quantum fluc-
tuations are assumed to probe the surfaces only locally at
each infinitesimal element. However, fluctuations are not
localizable, but at least probe the surface in a whole
neighborhood. In this manner, the curvature information
enters the fluctuation spectrum. This quantum mechanism
is immediately visible in the worldline formulation of the
Casimir problem. Therein, the sum over fluctuations is
mapped onto a Feynman path integral, see below. Each
path (worldline) can be viewed as a random spacetime
trajectory of a quantum fluctuation. Owing to a generic
spatial extent of the worldlines, the path integral directly
samples the curvature properties of the surfaces [26].

II. CASIMIR EFFECT ON THE WORLDLINE

A. Worldline formulation for a Dirichlet scalar

Let us briefly recall from [26] how the Casimir effect for
a real scalar field � satisfying Dirichlet boundary condi-
tions can be described in the worldline formalism. For this,
the field is coupled to a background potential V�x� � 0
which models the Casimir configuration: qualitatively, the
amplitude of the � field fluctuations are suppressed at
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those regions of spacetime where the potential V�x� is
large. The field-theoretic Euclidean Lagrangian is

 L � 1
2@��@���

1
2m

2�2 � 1
2V�x��

2: (3)

Here, we have included a mass term for the scalar; the
massless limit, which is more analogous to the photon
field, can always safely be taken. In the absence of any
further fields and couplings, the complete unrenormalized
quantum effective action for V is

 ��V	 �
1

2
Tr ln
�@2 �m2 � V�x�

�@2 �m2 (4)

 � �
1

2

Z 1
1=�2

dT
T

Z
dDx

�
hxje�T��@

2�m2�V�x��jxi

�
1

�4�T�D=2
e�m

2T
�
: (5)

Here we work in D � d� 1 Euclidean spacetime dimen-
sions, i.e., d space dimensions. In Eq. (5), we have intro-
duced the propertime representation of the Tr ln with UV
cutoff � at the lower bound of the T integral.2 Interpreting
the matrix element as a quantum mechanical transition
amplitude in propertime T, we can introduce the
Feynman path integral, or worldline, representation,

 Z
dDxhxje�T��@

2�V�x��jxi �
Z
dDxCMN

Z
x�0��x�T�

Dx


 e�
R
T

0
d� _x2=4�

R
T

0
d�V�xCM�x����:

(6)

The Tr operation of Eq. (4), which has led to a transition
amplitude at coincident points in Eq. (5), induces a path
integral over closed worldlines, x�0� � x�T�. In Eq. (6), we
have shifted all worldline loops under the spacetime inte-
gral to have a common center of mass xCM, implyingR
T
0 d�x���� � 0. The normalization N is determined

from the limit of zero potential,

 hxjeT@
2
jxi �

1

�4�T�D=2
�N

Z
x�0��x�T�

Dx e�
R
T

0
d� _x2=4;

(7)

such that the path integral can be interpreted as an expec-
tation value with respect to an ensemble of worldlines with
Gaußian velocity distribution,

 N
Z
x�0��x�T�

Dx e�
R
T

0
d�V�x����e�

R
T

0
d� _x2=4

�
1

�4�T�D=2
he�

R
T

0
d�V�x����ix: (8)

Equation (5) finally reads
 

��V	 � �
1

2

1

�4��D=2

Z 1
1=�2

dT

T1�D=2
e�m

2T



Z
dDxCMhe

�
R
T

0
d�V�x���� � 1ix: (9)

In this work, we concentrate on Casimir forces between
disconnected rigid bodies which we represent by a time-
independent potential V�x� � V1�x� � V2�x� � � � � ; the
potentials Vi�x� for the single bodies have pairwise disjoint
supports, i.e., Vi�x�Vj�x� � 0 for all x and i � j. From the
effective action, we obtain the Casimir energy by scaling
out the trivial time integration,

 E �
�R
dx0;CM

: (10)

For the Casimir force, only the portion of the Casimir
energy which depends on the relative position of the ob-
jects is relevant. This portion can conveniently be extracted
from the total Casimir energy by subtracting the (self-
)energies of the single objects. This leads us to the
Casimir interaction energy,

 ECasimir :� EV1�V2����
� EV1

� EV2
� � � � ; (11)

which serves as the potential energy for the Casimir force;
i.e., Casimir forces (or torques, etc.) are obtained by the
(negative) derivative of ECasimir with respect to a distance
(or angle) parameter. By this procedure, also any UV
divergencies of Eq. (9) are automatically removed and
we can safely take the limit �! 1. Moreover, the inter-
action energy can thus be well defined even if the Casimir
(self-)energy of a single surface is ill-defined in the ideal
boundary-condition limit (‘‘perfect conductivity,’’ infi-
nitely thin surfaces, etc.) [36–38].

For the ideal limit of infinitely thin surfaces, the poten-
tial V�x� becomes a � function in space,

 V�x� � �
Z

�
d���d��x� x��: (12)

The geometry of the Casimir configuration is defined by �,
denoting a d� 1-dimensional surface. The surface mea-
sure d� is assumed to be reparametrization invariant, and
x� denotes a vector pointing onto the surface. For a typical
configuration, � consists of two disconnected objects (e.g.,
two disconnected plates), � � �1 [ �2, with �1 \ �2 �
;. The positive coupling � has mass dimension 1. In the
ideal limit �! 1, the potential imposes Dirichlet bound-
ary conditions on the quantum field.

2Other regularization techniques are possible as well, e.g.,
dimensional regularization, �dT=T� ! �2��dT=T1���; the prop-
ertime cutoff is used only for the sake of definiteness. For a
pedagogical review of various regularization techniques in the
Casimir context, see [35].
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For the potential Eq. (12), the � integral in the expecta-
tion value in Eq. (9) reads

 I��x���	 :�
Z T

0
d�V�x���� � �

X
f��: x����2�g

1

j _x?����j
;

(13)

where the sum goes over all intersection points of the
worldline x���� and the surface �. In the denominator,
_x?���� denotes the component of the � derivative perpen-
dicular to the surface.

Computing the Casimir interaction energy Eq. (11) for
two surfaces �1 and �2, the argument of the expectation
value in (9) becomes
 

�e�I�1[�2
�x���	 � 1� � �e�I�1

�x���	 � 1�

� �e�I�2
�x���	 � 1� 2 �0; 1	: (14)

Most importantly, Eq. (14) is nonzero only if the loop x���
intersects both surfaces. In the Dirichlet limit �! 1, this
expression then equals one. Thus, for a massless scalar
field with Dirichlet boundaries inD � 3� 1, the worldline
representation of the Casimir interaction energy boils
down to [26,33]

 ECasimir ��
1

2

1

�4��2
Z 1

0

dT

T3

Z
d3xCMh���x���	ix: (15)

Here, the worldline functional ���x���	 � 1 if the path
x��� intersects the surface � � �1 [ �2 in both parts �1

and �2, and ���x���	 � 0 otherwise, analogous to the
standard step function.

This compact formula has an intuitive interpretation: the
worldlines can be viewed as the spacetime trajectories of
the quantum fluctuations of the � field. Any worldline that
intersects the surfaces does not satisfy Dirichlet boundary
conditions. All worldlines that intersect both surfaces thus
should be removed from the ensemble of allowed fluctua-
tions, thereby contributing to the negative Casimir interac-
tion energy. The auxiliary integration parameter T, the so-
called propertime, effectively governs the extent of a
worldline in spacetime. Large T corresponds to IR fluctua-
tions with large worldlines, small T to UV fluctuations.
Those T values for which the spatial extent of the world-
lines is just big enough to intersect with both surfaces
generically dominate the Casimir interaction energy.
Within the worldline picture, it is already intuitively clear
that for generic surfaces at a (suitably defined3) distance a
the Casimir interaction energy for a Dirichlet scalar is

negative and a monotonously increasing function of a;
therefore, the resulting force is always attractive in agree-
ment with a recent theorem [39].

B. Worldline numerics

For the numerical evaluation of the expectation value
Eq. (8), two discretizations are required: first, the path
integral is approximated by a finite sum over an ensemble
of nL random paths x‘���, ‘ � 1; . . . ; nL, each of them
forming a closed loop in space(-time). Second, the proper-
time which parametrizes each path is discretized:

 x ‘���; �2�0;T	 ! x‘k :�x‘�k �T=N�; k�1; . . . ;N;

(16)

i.e., the paths themselves are represented by N points per
loop (ppl). Thus, the ensemble is described by a two-
dimensional array of space vectors (x‘k), with the indices
‘ and k specifying the loop and the point on the loop,
respectively.

We generate the random paths using the v-loop algo-
rithm [26]. This algorithm incorporates the Gaussian term

e��1=4�
R
T

0
d� _x2

as probability distribution, so that the path
integral in Eq. (8) becomes an arithmetic mean:

 

Z
x�T��x�0�;CM

Dx�. . .�e��1=4�
R
T

0
d� _x2

!
1

nL

XnL
‘�1

�. . .�: (17)

It is sufficient to generate only one so-called unit-loop
ensemble (y‘k), i.e., an ensemble of loops with center of
mass xCM � 0 and T � 1. An ensemble with other values
for xCM and T is then simply obtained by computing

 x ‘k � xCM �
����
T
p

y‘k (18)

for all ‘ and k. At the same time, this technique provides
for an analytic knowledge of the integrand’s T dependence,
which can be utilized for the T integration.

With this discretization, the Casimir interaction energy
Eq. (15) reads
 

ECasimir � �
1

2

1

�4��2
Z 1

0

dT

T3

Z
d3xCM

1

nL



XnL
‘�1

���xCM �
����
T
p

y‘	: (19)

The discretization error is controlled by the two parameters
nL and N. The number of loops per ensemble nL is related
to a statistical error of the arithmetic mean in Eq. (17),
which can be determined by jackknife analysis. The num-
ber of points per loop N is chosen sufficiently large to
achieve the desired precision by studying the convergence
of the result. In this work, we have used ensembles with up
to nL � 2:5
 105 and N � 4
 106.

The major advantages of worldline numerics are its
scalability and its independence of the background (ge-
ometry). The computational effort scales only linearly with

3A useful definition may be given by the following construc-
tion: let a > 0 be the maximally possible distance between two
auxiliary parallel plates that can be placed in between the
surfaces constituting the Casimir configuration without mutual
intersection. This excludes pathological cases such as surfaces
which are folded into each other. In this construction, it should
also be understood that a change of a should not be accompanied
by a rotation of one of the surfaces.
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the parameters nL, N, D, etc., and the algorithm can be
formulated for any given background geometry. A disad-
vantage is that the statistical error decreases only with
1=

������
nL
p

, as for any Monte Carlo method. This implies that
high-precision computations may require high statistics, in
contrast to estimates with, say, a few-percent error which
require very little computational effort.

For high-precision Casimir applications with an in-
tended error of & 0:1%, the CPU time needed for the
evaluation of Eq. (19) can be reduced substantially by
specializing the algorithm to the given Casimir geometry.
Although this corresponds to a loss of generality, we
believe that the strategies which we describe in the follow-
ing, e.g., for the sphere-plate configuration, are examples
for a general set of algorithmic tools which will be useful
also for other Casimir configurations.

III. WORLDLINE ALGORITHMS FOR CASIMIR
CONFIGURATIONS

The general structure of a worldline algorithm for com-
puting Casimir interaction energies is summarized by
Eq. (19). The only part of the algorithm that depends on
the geometry consists of a diagnostic routine which checks
whether a given loop (for given xCM and T intersects with
(more than one of) the surfaces �1;�2; . . . . The result of
this diagnostic routine immediately translates into the form
of either the T or xCM integrand, depending on the actual
order of integration. If the T integral is done first, the
resulting loop-averaged xCM integrand can be viewed as
the interaction energy density, the calculation of which is
already an instructive intermediate step.4 In principle, the
T and xCM integration as well as the average over all
worldlines can be done in arbitrary order, depending on
numerical convenience.

There is, however, an important technical difference
between taking the worldline average before or after the
integrations. The apparent advantage of doing the world-
line average first is that the resulting T and xCM integrands
are smooth, despite the fact that the worldlines are fractal;
this was exploited in many worldline numerical applica-
tions so far. In the present work, we nevertheless do the
loop average at a later step. As a consequence, the resulting
integrands can become complicated in the sense that the
support of the integrand is a piecewise disconnected set.
However, once the support is determined by special algo-
rithms, at least one integral can be done analytically, since
the integrand ��� � 1 and thus is extremely simple on
the support. This leads to significant numerical accelera-

tion, constituting the basic new ingredient of our improved
algorithms.

A. Sphere above plate

The geometry of the sphere-plate configuration is illus-
trated in Fig. 1. It is rotationally symmetric with respect to
the z axis, therefore the three-dimensional xCM integration
in Eq. (19) trivially reduces to a two-dimensional integra-
tion. We choose the following order of remaining integra-
tions/summations: first, we do the T integral for each
worldline; then, we take the average over all loops, and
finally integrate over the resulting energy density. For the
first step, the numerically most challenging task is to
determine the support S‘ of ���xCM �

����
T
p

y‘	 on the T
axis to perform the T integration in Eq. (19). In the given
geometry, ���xCM �

����
T
p

y‘	 equals 1 if there exists a pair
k, l, such that xCM �

����
T
p

y‘k lies inside the sphere and
xCM �

����
T
p

y‘l lies below the plate; otherwise it is zero.5

To investigate the support S‘, it turns out to be useful to
distinguish between xCM lying inside the sphere, x2

CM 
R2, and xCM lying outside, x2

CM >R2, as the former case is
much simpler than the latter.

1. Inside

Inside the sphere, the support S‘ is a single T interval.
The lower bound Tmin

‘ is given by the T value at which the
loop xCM �

����
T
p

y‘ touches the plate,

 Tmin
‘ �

�
R� a� xCMz

minky‘kz

�
2
; (20)

where minky‘kz is the minimal z coordinate of the unit loop
y‘. The upper bound Tmax

‘ is the largest T value for which
the loop intersects the sphere,

0

a

R

z

x

Σ2

Σ1

FIG. 1. Geometry of the sphere-plate configuration.

4The xCM integrand actually corresponds to a static effective-
action density in the present case. The relation to the true
interaction energy density which corresponds to the 00 compo-
nent of the interaction energy-momentum tensor is given by a
total derivative [32,40].

5Strictly speaking, this criterion misses the rare case that the
link between two neighboring points which are both outside the
sphere intersects the sphere. We neglect these contributions,
since the verification of this pattern is much more time-
consuming than simply increasing the amount of points per
loop to reduce the corresponding systematic error.
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 Tmax
‘ � maxfT: 9k�xCM �

����
T
p

y‘k�2 � R2g (21)

 � maxk

�
�

xCM � y‘k
y2
‘k

�

������������������������������������������������������
xCM � y‘k

y2
‘k

�
2
�

x2
CM � R

2

y2
‘k

vuut �
2
:

(22)

Performing the T integration, we obtain the Casimir inter-
action energy density "Casimir inside the sphere, ECasimir �R
d3xCM"Casimir,

 

"Casimir�xCM� �
1

64�2

1

nL

XnL
‘�1

�
1

�Tmax
‘ �2

�
1

�Tmin
‘ �

2

�
� 	�Tmax

‘ � Tmin
‘ �; (23)

where the 	 function takes care of the (nongeneric) case
that the loop never intersects both surfaces. This quantity is
plotted in the contour plot in Fig. 2 in the region inside the
white circle. The contribution to the total Casimir interac-
tion energy is small compared to the energy outside the
sphere. The density of the latter is shown in the same figure
outside the circle, obtained by the procedure described
next.

2. Outside

Outside the sphere the support S‘ is not merely one
single interval as in the previous case, but a whole set of
successive intervals. As illustrated in Fig. 3, for a unit loop
y‘ at a center of mass xCM outside the sphere, the ray
xCM �

����
T
p

y‘k does not pierce the sphere for most indices
k. The corresponding points on the loop are not relevant for
the Casimir energy and the first step in our algorithm is to
sort them out. Two conditions are evaluated for this pur-
pose: a point y‘k is only relevant for further computations if

(1) the vector y‘k points towards the sphere, implying

 x CM � y‘k < 0; (24)

(2) the distance h between the ray xCM �
����
T
p

y‘k and the
center of the sphere is smaller than the radius R,

 h2 � x2
CM �

�
xCM �

y‘k
jy‘kj

�
2
<R2: (25)

If these conditions are fulfilled, the T values at which the
ray intersects the sphere are determined by

 �xCM �
����
T
p

y‘k�2 � R2; (26)

which has the solutions

 T�‘k �
�
�

xCM � y‘k
y2
‘k

�

������������������������������������������������������
xCM � y‘k

y2
‘k

�
2
�

x2
CM � R

2

y2
‘k

vuut �
2
:

(27)

For T 2 �T�‘k; T
�
‘k	 the point xCM �

����
T
p

y‘k lies inside the
sphere and consequently we know that the loop intersects
the sphere. For a given loop, the total set of T values for
which this is the case is the union of the intervals [T�‘k, T

�
‘k]

of all points y‘k in the unit loop,
S
k�T

�
‘k; T

�
‘k	. Taking into

account the minimal T value for which the loop intersects
the plate, Tmin

‘ , the contribution of the unit loop to the
propertime integrand has the support

 S ‘ � �T
min
‘ ;1� \

[
k

�T�‘k; T
�
‘k	: (28)

The set union can be determined efficiently by use of a
sorting algorithm like quicksort, for example. Once S‘ is
determined, the T integration can be performed analyti-
cally. The worldline estimate for the Casimir interaction
energy density outside the sphere therewith is

 "Casimir�xCM� � �
1

32�2

1

nL

XnL
‘�1

Z
S‘

dT

T3 ; (29)

which is plotted in Fig. 2 outside the white circle.

3. Optimization

The algorithm so far works well if the distance between
sphere and plate a is of the same order of magnitude as the

−
ε C

as
im

ir
R

4

0.012

0.01

0.008

0.006

0.004

0.002

0

FIG. 2 (color online). Contour plot of the negative Casimir
interaction energy density "Casimir for a sphere of radius R above
an infinite plate; the sphere-plate separation a has been chosen as
a � R here.

xCM

h y

xCM
T y

FIG. 3. For any propertime T, the ray xCM �
����
T
p

y‘k does not
intersect the sphere. The corresponding point y‘l is thus not
relevant for the interaction energy density at the given xCM and
consequently sorted out in a first step of the algorithm.
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sphere’s radius R, a � R. To improve the accuracy by
increasing the number of loops nL and the number of points
per loop N, the algorithm can be parallelized as embar-
rassingly parallel computation by dividing the loop en-
semble into independently processed subensembles.
However, if the two scales a and R differ significantly in
size, additional improvements of our algorithm are
advisable.

Large distances (a� R): if the distance a is large
compared to the radius R, the algorithm described so far
becomes inefficient due to the following reason: only loops
with a minimal extent of the same order of magnitude as
the distance between sphere and plate do contribute to the
Casimir energy. For a loop xCM �

����
T
p

y‘ this means, that
the unit loop y‘ has to be scaled by a large factor

����
T
p

. This
implies that the distance between subsequent points on the
loop increases, too. However, to ensure that the scaled
loops still resolve the sphere, this distance should be sig-
nificantly smaller than the sphere’s radius. Thus, the num-
ber of points per loopN has to be increased with increasing
a=R.

A rough measure for the extent of a loop is the variance
of the coordinates of its points. The ensemble average of
the variance for large N is h�

����
T
p

y‘k�2i � T=6. As a con-
sequence we expect the T integral to be dominated by T �
6a2, also because the contribution for large T is damped by
the 1=T3 factor. The root-mean-square of the distance
between two subsequent points on a loop for large N is
� �

�������������
2T=N

p
. Using the dominating T value we obtain� �

2
���������
3=N

p
a. We demand this value to be much smaller than

the radius of the sphere, which implies N � 12a2=R2. For
a distance a � 10R, already much more than 1000 ppl
have to be used, for a � 100R much more than 100
000 ppl.

A slight modification enables our algorithm to cope with
this high resolution and the corresponding amount of data
much more efficiently. So far, for all center of masses xCM

with a common z coordinate xCMz, the first interval on the
right-hand side of Eq. (28), �Tmin

‘ ;1�, is the same, which
can be utilized to speed up the calculation. In contrast, the
union in the same equation is different for all centers of
masses. However, it is this part of the equation which
consumes most of the CPU time. Modifying the trans-
formation Eq. (18) reverses the circumstances: let us define
the rotation R�xCM; ez� by xCM=jxCMj � R�xCM; ez�ez. By
using

 x ‘k � xCM �
����
T
p

R�xCM; ez�y‘k (30)

(see Fig. 4), the union in Eq. (28) is the same for all center-
of-mass values xCM with a given absolute value jxCMj and
can be computed once and for all. In turn, Tmin

‘ is no longer
degenerate with respect to some xCM coordinate. The
important advantage is that this dependence can be com-
puted much faster. For each loop, we generate an array of
its minimal z coordinate as a function of the angle between

xCM and ez. The bound Tmin
‘ then results from Eq. (20),

where the minimum is read from the array. Note that the
transformation (30) is a legitimate symmetry operation for
ensemble-averaged quantities, owing to the rotational in-
variance of the exponential weight factor in Eq. (17).

There is a price to be paid for the desired feature of
having a common set union in Eq. (28) for different centers
of masses xCM: without the transformation, all points of a
given unit loop are equally involved in scanning the cur-
vature of the sphere. With the transformation, always the
same points of a unit loop are close to the sphere, inde-
pendently of xCM. This corresponds to a loss of statistics,
implying a slight increase of the statistical errors. However,
this is by far compensated for by the gain in computation
speed, which enables us to significantly reduce again the
statistical error by brute force.

Small distances (a� R): the main contribution of the
Casimir interaction energy density is localized between
sphere and plate. If the distance a is much smaller than
the sphere’s radius R, the lower bound of the support S‘ in
that region is at very small T values compared to the upper
bound of the support’s first interval. Since the T integrand
falls off rapidly with 1=T3, the T integral is dominated by
this lower bound. Therefore, a very good estimate is given
by replacing S‘ simply by the interval �Tmin

‘ ;1�, resulting
in

 "Casimir�xCM� ’ �
1

64�2

1

nL

XnL
‘�1

1

�Tmin
‘ �

2
: (31)

In particular outside the sphere, the numerical evaluation
of this expression is much faster than the evaluation of the
full expression Eq. (29).

For a rough estimate of the validity range of this ap-
proximation, we use the ensemble’s standard deviation of
the point position, h�

����
T
p

y‘k�2i � T=6, to estimate the ex-
tent of a loop. Right between sphere and plate, where the
energy density is largest, the lower bound of the propertime

xCM2

z

xCM1
x

FIG. 4. Sketch of a unit loop at different centers of masses
xCM1 and xCM2, as used for large a=R. The unit loop is rotated
corresponding to the orientation of the center of mass.
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integral then is approximately Tmin
‘ � 3a2=2. If the extent

of the loop increases beyond a=2� 2R, we expect the loop
to intersect the sphere no longer for T1 * 6�a=2� 2R�2.
By setting the value of T1 to infinity instead, as done in
Eq. (31), we introduce a systematic error
�"Casimir="Casimir & �1� 4R=a��4. For distances a
smaller than 0:8R this error is smaller than 1 per mille.
In this work, we have used Eq. (31) to compute high-
precision values for a < 0:02R.

4. Results

Figure 5 presents a global view on the Casimir interac-
tion energy for a wide range of the curvature parameter
a=R; the energy is normalized to the zeroth order of the
PFA formula (2), E�0�PFA. For small a=R (‘‘large spheres’’),
our worldline result (crosses with error bars) and the full
sphere- and plate-based PFA estimates (dashed-dotted
lines) show reasonable agreement, settling at the zeroth-
order PFA E�0�PFA. The full PFA departs on the percent level
from E�0�PFA for a=R * 0:01, exhibiting a relative energy
decrease. By contrast, our worldline result first stays close
to E�0�PFA and then increases towards larger energy values
relative to E�0�PFA. This observation confirms earlier world-
line studies [26] and agrees with the optical approximation
[27] in this curvature regime.

For larger curvature a=R * 0:1 (‘‘smaller spheres’’), we
observe a strong increase relative to E�0�PFA [33]. Here, our
data satisfactorily agrees with the exact solution found
recently for this regime [28] (dashed line). The latter
work also provides for an exact asymptotic limit for
a=R! 1, resulting in 180=�4 for our normalization.
Our worldline data confirms this limit in Fig. 5.

Two important lessons can be learned from this plot:
first, the PFA already fails to predict the correct sign of the
curvature effects beyond zeroth order, see also [41].
Second, the relation between the Casimir effect for
Dirichlet scalars and that for the EM field is strongly
geometry dependent. For the parallel-plate case, Casimir
forces only differ by the number of degrees of freedom, cf.
the coefficient cPP in Eq. (1). For large curvature, the
Casimir energy for the Dirichlet scalar scales with a�2,
whereas that for the EM field obeys the Casimir-Polder law
�a�4 [42,43]. Already this difference demonstrates that
simple approximation methods such as the PFA are highly
problematic, since no reference to the nature of the fluctu-
ating field other than the coefficient cPP is made.

For a quantitative determination of the PFA validity
limits, Fig. 6 displays the zeroth-order normalized energy
for small curvature parameter a=R. Here, our result has an
accuracy of 0.1% (jackknife analysis). The error is domi-
nated by the Monte Carlo sampling and the ordinary-
integration accuracy; the error from the worldline discre-
tization is found negligible in this regime, implying a
sufficient proximity to the continuum limit.

In addition to our numerical error band, we consider the
region between the sphere- and the plate-based PFA as the
PFA error band. We identify the 0.1% accuracy limit of the
PFA with the curvature parameter a=Rj0:1% where the two
bands no longer overlap. We obtain

 

a
R

��������PFA

0:1%
 0:000 73 (32)

as the corresponding validity range for the curvature pa-
rameter. For instance, for a typical sphere with R �
200 �m and an experimental accuracy goal of 0.1%, the

worldline-numerical values
Bulgac et al.
PFA

a/R

E
C

as
im

ir
/E

(0
)

PF
A

1001010.10.010.0011e-04

2

1.5

1

0.5

0

FIG. 5 (color online). Casimir interaction energy of a sphere
with radius R and an infinite plate vs the curvature parameter
a=R. The energy is normalized to the zeroth-order PFA formula
(2), E�0�PFA. For the larger curvature parameter, the PFA estimate
(dot-dashed line) differs qualitatively from the worldline result
(crosses with error bars). Here, we observe good agreement of
our result with the exact solution of [28] which is available for
a=R * 0:1 (dashed line).

worldline-numerical values
polynomial fit
PFA

a/R

E
C

as
im

ir
/E

(0
)

PF
A

0.010.0011e-04

1.01

1.005

1

0.995

0.99

FIG. 6 (color online). Magnified view of Fig. 5 for small a=R.
The 0.1% validity range of the PFA is characterized by curvature
parameters, where the error band of our worldline results and the
PFA band (shaded area/in between the dot-dashed lines) overlap,
see Eq. (32). The dashed line depicts a constraint polynomial fit
of the worldline result, p�a=R� � 1� 0:35�a=R� � 1:92�a=R�2,
and its standard deviation, see Eq. (34). The inlay displays the
same curves with a linear a=R axis.
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PFA should not be used for a * 150 nm. We conclude that
the PFA should be dropped from the analysis of future
experiments.

For the 1% accuracy limit of the PFA, we increase the
band of our worldline estimate by this size and again
determine the curvature parameter for which there is no
intersection with the PFA band anymore. We obtain

 

a
R

��������PFA

1%
 0:007 55: (33)

For a sphere with R � 200 �m and an experimental accu-
racy goal of 1%, the PFA holds for a < 1:5 �m. This result
confirms the use of the PFA for the data analysis of the
corresponding experiments performed so far.

In order to study the asymptotic expansion of the nor-
malized energy, we fit our worldline numerical data to a
second-order polynomial for a=R < 0:1 and include the
exactly known result for a=R! 0. We obtain

 Esphere-plate
WN data fit � �cPP

�3

1440

R

a2

�
1� 0:35

a
R
� 1:92

a2

R2

� 0:19
a
R

������������������������������������������������
1� 137:2

a
R
� 5125

a2

R2

s �
; (34)

valid for a=R < 0:1; here, cPP � 1 for the real and cPP � 2
for a complex Dirichlet scalar. The fit result is plotted in
Fig. 6 (dashed lines), which illustrates that E ’ EWN data fit

is a satisfactory approximation to the Casimir energy for
a=R < 0:1, replacing the PFA (1). The inlay of Fig. 6
displays the same curves with a linear a=R axis, illustrating
that the lowest-order curvature effect is linear in a=R. A
more direct result for the linear curvature coefficient can be
obtained by a constraint linear fit; in this simpler case, the
fit polynomial yields pfit�a=R� � 1� �0:33� 0:06� aR in-
stead of the expression in parentheses in Eq. (34). Given
the results of the PFA (1), the semiclassical approximation
[24], psc�a=R� ’ 1� 0:17 a

R , cf. [28], and the optical ap-
proximation [27], popt�a=R� ’ 1� 0:05 a

R , the latter ap-
pears to estimate curvature effects more appropriately;
but all these approximations are not quantitatively reliable
for beyond-zeroth-order curvature effects.

B. Cylinder above plate

The cylinder-plate configuration is a promising tool for
high-precision experiments [44], since the force signal
increases linearly with the cylinder length. The numerics
is very similar to the sphere-plate configuration, even less
computing power is required, because only two-
dimensional loops have to be processed due to the trans-
lational symmetry. Figure 7 shows the corresponding
Casimir interaction energy versus the curvature parameter.
The energy axis is again normalized to the zeroth-order
PFA result, [45]

 E�0�PFA�a; R� � �cPP
�3

1920
���
2
p

R1=2

a5=2
: (35)

A magnified view of the small curvature region in Fig. 7 is
shown in Fig. 8. As for the sphere-plate configuration, we
fit our data to a second-order polynomial in this range,
including the exactly known result for a=R! 0, yielding

 Ecylinder-plate
WN data fit � �

cPP�3

1920
���
2
p

R1=2

a5=2

�
1� 0:21

a
R
� 0:66

a2

R2

� 0:097
a
R

������������������������������������������������
1� 68:60

a
R
� 1282

a2

R2

s �
;

(36)

for a=R < 0:1. The inlay of Fig. 8 shows the same data
with a linear a=R axis. As for the sphere-plate geometry,

worldline-numerical values
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FIG. 7 (color online). Casimir interaction energy (normalized
to E�0�PFA) of an infinitely long cylinder with radius R at a distance
a above an infinite plate vs the curvature parameter a=R. We
observe good agreement of our result with the exact solution of
[29] which is available for a=R * 0:1 (dashed line).
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FIG. 8 (color online). Magnified view of Fig. 7 for small
values of a=R. The dashed line with error band depicts a
constraint polynomial fit to the numerical data, p�a=R� � 1�
0:21�a=R� � 0:66�a=R�2, and its standard deviation. The inlay
displays the same curves with a linear a=R axis.
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this plot demonstrates that the lowest-order curvature ef-
fect is linear in a=R. A simpler linear fit to our data results
in pfit�x� ’ 1� �0:195� 0:028� aR . This is in remarkable
agreement with the recently found analytical result
p�a=R� � 1� 0:19�4 a

R�O�a2=R2� [30], which represents
a strong confirmation for both methods.

The qualitative conclusions for the validity of the PFA
are similar to that for the sphere above a plate: beyond
leading order, the PFA even predicts the wrong sign of the
curvature effects. Quantitatively, the PFAvalidity limits are
a factor �3 larger than Eqs. (32) and (33), owing to the
absence of curvature along the cylinder axis.

The most important difference to the sphere-plate case
arises for large a=R. Here, the data is compatible with a
loglike increase relative to E�0�PFA, implying a surprisingly
weak decrease of the Casimir force for large curvature
a=R! 1. Our result agrees nicely with the recent exact
result [29] which is available for a=R * 0:1. The data thus
confirms the observation of [29] that the resulting Casimir
force has the weakest possible decay, F� 1=�a3 ln�a=R�	,
for asymptotically large curvature parameter a=R! 1.

C. Parallel plates revisited

As discussed at the beginning of this section, the order of
the T and xCM integration and the ensemble averaging can
be chosen arbitrarily. As an example for an ‘‘unusual’’
order, let us reconsider Casimir’s classic parallel-plate
configuration in D � d� 1-dimensional spacetime, doing
the xCM integral first and keeping the ensemble average
until the very end. This will reveal an unexpected mapping
between the D-dimensional Casimir effect and standard
polymer physics.

In d space dimensions, the surface or area volume A of
the Casimir plates is taken as d� 1 dimensional. The two
(hyper)plates are separated by a distance a along the z
direction which is normal to the plates, see Fig. 9. For this
configuration, the Casimir interaction energy for the mass-
less Dirichlet scalar boils down to

 ECasimir � �A
1

2�4��D=2

1

nL

XnL
‘�1

Z 1
0

dT

T1�D=2



Z 1
�1

dzCM��zCM �
����
T
p

yz‘	; (37)

where yz‘ denotes the z coordinate of the ‘th unit loop. Let
us denote the extent of the ‘th unit loop in the z direction
by L‘,

 L‘ :� max
i;k
�jyz‘i � yz‘kj�; (38)

see Fig. 9. A scaled unit loop intersects both plates if����
T
p

L‘ � a. For a given unit loop with extent L‘ and for
a given propertime value T, the support of the zCM integral
corresponds to an interval Iz�T; L‘� �

����
T
p

L‘ � a.
Independent of the precise location of this interval on the
zCM axis, the zCM integral yields

 

Z 1
�1

dzCM��zCM �
����
T
p

yz‘	 � �
����
T
p

L‘ � a�	�
����
T
p

L‘ � a�:

(39)

Now, also the T integral can be done analytically, resulting
in

 ECasimir � �
A

aD�1

1

D�D� 1��4��D=2

1

nL

XnL
‘�1

LD‘

� �
A

aD�1

1

D�D� 1��4��D=2
hLD‘ i: (40)

We observe that the Casimir interaction energy of the
parallel-plate configuration in D � d� 1 spacetime di-
mensions is proportional to the Dth moment of the
ensemble-averaged extent of a unit loop. This ensemble
average could easily be performed, which would lead us
back to the results of [26].

Here, we will be satisfied by highlighting Eq. (40) from a
different perspective, namely, in the language of polymer
physics. The Gaußian velocity distribution of our world-
lines is identical to the Hamiltonian of a polymer, i.e., the
continuum limit of a random chain, without self-avoidance
or excluded-volume effect [46] in the limit of zero end-to-
end distance. In this language, L‘ corresponds to the
maximum spatial extent of the closed polymer measured

in units of
����������������������
lpc=�2Dp�

q
. Here, lp � Nc denotes the total

length of the polymer, c is the chain length, and Dp is the
number of dimensions in which the polymer can move; the
latter is completely arbitrary and independent of the di-
mensionality of the Casimir system. Since L‘ is a highly
nonlocal object, its ensemble average is actually not so
easily computable by standard methods. Our result Eq. (40)
now maps the problem of computing any Dth moment of
L‘ on the D-dimensional Casimir problem for parallel
plates. Using the standard result for the latter [47],

 ECasimir � �
A

aD�1

1

�4��D=2
��D=2�
�D�; (41)

we obtain by comparison with Eq. (40),

 hLD‘ �y	i � D�D� 1���D=2�
�D�; (42)

a result that we have so far not been able to find in the
literature of polymer physics. Even the limit D! 1 can be

a L

FIG. 9. Geometry of Casimir’s parallel-plate configuration. A
loop contributes to the Casimir interaction energy if its extent L‘
along the z direction is larger than the plate distance a.
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taken, corresponding to the Casimir effect in zero space
dimensions: this results in hL‘�y	i �

����
�
p

for the average
extent of a closed polymer.

IV. CONCLUSIONS

We have presented improved worldline numerical algo-
rithms that can efficiently deal with Casimir configurations
involving curved surfaces. We have used these algorithms
to compute Casimir interaction energies for the sphere-
plate and cylinder-plate configuration induced by a scalar
field with Dirichlet boundary conditions. These computa-
tions are done from first principles for a wide range of
curvature parameters a=R. In general, we observe that
curvature effects and geometry dependencies are intrigu-
ingly rich, implying that naive estimates can easily be
misguiding. In particular, predictions based on the PFA
are only reliable in the asymptotic no-curvature limit with
quantitative validity bounds given above. We have con-
structed polynomial fits of our results which can be used in
the small-curvature regime, a=R & 0:1, as a well-founded
substitute for the PFA formulas. Given the size of the true
curvature corrections for the Dirichlet scalar, we expect
that genuine Casimir curvature effects are in reach of
currently planned experiments. In this spirit, the so-called
lateral Casimir force for corrugated surfaces has recently
been proposed as a suitable candidate for identifying non-
trivial geometry dependences beyond the PFA [48].

Beyond the Dirichlet scalar investigated here, it is well
possible, e.g., for the EM field, that some cancellation of
curvature effects occurs between modes obeying different
boundary conditions. In fact, such a partial cancellation
between TE and TM modes of the separable cylinder-plate
geometry can be observed in the recent exact result for the
EM field for medium curvature [29]; for small curvature,
curvature effects can even reverse the sign [30]. More
quantitatively, the TM mode in the cylinder-plate case
obeys Dirichlet boundary condition and thus contributes,
e.g., to the linear curvature correction with a coefficient ’
0:194, as discussed below Eq. (36); the TE mode obeys
Neumann boundary conditions, giving a negative contri-

bution which in total turns this linear coefficient for the EM
field into ’ �0:48 [30]. The latter result, in fact, lies in the
broad range of [� 0:92,�0:25] spanned by the PFA; since
the PFA does not make any reference to the nature of the
fluctuating field, this rough coincidence is, of course,
purely accidental. This strong dependence of Casimir cur-
vature effects on the nature of the fluctuating fields alone
demonstrates already that approximations ignoring this
difference such as the PFA cannot be trusted. We empha-
size again that Casimir calculations for the EM field in
nonseparable geometries, such as the important sphere-
plate case, remain a prominent open problem.

From a technical point of view, we would like to stress
that our results demonstrate the capability of worldline
numerics for performing high-precision computations
with comparatively little computing power. The simple
scalability of the algorithms and the flexibility for adapting
them to arbitrary geometries makes worldline numerics a
unique tool for computing quantum energies.

Our algorithmic strategies also revealed an unexpected
mapping between the D-dimensional parallel-plate
Casimir effect and aspects of a random-chain polymer
ensemble. The origin of this mapping, of course, lies in
the fact that both quantum fluctuations in Casimir systems
as well as a polymer ensemble can be described by
Feynman path integrals. In the present case, the mapping
can be utilized to transform a comparatively difficult poly-
mer problem into a field-theoretic Casimir problem which
can be solved by a variety of techniques. We believe that
this mapping is just a special case of a more general class
of mappings with potentially fruitful applications in both
directions.
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