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We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in
interaction with the quantum electromagnetic field near a conducting boundary and separately calculate
the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic
energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation
reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of
ground-state atoms to excited states possible in a vacuum with a conducting boundary. The boundary-
induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal
effect already present in the unbounded case, thus possibly making the effect easier to observe. An
interesting feature worth noting is that the nonthermal corrections may vanish for atoms on some
particular trajectories.
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I. INTRODUCTION

Understanding the physical origin of radiative properties
of atoms, such as spontaneous emission and radiative level
shifts, is a very stimulating problem. So far mechanisms
such as vacuum fluctuations [1,2] and radiation reaction
[3], or a combination of them [4], have been proposed as
the possible physical interpretations. The ambiguity arises
because of the freedom in the choice of ordering of com-
muting operators of the atom and field in a Heisenberg
picture approach to the problem. As a result, there exists an
indetermination in the separation of effects of vacuum
fluctuations and radiation reaction such that distinct con-
tributions of vacuum fluctuations and radiation reaction to
the spontaneous emission of atoms do not possess an
independent physical meaning. Therefore, although quan-
titative results for spontaneous emission and radiative level
shifts are well established, the physical interpretations
remained controversial until Dalibard, Dupont-Roc, and
Cohen-Tannoudji (DDC) argued in [5,6] that there exists
a symmetric operator ordering of atom and field variables
where the distinct contributions of vacuum fluctuations and
radiation reaction to the rate of change of an atomic ob-
servable are separately Hermitian. If one demands such an
ordering, an independent physical meaning can be as-
signed to each contribution. Using this prescription one
can show that for ground-state atoms, the contributions of
vacuum fluctuations and radiation reaction to the rate of
change of the mean excitation energy cancel exactly and
this cancellation forbids any transitions from the ground
state and thus ensures atom’s stability in vacuum. While for
any initial excited state, the rate of change of atomic energy
acquires equal contributions from vacuum fluctuations and
from radiation reaction.

Recently, Audretsch, Müeller, and Holzmann [7–9]
have generalized the formalism of DDC [6] to evaluate

vacuum fluctuations and radiation reaction contributions to
the spontaneous excitation rate and radiative energy shifts
of an accelerated two-level atom interacting with a scalar
field in a unbounded Minkowski space. In particular, their
results show that when an atom is accelerated, then the
delicate balance between vacuum fluctuations and radia-
tion reaction is altered since the contribution of vacuum
fluctuations to the rate of change of the mean excitation
energy is modified while that of the radiation reaction
remains the same. Thus transitions to excited states for
ground-state atoms become possible even in vacuum. This
result not only is consistent with the Unruh effect [10],
which is closely related to the Hawking radiation of black
holes, but also provides a physically appealing interpreta-
tion of it, since the spontaneous excitation of accelerated
atoms can be considered as the actual physical process
underlying the Unruh effect. Physically, this gives a trans-
parent illustration for why an accelerated detector clicks
(See Ref. [11] for a discussion in a different context).

Therefore, one sees that the Unruh effect is intrinsically
related to the effects of modified vacuum fluctuations
induced by the acceleration of the atom (or detector) in
question. On the other hand, however, it is well-known that
the presence of boundaries in a flat space-time also modi-
fies the vacuum fluctuations of quantum fields, and it has
been demonstrated that this modification (or changes) in
vacuum fluctuations can lead to a lot of novel effects, such
as the Casimir effect [12], the light-cone fluctuations when
gravity is quantized [13–15], and the Brownian (random)
motion of test particles in an electromagnetic vacuum [16–
19] (Also see [20–22]), just to name a few. Therefore, it
remains interesting to see what happens to the radiation
properties of accelerated atoms found in Ref. [7] when the
vacuum fluctuations are further modified by the presence
of boundaries. Recently the effects of modified vacuum
fluctuations and radiation reaction due to the presence of a
conducting plane boundary upon the spontaneous excita-
tion of both an inertial and a uniformly accelerated atom*Mailing address.
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interacting with a quantized real massless scalar field have
been discussed [23]. It is found that the modifications
induced by the presence of a boundary make the sponta-
neous radiation rate of an excited inertial atom to oscillate
near the boundary and this oscillatory behavior may offer a
possible opportunity for experimental tests for geometrical
(boundary) effects in flat space-time. While for accelerated
atoms, the transitions from ground states to excited states
are found to be possible even in vacuum due to changes in
the vacuum fluctuations induced by both the presence of
the boundary and the acceleration of atoms. Meanwhile the
contribution of radiation reaction is now dependent on the
acceleration of the atom, in sharp contrast to the un-
bounded Minkowski space where it has been shown that
for accelerated atoms on arbitrary stationary trajectory, the
contribution of radiation reaction is generally not altered
from its inertial value [9].

However, a two-level atom interacting with a scalar field
is more or less a toy model, and a more realistic system
would be a multilevel atom, a hydrogen atom, for instance,
in interaction with a quantized electromagnetic field. Let
us note that such a system was examined in terms of the
radiative energy shifts of an accelerated atom [24] using
the method of Ref. [8], where nonthermal corrections to the
energy shifts were found in addition to the usual thermal
ones associated with the temperature T � a=2�. Recently,
the spontaneous excitation rate of an accelerated atom in
the same system has been studied [25]. It has been found
that both the effects of vacuum fluctuations and radiation
reaction on the atom are changed by the acceleration. This
is in sharp contrast to the scalar field case where the
contribution of radiation reaction is not altered by the
acceleration. A dramatic feature is that the contribution
of electromagnetic vacuum fluctuations to the spontaneous
emission rate contains an extra nonthermal term propor-
tional to a2, the proper acceleration squared, in contrast to
the scalar field case where the effect of acceleration is
purely thermal. Therefore the equivalence between uni-
form acceleration and thermal fields is lost when the scalar
field is replaced by the electromagnetic field as has been
argued elsewhere in other different contexts [26,27].
However, one may wonder what happens to the sponta-
neous emission of accelerated multilevel atoms in interac-
tion with quantized electromagnetic fields found in
Ref. [25], when the vacuum fluctuations are further modi-
fied by the presence of boundaries. This is what we plan to
address in the present paper; we will calculate the effects of
modified vacuum fluctuations and radiation reaction due to
the presence of a conducting plane boundary upon the
spontaneous excitation of both an inertial and a uniformly
accelerated multilevel atom interacting with a quantized
electromagnetic field in the multipolar coupling scheme. It
should be pointed out that the multilevel atom in the dipole
coupling with electromagnetic fields only serves as a
model for discussion and it is still a crude representation
of a hydrogen atom in reality.

The paper is organized as follows, we give, in Sec. II, a
review of the general formalism developed in Ref. [7] and
generalized in Refs. [24,25] to the case of a multilevel
atom interacting with a quantized electromagnetic field in
the multipolar coupling scheme, then apply it to the case of
an inertial atom in Sec. III and to the case of an accelerated
atom in Sec. IV. Finally we will conclude with some
discussions in Sec. V.

II. THE GENERAL FORMALISM FOR VACUUM
FLUCTUATION AND RADIATION REACTION

We consider a multilevel hydrogen atom in interaction
with electromagnetic fields. To study the modifications of
the spontaneous emission rate of atoms caused by the
presence of a conducting plane boundary in vacuum, we
assume that the conducting boundary is located at z � 0 in
space and consider a pointlike hydrogen atom on a sta-
tionary space-time trajectory x���, where � denotes the
proper time on the trajectory. The stationary trajectory
guarantees the existence of a series of stationary atomic
states jni, with energies !n. The Hamiltonian that governs
the time evolution of the atom with respect to the proper
time � can then be written as1

 HA��� �
X
n

!n�nn���; (1)

where �nn��� � jnihnj. The free Hamiltonian of the quan-
tum electromagnetic field that governs its time evolution
with respect to � is

 HF��� �
X
k

! ~ka
y
~k
a ~k
dt
d�
; (2)

where ~k denotes the wave vector and polarization of the
field modes. We couple the hydrogen atom and the quan-
tum electromagnetic field in the multipolar coupling
scheme [28]

 HI��� � �er��� � E�x���� � �e
X
mn

rmn � E�x�����mn���;

(3)

where e is the electron electric charge, er the atomic
electric dipole moment, x��� $ �t���;x����, the space-
time coordinates of the hydrogen atom. In the present
case the dipole moment must be kept fixed with respect
to the proper frame of reference of the atom, otherwise the
rotation of the dipole moment will bring in extra time
dependence in addition to the intrinsic time evolution [27].

Let us note that, since both r��� and E�x� are not world
vectors, the interaction HamiltonianHI is ambiguous when
we deal with the situation of moving atoms. However, a
manifestly coordinate invariant generalization ofHI can be
given [27]:

1Lorentz-Heaviside units with @ � c � 1 will be used here.
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 HI��� � �er����F���x����u����; (4)

where F�� is the field strength, r���� is a four vector such
that its temporal component in the frame of the atom
(proper reference frame) vanishes and its spatial compo-
nents in the same frame are given by r���, and u� is the four
velocity of the atom. Since u���� � �1; 0; 0; 0� in the frame
of the atom, this extended interaction Hamiltonian reduces
to that given by Eq. (3) in the reference frame of the atom.
In what follows, we choose to work in this reference frame.

We can now obtain the Heisenberg equations of motion
for the dynamical variables of the hydrogen atom and
the electromagnetic field from the Hamiltonian H � HA �
HF �HI. The solutions of the equations of motion can be
split into two parts: a free part, which is present even in the
absence of the coupling, and a source part, which is caused
by the interaction of the atom and field. We assume that the
initial state of the field is the vacuum j0i, while the atom is
in the state jbi. Our aim is to identify and separate the two
physical mechanisms that contribute to the rate of change
of atomic observables O���: the contribution of vacuum
fluctuations and that of radiation reaction. For this purpose,
we choose a symmetric ordering between atom and field
variables and identify the contribution of the vacuum fluc-
tuations and radiation reaction to the rate of change of
O���. Since we are interested in the spontaneous emission
and absorption of the atom, we will concentrate on the
mean atomic excitation energy hHA���i. The contribution
of vacuum fluctuations (vf) and radiation reaction (rr)
to the rate of change of hHA���i can be written as
(cf. Refs. [5–7,25])

 

�
dHA���
d�

�
vf
� 2ie2

Z �

�0

d�0CFij�x���; x��
0��

d
d�
��Aij�b��; �

0�;

(5)

 

�
dHA���
d�

�
rr
� 2ie2

Z �

�0

d�0�Fij�x���; x��
0��

d
d�
�CAij�b��; �

0�;

(6)

where ji � jb; 0i. The statistical functions of the atom,
�CAij�b��; �

0� and ��Aij�b��; �
0�, are defined as

 �CAij�b��; �
0� � 1

2hbjfr
f
i ���; r

f
j ��
0�gjbi; (7)

 ��Aij�b��; �
0� � 1

2hbj�r
f
i ���; r

f
j ��
0��jbi; (8)

and those of the field are

 CFij�x���; x��
0�� � 1

2h0jfE
f
i �x����; E

f
j �x��

0��gj0i; (9)

 �Fij�x���; x��
0�� � 1

2h0j�E
f
i �x����; E

f
j �x��

0���j0i: (10)

Let us note that CA is also called the symmetric correlation
function of the atom in the state jbi, �A its linear suscep-
tibility, while CF and �F are also known as the Hadamard
function and Pauli-Jordan or Schwinger function of the
field, respectively. The explicit forms of the statistical
functions of the atom are given by

 �CAij�b��; �
0� �

1

2

X
d

�hbjri�0�jdihdjrj�0�jbie
i!bd����0�

� hbjrj�0�jdihdjri�0�jbie�i!bd����0��; (11)

 ��Aij�b��; �
0� �

1

2

X
d

�hbjri�0�jdihdjrj�0�jbie
i!bd����0�

� hbjrj�0�jdihdjri�0�jbie�i!bd����0��; (12)

where !bd � !b �!d and the sum extends over a com-
plete set of atomic states.

In order to calculate the statistical functions of the field,
let us recall that the two-point function for the photon field
may be expressed as

 D���x; x0� � h0jA��x�A��x0�j0i

� D��
0 �x� x

0� �D��
b �x; x

0�; (13)

where D��
0 �x� x

0� is the two-point function in the usual
Minkowski vacuum, and D��

b �x; x
0�, is the correction in-

duced by the presence of boundary, which can be obtained
by the method of images. In the Feynman gauge, at a
distance z from the boundary, we have, in the laboratory
frame,

 D��
0 �x� x

0� �
���

4�2��t� t0 � i"�2 � �x� x0�2 � �y� y0�2 � �z� z0�2�
(14)

and

 D��
b �x; x

0� � �
��� � 2n�n�

4�2��t� t0 � i"�2 � �x� x0�2 � �y� y0�2 � �z� z0�2�
: (15)

Here, ��� � diag�1;�1;�1;�1� and the unit normal
vector n� � �0; 0; 0; 1�. Note that the two-point function
Eq. (13) is constructed in such way that the tangential
components of the electric field two-point function vanish
on the conducting plane. The electric field two-point func-

tion can be expressed as a sum of the Minkowski vacuum
term and a correction term due to the boundary:

 h0jE�x�E�x0�j0i � h0jE�x�E�x0�j0i0 � h0jE�x�E�x0�j0ib:
(16)
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Since the boundary-independent contributions caused by the Minkowski vacuum term have been studied in Ref. [25], in
the present paper, we will only calculate the boundary-dependent contributions, and write

 h0jEi�x����Ej�x��0��j0ib �
1

4�2 ���ij � 2ninj�@0@00 � @i@
0
j�

1

�t� t0 � i"�2 � �x� x0�2 � �y� y0�2 � �z� z0�2
; (17)

where "! �0 and @0 denotes the differentiation with
respect to x0. The statistical functions of the field can be
calculated using (17).

III. SPONTANEOUS EMISSION FROM A
UNIFORMLY MOVING ATOM

In this section, we apply the previously developed for-
malism to study, in the presence of a conducting plane
boundary, the spontaneous emission of an inertial multi-
level atom interacting with quantized electromagnetic
fields in the multipolar coupling scheme. We consider the
atom moving in the x-direction with a constant velocity v
at a distance z from the plane, thus its trajectory is given by
 

t��� � 	�; x��� � x0 � v	�;

y��� � y0; z��� � z; (18)

where 	 � �1� v2���1=2�. From the general form Eq. (17)
we can obtain the nonzero electric field two-point func-
tions in the frame of the atom

 h0jEx�x����Ex�x��0��j0ib � h0jEy�x����Ey�x��0��j0ib

� �
u2 � 4z2

�2��u� i"�2 � 4z2�3
;

(19)

and

 h0jEz�x����Ez�x��0��j0ib �
1

�2��u� i"�2 � 4z2�2
: (20)

where u � �� �0. Performing calculations using the
above result lead to the nonzero Hadamard functions of
the field:

 CFxx�x���; x��0�� � CFyy�x���; x��0��

� �
1

2�2

�
u2 � 4z2

��u� i"�2 � 4z2�3

�
u2 � 4z2

��u� i"�2 � 4z2�3

�
; (21)

 CFzz�x���; x��
0�� �

1

2�2

�
1

��u� i"�2 � 4z2�2

�
1

��u� i"�2 � 4z2�2

�
; (22)

and the Pauli-Jordan, or Schwinger functions:

 

�Fxx�x���; x��
0�� � �Fyy�x���; x��

0�� � �
i

4�z
u2 � 4z2

6u2 � 8z2 ��
00�u� 2z� � �00�u� 2z��; (23)

 �Fzz�x���; x��
0�� �

i
8�z

1

u
��0�u� 2z� � �0�u� 2z��: (24)

Here �0 and �00 are the first and the second derivative of the delta function, respectively.
With all the statistical functions given, we are ready to calculate the contributions of both the vacuum fluctuations and

radiation reaction to the rate of change of the mean atomic energy. Since the polarization direction of the atom can be
arbitrary, in general, the polarization can have nonzero components in both the direction normal and that which is parallel
to the plane. So calculations have to be carried out for all nonzero field statistical functions. Take the xx component for
example; it is easy to show that the contribution of the changes in vacuum fluctuations induced by the presence of the
boundary is given by

 �
dHA���
d�

�
xx

b;vf
�

e2

2�2

X
d

jhbjrx�0�jdij
2!bd

Z 1
�1

du
�

u2 � 4z2

��u� i"�2 � 4z2�3
�

u2 � 4z2

��u� i"�2 � 4z2�3

�
ei!bdu (25)

and that of radiation reaction by

 

�
dHA���
d�

�
xx

b;rr
�

ie2

4�z

X
d

jhbjrx�0�jdij
2!bd

Z 1
�1

du
u2 � 4z2

6u2 � 8z2 ��
00�u� 2z� � �00�u� 2z��ei!bdu; (26)
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where we have extended the range of integration to infinity
for sufficiently long times �� �0. The superscript xx
denotes contributions associated with the xx component
of the statistical functions and b in the subscript indicates
boundary-dependent contribution. The integrals in
Eqs. (25) and (26) can be evaluated via the residue theorem
to get

 

�
dHA���
d�

�
xx

b;vf
�

e2

32�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2fx�z; !bd�

�
X

!b<!d

!4
bdjhbjrx�0�jdij

2fx�z; !bd�

�
;

(27)

and

 

�
dHA���
d�

�
xx

b;rr
�

e2

32�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2fx�z; !bd�

�
X

!b<!d

!4
bdjhbjrx�0�jdij

2fx�z; !bd�

�
:

(28)

Here we have defined

 fx�z;!bd� �
2

z2!2
bd

cos�2z!bd� �
4z2!2

bd � 1

z3!3
bd

sin�2z!bd�

(29)

Adding up the contributions of vacuum fluctuations and
radiation reaction, we obtain the rate of change of the
atomic excitation energy induced by the presence of the
boundary.

 

�
dHA���
d�

�
xx

b;tot
�

�
dHA���
d�

�
xx

b;vf
�

�
dHA���
d�

�
xx

b;rr

�
e2

16�

X
!b>!d

!4
bdjhbjrx�0�jdij

2fx�z;!bd�:

(30)

Equation (30) only gives the correction to the spontaneous
excitation rate caused by the presence of boundary and it is
an oscillating function of z, the distance of the atom from
the boundary. In order to find the total rate, we need to add
the Minkowski vacuum contribution, which can be ob-
tained by setting acceleration, a, to zero in the correspond-
ing result given in Ref. [25], and the above boundary-
dependent correction term. The result is
 �

dHA���
d�

�
xx

tot
� �

e2

3�

X
!b>!d

!4
bdjhbjrx�0�jdij

2

	

�
1�

3

16
fx�z;!bd�

�
: (31)

Obviously, with merely a substitution of ry for rx and
fy�z;!bd� � fx�z; !bd� for fx�z;!bd�, the above result

also applies for the yy component contributions, that is,
 �

dHA���
d�

�
yy

tot
� �

e2

3�

X
!b>!d

!4
bdjhbjry�0�jdij

2

	

�
1�

3

16
fy�z; !bd�

�
: (32)

Similarly, one has for the zz component case that

 

�
dHA���
d�

�
zz

b;vf
�

e2

32�

� X
!b>!d

!4
bdjhbjrz�0�jdij

2fz�z;!bd�

�
X

!b<!d

!4
bdjhbjrz�0�jdij

2fz�z;!bd�

�

(33)

for the contribution of vacuum fluctuations to the rate of
change of the atomic excitation energy, and

 

�
dHA���
d�

�
zz

b;rr
�

e2

32�

� X
!b>!d

!4
bdjhbjrz�0�jdij

2fz�z;!bd�

�
X

!b<!d

!4
bdjhbjrz�0�jdij

2fz�z;!bd�

�

(34)

for that of radiation reaction, where function fz�z;!bd� is
given by

 fz�z;!bd� �
4

z2!2
bd

cos�2z!bd� �
2

z3!3
bd

sin�2z!bd�:

(35)

It then follows that

 

�
dHA���
d�

�
zz

b;tot
�

e2

16�

X
!b>!d

!4
bdjhbjrz�0�jdij

2fz�z; !bd�;

(36)

and
 �

dHA���
d�

�
zz

tot
� �

e2

3�

X
!b>!d

!4
bdjhbjrz�0�jdij

2

	

�
1�

3

16
fz�z;!bd�

�
: (37)

After having presented all the results of our calculations,
a few comments are now in order. First, although the
presence of the conducting boundary modifies both the
vacuum fluctuations and radiation reaction [refer, for ex-
ample, to Eqs. (27) and (28)], the effects of both contribu-
tions to the spontaneous excitation rate, however, cancel
exactly for an atom in the ground state (!b < !d) [refer to
Eqs. (30), (32), and (36)]. Therefore, the presence of a
plane boundary conspires to modify the vacuum fluctua-
tions and radiation reaction in such a way that the delicate
balance between the vacuum fluctuations and radiation
reaction found in Ref. [25] in the absence of boundaries
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remains and this ensures the stability of ground-state iner-
tial atoms in vacuum with a conducting boundary. Second,
if the atom is polarized in the parallel direction, then, as the
atom is placed closer and closer to the boundary (z! 0),
the rate of change of the atomic energy vanishes since
fx�z;!bd� and fy�z;!bd� approach zero. This can be
understood as a result of the fact that the tangential com-
ponents of the electric field vanish on the conducting plane.
However, if the polarization of the atom is along the
normal direction, then f�z; !bd� 
 2 when (z! 0), and
one has

 

�
dHA���
d�

�
zz

tot

 �

2e2

3�

X
!b>!d

!4
bdjhbjrz�0�jdij

2: (38)

This is two times that of the unbounded case and it can be
attributed to the fact that the reflection at the boundary
doubles the normal component of the fluctuating electric
field. Third, for an atom which polarized in an arbitrary
direction, we need to add all contributions together
[Eqs. (31), (32), and (37)] and the result is

 

�
dHA���
d�

�
tot
� �

e2

3�

X
!b>!d

!4
bdjhbjr�0�jdij

2

�
e2

3�

X
!b>!d

3

16
!4
bdjhbjri�0�jdij

2fi�z;!bd�:

(39)

Clearly the second term involving functions fi�z;!bd� give
the modifications induced by the presence of the boundary
to the rate of change of the mean atomic energy and they
are oscillating functions of z with a modulated amplitude.
Since fx and fy are different from fz, the polarization of
the atom in the direction parallel to the boundary and that
in the normal direction are weighted differently in terms of
their contributions to the spontaneous emission rate of the

atom. Fourth, when the distance of the atom from the
boundary approaches infinity (z! 1), all the oscillating
functions approach zero, and we recover the results of the
unbounded case. Fifth, let us note that the oscillating
behavior of the spontaneous emission rate of the hydrogen
atom as a function of z may manifest itself in the intensity
of the emission spectrum and therefore might be verified in
experiment. Take a typical transition frequency of a hydro-
gen atom, !bd � 1015 s�1, for example, the amplitude of
the oscillating functions will show appreciable deviations
from 1 when z� c

!bd
� 10�5 cm, which is orders of mag-

nitude larger than radius of the hydrogen atom. Finally, the
readers should be warned that our results are based upon a
particular model for the hydrogen atom in which the multi-
polar coupling between the atom and the electromagnetic
fields is assumed.

IV. UNIFORMLY ACCELERATED ATOM

A. Basic results

We now turn to the case in which the atom is uniformly
accelerated in a direction parallel to the conducting plane
boundary. We assume that the atom is at a distance z from
the boundary and is being accelerated in the x-direction
with a proper acceleration a. Specifically, the atom’s tra-
jectory is described by

 

t��� �
1

a
sinha�; x��� �

1

a
cosha�;

y��� � y0; z��� � z:
(40)

Let us introduce a unit vector pointing along the direction
of acceleration, k� � �0; 1; 0; 0�, then the electric field
two-point function for the trajectory (40) can be evaluated
from its general form (17) in the frame of the atom with a
substitution u � �� �0 as follows

 

h0jEi�x����Ej�x��
0��j0ib � �

a4

16�2

1

�sinh2 a
2 �u� i"� � a

2z2�3

�
��ij � 2ninj � 2az�nikj � kinj��sinh2 au

2

� a2z2

�
�ijcosh2 au

2
� ��ij � 2kikj�sinh2 au

2

��
: (41)

From Eq. (41), we obtain the Hadamard functions of the field

 

CFij�x���; x��
0�� � �

a4

32�2

�
1

�sinh2 a
2 �u� i"� � a

2z2�3
�

1

�sinh2 a
2 �u� i"� � a

2z2�3

�

	

�
��ij � 2ninj � 2az�nikj � kinj��sinh2 au

2
� a2z2

�
�ijcosh2 au

2
� ��ij � 2kikj�sinh2 au

2

��
; (42)

and the Pauli-Jordan or Schwinger functions
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�Fij�x���; x��
0�� � �

ia
16�z

�00�sinhau2 � az� � �
00�sinhau2 � az�

sinh2�au� � cosh�au�sinh2 au
2 � a

2z2 cosh�au�

�
��ij � 2ninj � 2az�nikj � kinj��sinh2 au

2

� a2z2

�
�ijcosh2 au

2
� ��ij � 2kikj�sinh2 au

2

��
: (43)

From the above expressions one can see that the only nonzero components of the statistical functions are xx, yy, zz, and xz
components. For an accelerating arbitrarily polarized atom, we need to perform calculations for all nonzero statistical
functions in order to obtain the boundary-dependent contributions of vacuum fluctuations and radiation reaction to the rate
of change of the atomic energy.

Let us now take the xx component, for example, to show how the calculations are to be carried out. It follows from
Eqs. (42) and (43) that

 CFxx�x���; x��0�� � �
a4

32�2

�
sinh2 au

2 � a
2z2

�sinh2 a
2 �u� i"� � a

2z2�3
�

sinh2 au
2 � a

2z2

�sinh2 a
2 �u� i"� � a

2z2�3

�
(44)

and

 �Fxx�x���; x��0�� � �
ia

16�z

sinh2 au
2 � a

2z2

sinh2�au� � cosh�au�sinh2 au
2 � a

2z2 cosh�au�

�
�00
�
sinh

au
2
� az

�
� �00

�
sinh

au
2
� az

��
:

(45)

The contributions of vacuum fluctuations (5) and radiation reaction (6) to the rate of change of the mean atomic energy
associated with the above statistical functions can be written as

 

�
dHA���
d�

�
xx

b;vf
�
e2a4

32�2

X
d

jhbjrx�0�jdij2!bd

Z 1
�1

du
�

sinh2 au
2 � a

2z2

�sinh2 a
2 �u� i"� � a

2z2�3
�

sinh2 au
2 � a

2z2

�sinh2 a
2 �u� i"� � a

2z2�3

�
ei!bdu (46)

and
 �

dHA���
d�

�
xx

b;rr
�
iae2

16�z

X
d

jhbjrx�0�jdij
2!bd

Z 1
�1

du
sinh2 au

2 � a
2z2

sinh2�au� � cosh�au�sinh2 au
2 � a

2z2 cosh�au�

	

�
�00
�
sinh

au
2
� az

�
� �00

�
sinh

au
2
� az

��
ei!bdu: (47)

Here we have, as usual, extended the range of integration to infinity for sufficiently long times �� �0. The integral in
Eq. (46) can be evaluated via the residue theorem to get
 �

dHA���
d�

�
xx

b;vf
�

e2

32�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a�
�
1�

2

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a�
�
1�

2

e�2�j!bdj=a� � 1

��
; (48)

where

 fxx�!bd; z; a� �
2�1� 4a2z2�

z2!2
bd�1� a

2z2�2
cos

�
2!bdsinh�1�az�

a

�
�

4z2!2
bd � 1� 2z2a2�1� 2z2a2 � 2z2!2

bd�

z3!3
bd�1� a

2z2�5=2

	 sin
�
2!bdsinh�1�az�

a

�
: (49)

A comparison of Eq. (48) with that of the unbounded Minkowski space [25] shows that the boundary-dependent
contribution is in fact a ‘‘nonthermal’’ correction proportional to the oscillating function fxx�!bd; z; a�. With the help
of the following equations
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 �
�
sinh

au
2
� az

�
�

2

a � cosh�12 �
au
2 � sinh�1�az���

�
�
u�

2

a
sinh�1�az�

�

�
�
sinh

au
2
� az

�
�

2

a � cosh�12 �
au
2 � sinh�1�az���

�
�
u�

2

a
sinh�1�az�

�
;

(50)

we can calculate the contribution of the radiation reaction to the rate of change of the atomic energy to get

 

�
dHA���
d�

�
xx

b;rr
�

e2

32�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a� �
X

!b<!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a�
�
: (51)

Adding up the two contributions, (48) and (51), we can get the total correction induced by the presence of the boundary

 �
dHA���
d�

�
xx

b;tot
�

e2

16�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a�
�
1�

1

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjrx�0�jdij

2fxx�!bd; z; a�
1

e�2�j!bdj=a� � 1

�
: (52)

The total rate of change of the atomic energy in the presence of a conducting plane boundary can be obtained by further
adding up the Minkowski vacuum contribution given in Ref. [25]

 

�
dHA���
d�

�
xx

tot
� �

e2

3�

� X
!b>!d

!4
bdjhbjrx�0�jdij

2

�
1�

a2

!2
bd

�
3

16
fxx�!bd; z; a�

��
1�

1

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjrx�0�jdij

2

�
1�

a2

!2
bd

�
3

16
fxx�!bd; z; a�

�
1

e�2�j!bdj=a� � 1

�
: (53)

Similarly, with the help of residue theorem and Eq. (50), one can calculate the contributions related to other nonzero
components of the statistical functions and the results can be summarized as follows. For a uniformly accelerated
arbitrarily polarized atom near a conducting plane, the total boundary-dependent contribution of vacuum fluctuations to
the rate of change of the mean atomic energy is given by

 

�
dHA���
d�

�
b;vf
�

e2

32�

� X
!b>!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

�
1�

2

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

�
1�

2

e�2�j!bdj=a� � 1

��
; (54)

while for that of the radiation reaction, the result is

 

�
dHA���
d�

�
b;rr
� �

e2

32�

� X
!b>!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

�
X

!b<!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

�
; (55)

where summation over repeated indices, i, j, is implied and fxx�!bd; z; a� is given by Eq. (49) while other nonzero
functions by

 fyy�!bd; z; a� �
2�1� 2a2z2�

z2!2
bd�1� a

2z2�
cos

�
2!bdsinh�1�az�

a

�
�

4z2!2
bd � 1� 4a2z4!2

bd

z3!3
bd�1� a

2z2�3=2
sin
�
2!bdsinh�1�az�

a

�
; (56)
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 fzz�!bd; z; a� �
2�2� a2z2 � 2a4z4�

z2!2
bd�1� a

2z2�2
cos

�
2!bdsinh�1�az�

a

�
�
�2� a2z2��5� 4z2!2

bd� � 4a4z6!2
bd

z3!3
bd�1� a

2z2�5=2

	 sin
�

2!bdsinh�1�az�
a

�
; (57)

and

 fxz�!bd; z; a� �
2a��1� 2a2z2�

z!2
bd�1� a

2z2�2
cos

�
2!bdsinh�1�az�

a

�
�

4az2!2
bd � a� 4a3z2�1� z2!2

bd�

z2!3
bd�1� a

2z2�5=2
sin
�
2!bdsinh�1�az�

a

�
:

(58)

As z, the distance of the atom from the boundary, approaches infinity, all these functions approach zero and the boundary-
dependent contributions vanish as expected. We can add the two contributions together to get the total contributions,
vacuum fluctuations plus radiation reaction, to the rate of change of the atomic energy induced by the presence of the
conducting plane

 

�
dHA���
d�

�
b;tot
�

e2

32�

� X
!b>!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

�
1�

1

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbijfij�!bd; z; a�

1

e�2�j!bdj=a� � 1

�
: (59)

It follows immediately that the total rate of change of the atomic energy with the Minkowski vacuum term [25] included is

 

�
dHA���
d�

�
tot
� �

e2

3�

� X
!b>!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbij

��
1�

a2

!2
bd

�
�ij �

3

16
fij�!bd; z; a�

��
1�

1

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjri�0�jdijjhdjrj�0�jbij

��
1�

a2

!2
bd

�
�ij �

3

16
fij�!bd; z; a�

�
1

e�2�j!bdj=a� � 1

�
: (60)

B. Comments and discussions

A few comments and discussions are now in order for
results obtained in the preceding subsection. It is interest-
ing to note that Eq. (60) reveals that for an accelerated
atom in the ground state (!b < !d), the effects of both
contributions do not exactly cancel as in the case of an
inertial atom, so the delicate balance between the vacuum
fluctuations and radiation reaction no longer exists if the
atom is accelerated, although both contributions of the
vacuum fluctuations and radiation are altered for acceler-
ated atoms in the presence of the boundary as contrasted
with the case without boundaries. There is a positive con-
tribution from the !b < !d term, therefore transitions of
ground-state accelerated atoms to excited states are al-
lowed to occur in vacuum with boundaries. The presence
of the boundary modulates the transition rate with the
functions, fij�!bd; a; z� and makes the rate a function of
z, the atom distance from the boundary. It is interesting to
note that the boundary-induced contribution is effectively a
nonthermal correction, thus depending the atom’s distance
from the boundary, the nonthermal correction (the term
proportional to a2) which is already present in the un-
bounded case may get enhanced or weakened by the pres-

ence of the boundary. This nonthermal effect which
appears even when the boundary is absent may become
appreciable for observation when the acceleration is of
order necessary to observe the Unruh effect in atomic
systems [29]. With the presence of the boundary, the non-
thermal effect is expected to be enhanced for atoms on
certain trajectories and thus more likely to be observed. For
a given atom with a certain polarization, a typical transition
frequency and a certain acceleration a, one can find a value
of z where the nonthermal correction induced by the pres-
ence of the boundary is comparable with that already
present without boundaries. For example, if the atom is
polarized in the z-direction, then for a typical transition
frequency of a hydrogen atom !bd � 1015 s�1, and an
acceleration a� 1025 cm=s2, typical acceleration for the
Unruh effect to be observable in atomic systems, one can
show that this value of z is z� 10�5 cm.

At the same time, it is interesting to note that, for an
accelerated atom which is only polarized in the x or y or z
direction, there exists a certain value of z for every pair of a
and !bd, such that a2

!2
bd
� 3

16 fii�!bd; z; a� � 0; that is, for

atoms accelerated on the trajectory characterized by this
value of z, the nonthermal corrections vanish.
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Let us now note that as the acceleration, a, approaches
zero, one has

 fxx�!bd; z; a� � fx�z; !bd� �

�
13� 4z2!2

bd

3!2
bd

cos�2z!bd�

�
3� 32z2!2

bd

6z!3
bd

sin�2z!bd�

�
a2 �O�a�4;

(61)

 fyy�!bd; z; a� � fy�z; !bd� �

�
7� 4z2!2

bd

3!2
bd

cos�2z!bd�

�
9� 32z2!2

bd

6z!3
bd

sin�2z!bd�

�
a2 �O�a�4;

(62)

 

fzz�!bd; z; a� � fz�z; !bd� �

�
16z

3!bd
sin�2z!bd�

�
16

3!2
bd

cos�2z!bd�

�
a2 �O�a�4; (63)

and
 

fxz�!bd; z; a� �
�

4z2!2
bd � 1

z2!3
bd

sin�2z!bd�

�
2

z!2
bd

cos�2z!bd�

�
a�O�a�3: (64)

This shows that the rate of change of the mean atomic
energy will be that for an inertial atom found in the
preceding section plus an acceleration-dependent correc-
tion, and if the acceleration equals zero, we recover the
result of Sec. III.

We now examine what happens as the atom is placed
closer and closer to the boundary (z! 0). In this case, one
finds for any finite acceleration a that
 

1�
a2

!2
bd

�
3

16
fxx�!bd; z; a� �

�
4a2 �

16a4

5!2
bd

�
4!2

bd

5

�
z2

�O�z�4; (65)

 

1�
a2

!2
bd

� fyy�!bd; z; a� �
�
2a2 �

6a4

5!2
bd

�
4!2

bd

5

�
z2

�O�z�4; (66)

 

1�
a2

!2
bd

� fzz�!bd; z; a� � 2
�
1�

a2

!2
bd

�

�

�
2a2 �

18a4

5!2
bd

�
2!2

bd

5

�
z2

�O�z�4; (67)

and

 fxz�!bd; z; a� �
�
32a

3
�

32a3

!3
bd

�
z�O�z�3: (68)

Therefore, if the atom is polarized in a direction parallel to
the conducting plane, then the spontaneous excitation rate
of the atom diminishes to zero quadratically in z [refer to
Eqs. (65) and (66)] as the boundary is approached (z! 0).
Recall the result in the preceding section, we see that the
fact that the total excitation rate vanishes on the boundary
is independent of whether the atom is accelerated or in
uniform motion and this can be understood as a result of
the fact that the tangential components of the electric field
vanish on the conducting plane. However, two parallel
directions, the x-direction (along the acceleration) and
the y-direction (perpendicular to the acceleration), are
now not equivalent as in the inertial case, since fxx and
fyy are not equal. On the other hand, if the atom’s polar-
ization is perpendicular to the conducting plane, then as z,
the distance of the atom from the boundary, approaches
zero, we obtain

 �
dHA���
d�

�
zz

tot
� �

2e2

3�

� X
!b>!d

!4
bdjhbjrz�0�jdij

2

�
a2

!2
bd

� 1
��

1�
1

e�2�!bd=a� � 1

�

�
X

!b<!d

!4
bdjhbjrz�0�jdij

2

�
a2

!2
bd

� 1
�

1

e�2�j!bdj=a� � 1

�
; (69)

which is just two times the corresponding result in an
unbounded Minkowski space [25]. This enhancement can
be attributed to the fact that the reflection at the boundary
doubles the normal component of the fluctuating electric
field. The above analysis tells us that even if the atom is
isotropically polarized, each of three equal polarizations

will be weighted differently in terms of its contribution to
the rate of change of the mean atomic energy.

Finally, another interesting feature to be noted is that if
the polarization of the atom is in the x� z plane, the rate of
change of the atomic energy gets an extra contribution
associated with fxz as compared with the inertial case.
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This extra contribution vanishes when a goes to zero and
we recover the result of the inertial case as expected. Also,
as z, the distance of the atom to the boundary, approaches
zero or infinity, the contribution diminishes to zero too.

V. CONCLUSIONS

In conclusion, assuming a multipolar coupling between
a multilevel atom and a quantum electromagnetic field, we
have studied the spontaneous emission and absorption of
both an inertial and a uniformly accelerated atom near a
conducting plane in vacuum and separately calculated the
contributions of vacuum fluctuations and radiation reaction
to the rate of change of the atomic energy.

In the case of an inertial atom, our results show that both
the contributions of vacuum fluctuations and radiation
reaction to the rate of change of the atomic energy are
modified by the presence of the boundary, but the balance
between them remains for ground-state atoms and this
ensures the atom’s stability in its ground state. The sponta-
neous emission rate of the atom in this case is an oscillating
function of the atom’s distance from the boundary and this
oscillating behavior may offer a possibility for experimen-
tal test.

If the atom moves with constant proper acceleration, the
perfect balance between the contributions of vacuum fluc-
tuations and radiation reaction that ensures the stability of
ground-state atoms is disturbed, making spontaneous tran-
sition of ground-state atoms to excited states possible in a
vacuum with a conducting boundary. The presence of the

boundary modulates the spontaneous absorption rate with
functions dependent on the acceleration and the atom’s
distance from the boundary. The boundary-induced con-
tribution is effectively a nonthermal correction, which
enhances or weakens the nonthermal effect already present
in the unbounded case, thus possibly making the effect
easier to observe. The appearance of nonthermal correction
terms suggest that the effect of electromagnetic vacuum
fluctuations is not totally equivalent to that of a thermal
field, as is the case for a scalar field in the unbounded space
[7]. However, it is interesting to note that for atoms on
some particular trajectories, the nonthermal correction in-
duced by the presence of the boundary and that already
present in the unbounded case may cancel. The calcula-
tions performed in this paper also tell us that each of three
polarizations of the atom is weighted differently in terms of
its contribution to the rate of change of the mean atomic
energy even if the atom is isotropically polarized, as a
result of the anisotropy of the configuration due to the
presence of the boundary and the atom’s acceleration.
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