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We analyze the large-order behavior of the perturbative weak-field expansion of the effective
Lagrangian density of a massive scalar in de Sitter and anti–de Sitter space, and show that this
perturbative information is not sufficient to describe the nonperturbative behavior of these theories, in
contrast to the analogous situation for the Euler-Heisenberg effective Lagrangian density for charged
scalars in constant electric and magnetic background fields. For example, in even-dimensional de Sitter
space there is particle production, but the effective Lagrangian density is nevertheless real, even though its
weak-field expansion is a divergent nonalternating series whose formal imaginary part corresponds to the
correct particle production rate. This apparent puzzle is resolved by considering the full nonperturbative
structure of the relevant Feynman propagators, and cannot be resolved solely from the perturbative
expansion.
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I. INTRODUCTION

A fundamental result in the study of effective actions in
gauge theories is the Euler-Heisenberg QED effective ac-
tion arising from a single spinor (or charged scalar) loop in
the presence of a constant field strength F�� [1– 4]. This
result serves as the starting point for many calculations of
vacuum polarization effects both in QED and QCD. The
effective action can be found nonperturbatively in this case
because in such a constant background field, the Dirac (or
Klein-Gordon) operator has a simple spectrum. A weak-
field expansion of the nonperturbative answer can be iden-
tified term-by-term with the perturbative diagrammatic
expansion of the effective action. For example, for a con-
stant electric or magnetic field the weak-field expansion of
the effective action consists of a perturbative series with
coefficients that grow factorially in magnitude, a behavior
typical of a wide range of perturbation theory problems in
physics [5]. For a constant E field, the perturbative series is
a nonalternating divergent series, whose nonperturbative
imaginary part is associated (via a Borel dispersion rela-
tion) with the instability of the vacuum in an electric field
background [6,7].

A natural gravitational analog of the constant electro-
magnetic field case is a theory in a manifold with a constant
curvature [8,9]. de Sitter (dS) and anti de Sitter (AdS)
spaces provide such a background and in this paper we
apply such a large-order perturbation theory analysis to the
effective action for a massive scalar field (the analysis for
spinors is very similar) in a de Sitter or anti de Sitter
background. Since these backgrounds have constant cur-

vature R, we expect the gravitational effective action to
have a weak-field expansion of the form [10–12]

 S �
Z
ddx

���
g
p
�a1R� a2R

2 � a3R
3 � . . .�; (1.1)

where the an are (dimensionful) expansion coefficients. As
in the case of the Euler-Heisenberg action, the de Sitter and
anti de Sitter backgrounds are sufficiently simple that the
effective actions can be computed in closed-form without
resort to perturbation theory in R [8,9,13–24]. Therefore,
one can carry out a complete large-order perturbative
analysis of the associated weak-field expansion, and study
its Borel properties and possible nonperturbative imagi-
nary parts, just as in the QED case in [6,7]. This provides
information about the scalar loop contribution to the low
energy graviton affective action [10–12]. In odd-
dimensional space-time, for both AdS and dS, one finds
that the effective action has a convergent weak-field ex-
pansion, and correspondingly there is no nonperturbative
imaginary part, consistent with the absence of particle
production in odd dimensions [16–18,24]. In even dimen-
sions, the AdS case is Borel summable and real, once again
consistent with the absence of particle production in AdS
space. However, for even-dimensional dS space the weak-
field perturbative series is a nonalternating divergent series,
for which a formal Borel analysis along the lines of
[6,7] leads to a nonperturbative imaginary part coinciding
with the particle production rate computed through a
Bogoliubov transformation analysis [16–18,24]. But the
even-dimensional dS effective Lagrangian density is man-
ifestly real, so this shows that the large-order perturbative
behavior alone is not sufficient to capture the correct non-
perturbative physics. In this paper we explain and resolve
these issues.
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The paper is organized as follows. In Sec. II we reca-
pitulate briefly the well-known Euler-Heisenberg results
for a charged scalar field interacting with a constant back-
ground magnetic/electric field. We express the effective
Lagrangian densities for these cases in a way that can be
compared with the gravitational case described later. We
recall the Borel summation analysis in some detail since it
is quite relevant for the gravitational case. In Sec. III, we
derive the effective Lagrangian densities for a scalar field
in a de Sitter/anti–de Sitter background in dimension d,
through the method of the coincidence limit of the
Feynman propagator. We carry out a weak-curvature ex-
pansion of the effective Lagrangian density and analyze the
behavior of the large-order terms in this perturbative series.
We show that the effective action obtained through Borel
summation is real in anti–de Sitter space as well as in odd-
dimensional de Sitter spaces. The Borel analysis of the
even-dimensional dS case is more subtle, and raises an
interesting puzzle concerning the connection between per-
turbative and nonperturbative physics in gravitational theo-
ries. We present a resolution of this puzzle in Sec. IV, and
conclude with a brief summary in Sec. V. In the appendix,
we collect some formulas on the multiple gamma functions
that are used in the text.

II. SCALAR EFFECTIVE ACTION IN
ELECTROMAGNETIC BACKGROUNDS

In this section, we briefly review the Borel summation
analysis [6,7] of the Euler-Heisenberg effective action for
charged particles in a constant electromagnetic back-
ground field [1– 4]. First, consider scalar particles in a
constant magnetic field of strength B. The effective
Lagrangian density for the theory can be expressed in
terms of a proper-time integral of the form (we suppress
factors of electric charge):

 L �B� �
�
B

4�

�
2 Z 1

0

ds

s2 e
��m2=B�s

�
1

sinh�s�
�

1

s
�
s
6

�
;

(2.1)

wherem denotes the mass of the charged particle and B the
magnitude of the magnetic field. The first subtraction is the
free-field subtraction and the last term corresponds to
charge renormalization. This integral is easily seen to
converge for all positive B=m2, and an asymptotic expan-
sion of the integral in the weak-field limit yields the
perturbative expansion:

 L �B� �
�
m2

4�

�
2 X1
n�0

�B2n�4

�2n� 2��2n� 3��2n� 4�

�
2B

m2

�
2n�4

:

(2.2)

Here the modified Bernoulli numbers are defined as:
�B2n � �2

1�2n � 1�B2n. Note that only even powers of B

appear, a reflection of Furry’s theorem. The perturbative
coefficients in (2.2) alternate in sign and grow factorially in
magnitude [25]

 

a�B�n �
22n�4 �B2n�4

�2n� 2��2n� 3��2n� 4�

� 2��1�n�1 ��2n� 2	

�2n�4

X1
k�1

�
2

�2k�2n�4 �
1

k2n�4

�
:

(2.3)

Thus, the perturbative weak-field expansion (2.2) is an
alternating divergent series, and is Borel summable.
Indeed, using the basic Borel summation relation [26,27]

 X1
n�0

��1�n���n� ��gn �
1

�

Z 1
0

ds
s

�
1

1� s

��
s
g

�
�=�


 exp���s=g�1=�	; (2.4)

together with the large-order growth (2.3) of the perturba-
tive expansion coefficients, one can show that the proper-
time expression (2.1) is indeed the Borel sum of the diver-
gent series (2.2) [Recall the expansion 1=sinh�s�� �1=s�
s=6��2s3P1

k�1���1�k�1=�k��2�s2��k��2�	]. This is, of
course, just a self-consistency check, because the weak-
field expansion (2.2) was obtained from the closed-form
nonperturbative expression (2.1) in the first place. For later
comparison with the gravitational case, we list here an
alternative integral representation of L�B�, in terms of
the digamma function,  �z� � d ln��z�=dz, [which can in
turn be written in terms of the multiple gamma function �2

[28], using the result (A6) in the appendix]:

 

L�B� �
�
B

2�

�
2
�Z m2=2B

0
x 
�
1

2
� x

�
dx�

m2

2B
ln�

�
1

2
�
m2

2B

�

�
3

4

�
m2

2B

�
2
�
m2

4B
ln�2�� �

ln2� 1

24
�

1

2
� 0��1�

�

�
1

24
�

1

2

�
m2

2B

�
2
�

ln
�
m2

2B

��
: (2.5)

For a constant electric field background instead, the only
change in the perturbative series expansion (2.2) is the
replacement B2 ! �E2, which results from the sole
Lorentz invariant quantity (B2 � E2), when only one or
the other field is present. Thus the perturbative weak-field
expansion in this case is

 L �E� �
�
m2

4�

�
2 X1
n�0

��1�n �B2n�4

�2n� 2��2n� 3��2n� 4�

�
2E

m2

�
2n�4

:

(2.6)

The difference compared to the magnetic case (2.2) is that
the series (2.6) is nonalternating:
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 a�E�n � ��1�na�B�n : (2.7)

Thus, the weak-field expansion (2.6) is not Borel sum-
mable. Nevertheless, the conventional formal Borel pre-
scription [26,27,29,30] leads to an imaginary part for a
divergent nonalternating series of this form:
 

Im
�X1
n�0

���n� ��gn
�
� Im

�
1

�

Z 1
0

ds
s

�
1

1� s

��
s
g

�
�=�


 exp���s=g�1=�	
�

�
�
�

�
1

g

�
�=�

exp���1=g�1=�	: (2.8)

Applying this Borel formula, together with the large-order
growth of the perturbative coefficients in (2.3), one derives
the well-known result for the imaginary part of the effec-
tive Lagrangian density:

 Im �L�E�� �
E2

16�3

X1
k�1

��1�k�1

k2 exp
�
�
m2�k
E

�
: (2.9)

These formal steps amount to assuming no further poles or
cuts in the Borel plane beyond the simple pole at s � 1 in
(2.8), for which a principal parts prescription is used for the
calculation of the imaginary part. The a posteriori justifi-
cation for these manipulations is that the final result agrees
with that obtained by analytically continuing the Hurwitz
zeta function or multiple gamma function expression for
L�B� under B! iE, and gives the correct nonperturbative
proper-time expression:

 L �E� �
�
E

4�

�
2 Z 1

0

ds

s2 e
��m2=E�s

�
1

sin�s�
�

1

s
�
s
6

�
:

(2.10)

This is essentially the argument of [6,7], adapted from
spinor QED to scalar QED. It shows that from a knowledge
of the large-order divergence behavior (2.3) of the pertur-
bative expansion, we can deduce nonperturbative informa-
tion about the imaginary part of the effective Lagrangian
density, under the assumption that no other Borel poles or
cuts contribute. In certain cases one can even extend this
analysis to inhomogeneous background fields, with the
derivative expansion capturing nonperturbative informa-
tion in its divergence [31]. These results provide a working
illustration of Dyson’s formal physical argument [32] con-
cerning the divergence of QED perturbation theory: one
can argue that the weak-field expansions (2.2) and (2.6)
could not be convergent, because if they were, they could
not capture the genuine nonperturbative effect of pair
production. This idea of connecting nonperturbative phys-
ics with the large-order behavior of perturbation theory
goes back to the fundamental quantum mechanical analy-

ses of Vainshtein in �x3 theory [29], and Bender and Wu in
�x4 theory [30], as well as the field theory arguments of
Lipatov [33].

The main point of this paper is to show that while the
gravitational cases of de Sitter and anti–de Sitter back-
grounds are very similar to these constant electromagnetic
backgrounds, they have the important difference that this
naive Borel approach is not sufficient to deduce the true
nonperturbative behavior. In particular, genuine nonpertur-
bative information concerning the Feynman propagators is
required in order to compute the correct effective
Lagrangian density. A simplistic application of Borel for-
mulas like (2.8) is not enough to bridge the gap between the
perturbative expansion and the nonperturbative structure of
the theory.

III. SCALAR EFFECTIVE ACTION IN
GRAVITATIONAL BACKGROUNDS

As noted by many authors, a natural generalization of
the constant field strength electromagnetic backgrounds to
gravity is that of constant curvature gravitational back-
grounds [8,9]. The simplest of these are the anti–de
Sitter (AdS) and the de Sitter (dS) spaces. Once again,
the Klein-Gordon equation in such a background is solv-
able, and so all computations can be done in full detail.
AdS is analogous to a magnetic background, while dS is
analogous to an electric background. Analysis of the
Bogoliubov transformation between certain ‘‘in’’ and
‘‘out’’ vacuum states indicates nonperturbative particle
production in dS backgrounds [8,16–18,24], but not in
AdS backgrounds. Furthermore, in the de Sitter space,
particle production occurs only in even dimensions, not
in odd dimensions [24]. The propagators and effective
Lagrangian densities for dS and AdS have been computed
in many different ways. Here we first briefly review these
results, expressing them in compact forms suitable for
comparing and contrasting with the effective Lagrangian
density of Euler-Heisenberg for constant electromagnetic
backgrounds described in the previous section. We then
interpret these results in terms of large-order perturbation
theory and Borel summation.

A convenient route to the effective Lagrangian density is
to consider the coincident limit of the Feynman propagator
G�F�, which is related to the effective Lagrangian density
as:

 

@L

@m2
�
i
2
G�F��x; x�: (3.1)

Integrating this relation over m2 then determines the effec-
tive Lagrangian density [8,9,19,21]. Exactly equivalent
results are obtained from mode expansions or using zeta
functions [9,14,20,22]. The Feynman propagators for mas-
sive scalars in AdSd [14,19] and dSd [8] have the forms:
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 � iG�F�AdSd
�x; x� �

1

K

�
K
4�

�
d=2 ��1� d

2	��
d�1

2 �
�����������������������
m2

K � �
d�1

2 �
2

q
	

��1� d�1
2 �

�����������������������
m2

K � �
d�1

2 �
2

q
	

(3.2)

 � iG�F�dSd
�x; x� �

1

K

�
K
4�

�
d=2 ��1� d

2	��
d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
	��d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
	

��12� i
�����������������������
m2

K � �
d�1

2 �
2

q
	��12� i

�����������������������
m2

K � �
d�1

2 �
2

q
	

(3.3)

where R � �d�d� 1�K is the Ricci scalar, with K posi-
tive. In our conventions, the curvature scalar is positive in
anti–de Sitter space and negative in de Sitter space. We
expand about various integer values of the dimension d,
and then integrate over m2, to derive the effective
Lagrangian density. For dimensions d � 2, 3, 4, this co-
incides with the renormalized effective Lagrangian density
[8,9,19,21], and in higher dimensions this procedure can be
taken as a definition of the corresponding effective
Lagrangian density. It is clear already from (3.2) and
(3.3) that odd and even dimensions are very different.

Given the effective Lagrangian density, we can expand
in a weak-field perturbative expansion, the gravitational
analogues of (2.2) and (2.6):

 L AdSd�K� �
�
m2

4�

�
d=2X

n

a�AdSd�
n

�
K

m2

�
n
; (3.4)

 L dSd�K� �
�
m2

4�

�
d=2X

n

a�dSd�
n

�
K

m2

�
n
: (3.5)

Notice that in this weak-field expansion all powers of the
gravitational curvature K appear, not just even powers as in
the electromagnetic case.

A. Odd dimensions

For d odd (and d � 3), the effective Lagrangian den-
sities obtained from (3.1)–(3.5) are:

 

LAdSd�K��
��1��d�1�=2�

��d2�

�
m2

4�

�
d=2Z ���������������������������������

1���d�1�=2�2�K=m2�
p

0
dyy2

Y�d�3�=2

j�1

�
y2�

K

m2 j
2

�
(3.6)

 

LdSd�K� �
��1��d�1�=2�

��d2�

�
m2

4�

�
d=2 Z ���������������������������������

1���d�1�=2�2�K=m2�
p

0
dyy2

Y�d�3�=2

j�1

�
y2 �

K

m2 j
2

�
coth

�
�

������
m2

K

s
y
�
: (3.7)

It is clear that each of these integral representations can be expanded in a convergent perturbative weak-field expansion of
the form in (3.4) and (3.5), in powers of the curvature K. Furthermore, the coefficients of such an expansion are related by
the replacement K ! �K [compare with (2.7)]:

 a�AdSd�
n � ��1�na�dSd�

n : (3.8)

Note that in the perturbative weak-curvature limit, the coth factor in (3.7) reduces to unity. Since these expansions are
convergent, there is no issue with Borel summation, nor any indication of a nonperturbative imaginary contribution to the
effective Lagrangian density. This is consistent with the absence of particle production in AdS or dS space in odd
dimensions [24].

B. Even dimensions

In even dimensions, the situation is very different. For AdSd, with d even, one finds

 

LAdSd�K� �
2��1��d=2��1

��d2�

�
K
4�

�
d=2
�
P d

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s �
�
Z �������������������������������

�m2=K����d�1�=2�2
p

0
dxx

� Y�d�4�=2

j�0

�
x2 �

�
j�

1

2

�
2
��




�
 
�
d� 1

2
� x

�
�

1

2
ln
�
K

4��2

���
; (3.9)

where P d is a polynomial of order d, whose specific form is known, but (being a polynomial) is not important for a
discussion of the divergent large-order behavior of the weak-curvature expansion of the effective Lagrangian density.
When d � 2, the product factor inside the integral in (3.9) is absent. The scale �2 is introduced by dimensional
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regularization, and in 4 dimensions it can be used to define a renormalized effective Lagrangian density [19]. Using the
identity (A6) derived in the appendix, this effective Lagrangian density can be expressed in a compact form in terms of
multiple gamma functions [28]:

 L AdSd�K� �
��1�d=2��d�1

2 �K
d=2

2��d�1�=2

�
ln
� �2

d�
d�1

2 �
�����������������������
m2

K � �
d�1

2 �
2

q
�

�d�1�
d�1

2 �
�����������������������
m2

K � �
d�1

2 �
2

q
�

�
� ~P d

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s �

� ln
�
K

4��2

�
~Rd

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s ��
: (3.10)

Here ~P d and ~Rd are polynomials of order d, whose explicit forms are not significant for our discussion. For d � 4, the
AdS4 effective Lagrangian density was expressed in [21] in terms of the multiple gamma functions �4, �3 and �2, but using
property (A1) of the multiple gamma functions (see appendix), one can in general reduce this to the even more compact
form (3.10) in terms of just �d and �d�1.

The analogous expressions for dSd are

 L dSd�K� �
2��1��d=2��1

��d2�

�
K
4�

�
d=2
�
P d

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s �
�
Z �������������������������������

�m2=K����d�1�=2�2
p

0
dxx

� Y�d�4�=2

j�0

�
x2 �

�
j�

1

2

�
2
��




�
Re
�
 
�
d� 1

2
� ix

��
�

1

2
ln
�
K

4��2

���
; (3.11)

where, as before, the product factor inside the integral is absent for d � 2. Using the identity (A6) derived in the appendix,
this can also be expressed in terms of multiple gamma functions:

 L dSd�K� � �
1

2

��d�1
2 �K

d=2

2��d�1�=2

�
~P d

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s �
� ln

�
K

4��2

�
~Rd

� ��������������������������������
m2

K
�

�
d� 1

2

�
2

s �

� ln
� �2

d�
d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
��2

d�
d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
�

�d�1�
d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
��d�1�

d�1
2 � i

�����������������������
m2

K � �
d�1

2 �
2

q
�

��
: (3.12)

We recognize the prefactor as�1=2 times the inverse of the volume of dSd. This agrees with the compact form for the log
determinant of the Klein-Gordon operator, in terms of �d and �d�1, first found using a zeta function approach by Voros
[34] for dS2, and generalized to dSn by Quine et al. [35]. In the zeta function approach it also follows from the factorization
of the sphere problem into two hemisphere problems [22], with Dirichlet and Neumann boundary conditions contributing,
respectively, the multiple gamma terms:

 Dirichlet: ln
� �d�

d�1
2 � i

�����������������������
m2

K � �
d�1

2 �
2

q
��d�

d�1
2 � i

�����������������������
m2

K � �
d�1

2 �
2

q
�

�d�1�
d�1

2 � i
�����������������������
m2

K � �
d�1

2 �
2

q
��d�1�

d�1
2 � i

�����������������������
m2

K � �
d�1

2 �
2

q
�

�

Neumann: ln
�

�d

�
d� 1

2
� i

��������������������������������
m2

K
�

�
d� 1

2

�
2

s �
�d

�
d� 1

2
� i

��������������������������������
m2

K
�

�
d� 1

2

�
2

s ��
:

(3.13)

The perturbative weak-curvature expansions (3.4) and
(3.5) of these AdSd and dSd effective Lagrangian densities
can be derived using the asymptotic expansion of the
digamma function [25]

  �z� � lnz�
1

2z
�
X1
n�1

B2n

2nz2n ; z! 1;

j arg�z�j<�;

(3.14)

or, equivalently, using the known asymptotic expansions of
the multiple gamma functions [36]. It is clear from the

form of the effective Lagrangian densities (3.9) and (3.11)
that these perturbative weak-field expansion coefficients
are related by

 a�AdSd�
n � ��1�na�dSd�

n ; (3.15)

just as in the odd-dimensional case. However, in contrast to
the odd-dimensional case, the even-dimensional weak-
curvature expansions are divergent series. The leading
large-order behavior of the expansion coefficients can be
extracted using (3.14):
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 a�AdSd�
n �

B2n�d

n�2n� d�
� 2��1�n

��2n� d� 1�

�2��2n�d
(3.16)

 a�dSd�
n � ��1�n

B2n�d

n�2n� d�
� 2

��2n� d� 1�

�2��2n�d
: (3.17)

Thus, for AdSd, with d even, the perturbative weak-
curvature expansion is a divergent alternating series, analo-
gous to the situation (2.2) for a charged scalar field in a
magnetic background field. This series is Borel summable,
and real. On the other hand, for dSd, with d even, the
perturbative weak-field expansion is a divergent nonalter-
nating series, analogous to the situation (2.6) for a charged
scalar in an electric background field. This series is not
Borel summable. Nevertheless, the effective Lagrangian
density is actually real, as is manifest from the expressions
(3.11) and (3.12). (Incidentally, this can also be seen from
the fact that the coincident limit of the Feynman propaga-
tor in (3.3) is manifestly real.)

However, suppose one only knew the perturbative weak-
field expansion coefficients a�dSd�

n of the effective
Lagrangian density; or (more likely) only the leading
large-order behavior (3.17) of these coefficients. Then, in
the absence of further information, one would be tempted,
by analogy with the electric field case discussed in Sec. II,
to apply the Borel dispersion relation rule (2.8), and deduce
an imaginary part:

 Im �LdSd�K�� � e
�2�m=

���
K
p

�incorrect�: (3.18)

The fact that the exponent depends linearly on m, rather

than quadratically as in the electric field case (2.9), can be
traced from (2.8) to the fact that the expansion is in powers
of K=m2, rather than in powers of �E=m2�2. However,
(3.18) is not correct, as the full dSd effective Lagrangian
density (3.11) is manifestly real. Interestingly, though, the
imaginary part (3.18) agrees with the particle production
rate predicted by the Bogoliubov transformation analysis
[16–18,24]. This puzzle of a real effective Lagrangian
density in the de Sitter case, even though one might expect
a gravitational analogue of Schwinger particle production,
was pointed out long ago for d � 4 by Candelas et al. [8]
and Dowker et al. [9], before the Bogoliubov transforma-
tion analyses had computed the rate of particle production
[16–18,24]. Here we have rephrased this in terms of Borel
summation and the relation between the perturbative weak-
field expansion and the full nonperturbative result.

IV. RESOLUTION

The resolution of this puzzle lies in the observation that
while the weak-curvature perturbative expansion coeffi-
cients in the anti–de Sitter and de Sitter backgrounds are
related by the simple change of sign of the curvature K !
�K as in (3.15), this is not true of the full (nonperturbative)
Feynman propagators, and therefore of the full effective
Lagrangian densities. Specifically, the continuation K !
�K does not map the de Sitter and anti de Sitter Feynman
propagators onto one another [14,19,20]. Indeed, using the
reflection formula for the gamma function, we can express
the AdSd coincident propagator (3.2) as

 

�iG�F�AdSd
�x; x� �

1

K

�
K
4�

�
d=2 ��1� d

2	��
d�1

2 �
�����������������������
m2

K � �
d�1

2 �
2

q
	��d�1

2 �
�����������������������
m2

K � �
d�1

2 �
2

q
	

��12�
�����������������������
m2

K � �
d�1

2 �
2

q
	��12�

�����������������������
m2

K � �
d�1

2 �
2

q
	




�
sin
�
�
�
d� 1

2

��
� tan

�
�

��������������������������������
m2

K
�

�
d� 1

2

�
2

s �
cos

�
�
�
d� 1

2

���
: (4.1)

The � terms on the first line of (4.1) do continue into the
dSd case (3.3) under K ! �K, but the factor on the second
line does not, and is the source of the difference. Under
K ! �K, the extra term tanh��

���������������������������������������������
m2=K � ��d� 1�=2�2

p
� is

nonperturbative as far as a weak-curvature expansion is
concerned, so this difference is not seen in the perturbative
weak-curvature expansions (3.4) and (3.5).

By contrast, in the electromagnetic case, under the con-
tinuation B2 ! �E2, the Feynman propagators do con-
tinue into one another, with the appropriate boundary
conditions for the magnetic and electric background fields,
respectively [37–39]. This is true of the full background-
field propagators, as well as of their weak-field expansions.
But in the gravitational case, the continuation K !�K
does not map the boundary conditions of the de Sitter and
anti de Sitter cases into one another. For dSd and AdSd, the

propagator can be expressed in terms of hypergeometric
functions, but the particular linear combination required to
satisfy the Feynman boundary conditions is different in
the two cases, and does not continue under K ! �K
[14,19,20]. However, as is clear from (4.1), this difference
is not seen in the perturbative sector, but only in the non-
perturbative sector.

From the viewpoint of Borel summation, the puzzle is
resolved as follows. Consider the digamma function
 �x� � �d=dx� ln��x�, which forms the kernel of the inte-
gral representations of the expressions for the effective
Lagrangian densities in (3.9) and (3.11). The asymptotic
expansion of the real part of  �1=2� iy� is [25]

 Re
�
 
�

1

2
� iy

��
� lny�

X1
n�1

��1�n �B2n

2ny2n ; (4.2)
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for large real y. The sum on the right hand side is a non-
alternating divergent series for y real, so the Borel formula
(2.8) suggests it should have a nonperturbative imaginary
part. But clearly the left hand side of (4.2) is real! To
resolve this apparent discrepancy, we apply the Borel
relation (2.8) to the divergent sum and find

 Im
�X1
n�1

��1�n �B2n

2ny2n

�
�
�
2
�1� tanh��y��: (4.3)

On the other hand, we also know that [25]

  
�

1

2
� z

�
� lnz�

X1
n�1

�B2n

2nz2n ; z!1;

j arg�z�j<�;

(4.4)

and furthermore (from the gamma function duplication
formula) [25]

 Im
�
 
�
1

2
� iy

��
�
�
2

tanh��y�: (4.5)

Putting these together we see that in fact the real part (4.2)
has a nonperturbatively small (as y! 1) imaginary part
 

Re
�
 
�
1

2
� iy

��
� lny�

X1
n�1

��1�n �B2n

2ny2n � i
�
2
�1� tanh��y��;

(4.6)

which exactly cancels the imaginary part (4.3) of the
divergent sum, making the whole expression real, as it
clearly must be. The imaginary part in (4.6) does not
contribute to the perturbative asymptotic expansion at large
real y. But, having ignored this term, it is inconsistent then
to include the nonperturbative imaginary term (4.3) de-
duced from a Borel analysis of the divergent nonalternating
perturbative expansion. Thus, if we only knew the pertur-
bative expansion on the right-hand side of (4.2), we might
erroneously deduce a nonperturbative imaginary part,
which nevertheless is cancelled by the nonperturbative
part in (4.6) once all nonperturbative contributions are
included. Since the integral representations (3.9) and
(3.11) of the AdSd and dSd effective Lagrangian densities
are based on the  function, this is exactly what happens
when a naı̈ve application of the Borel relation (2.8) sug-
gests a nonperturbative imaginary part (3.18) for the even-
dimensional de Sitter effective Lagrangian density.

Perhaps even more interesting is the fact that this error
actually gives the correct particle production rate, deduced
from a Bogoliubov transformation argument. This is be-
cause the basic divergence of the weak-field expansion
comes from the propagator’s hypergeometric function at
the coincident point. The Bogoliubov argument involves a
different part of the propagator, that does have an imagi-
nary part [16–18,24], but it still has the same basic diver-
gence property in its weak-field expansion. Ultimately, the
physical reason for the apparent discrepancy is that dSd has

a horizon, and so particle production is an observer depen-
dent concept, as has been stressed by Gibbons and
Hawking [40]. This means that particle production is not
necessarily associated directly with an imaginary part of
the effective Lagrangian density derived from the Feynman
propagator.

V. CONCLUSION

In this paper we have analyzed the large-order behavior
of the perturbative weak-field expansion of the effective
Lagrangian density for a massive scalar field in de Sitter
and anti de Sitter space. This is a gravitational analogue of
the constant background-field Euler-Heisenberg cases in
QED. For AdS or dS in odd dimensions the effective
Lagrangian density has a convergent perturbative expan-
sion, consistent with the absence of nonperturbative parti-
cle production processes in odd-dimensional AdS or dS
space. In even dimensions the effective Lagrangian density
has a divergent perturbative expansion. For AdS this di-
vergent series is alternating and Borel summable, analo-
gous to the case of a constant background magnetic field in
the Euler-Heisenberg QED case. There is no nonperturba-
tive particle production. For even-dimensional dS the di-
vergent series is nonalternating, but in fact the effective
Lagrangian density is real. Nevertheless, there is particle
production, as found in a Bogoliubov analysis. This puzzle
is resolved by a careful Borel analysis, and by noting that
genuine nonperturbative information is needed concerning
the Feynman propagators, and this information is not
seen in the perturbative weak-field expansion in even-
dimensional dS space. This shows that the connection
between perturbative and nonperturbative physics is more
subtle in the gravitational case than in the gauge back-
ground case. This may be of interest for more general
gravitational effective actions [41].
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APPENDIX: MULTIPLE GAMMA FUNCTIONS

The multiple gamma functions �n�z� were introduced
over a century ago by Barnes [28]. They can be defined
uniquely [42] by the conditions:

 �n�1�z� 1� �
�n�1�z�
�n�z�

(A1)

 �1�z� � ��z� (A2)

 �n�1� � 1 (A3)
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 ��1�n�1 d
n�1

dzn�1 ln�n�z� � 0: (A4)

Various integral representations and asymptotic expan-
sions can be found in [21,28,36]. In some papers these
functions are written in terms of Gn�z� where �n�z� �
�Gn�z�	��1�n�1

. The most useful representation for our pur-
poses can be derived from a result listed in [21]:
 

ln�n�1� z� �
��1�n�1

�n� 1�!

Z z

0
dx
�Yn�2

j�0

�x� j�
�
 �1� x�

�Qn�z�; (A5)

where the Qn�z� are known polynomials of degree n. From

this it follows that with n even:

 

ln
�

�2
n�
n�1

2 � z�

�n�1�
n�1

2 � z�

�
�

2

�n� 1�!

Z z

0
dxx




� Y�n=2��2

j�0

�
x2 �

�
j�

1

2

�
2
��


  
�
n� 1

2
� x

�
� ~Qn�z�: (A6)

This is precisely the identity needed to connect the form
(3.9) with (3.10), and (3.11) with (3.12).
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