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We apply the formalism of quantum cosmology to models containing a phantom field. Three models are
discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with
phantom field accompanied by a negative cosmological constant. In all these cases we calculate the
classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum
cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the
Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an
ordinary scalar field. We discuss, in particular, the behavior of wave packets in minisuperspace. For the
phantom field these packets disperse in the region that corresponds to the big-rip singularity. This thus
constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-
DeWitt equation. For the ordinary scalar field, the big-bang singularity is avoided. Some remarks on the
arrow of time in phantom models as well as on the relation of phantom models to loop quantum
cosmology are given.
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I. INTRODUCTION

It is a striking fact that our universe is currently accel-
erating [1]. A major open problem is to provide a funda-
mental type of matter which may be responsible for this,
since any of the forms of matter we know from our expe-
rience cannot explain this phenomenon. This matter is not
visible, but provides a dominant fraction of the energy
density in the universe and was therefore given the name
‘‘dark energy’’ (for a current review see for example [2]).
The best known, and perhaps the simplest candidate for
such a matter is the cosmological constant, but theoretical
physics provides more options. One of them is an evolving
scalar field with appropriate kinetic and potential energies.
In general, it may mimic various types of matter during
different periods of the cosmological evolution.

Dark energy is characterized by negative pressure which
causes the repulsion of matter in the universe and, as a
consequence, its acceleration. In terms of the standard
energy conditions in general relativity [3], dark energy
must violate the strong energy condition �� 3p > 0, � >
0. Assuming a barotropic equation of state of the matter in
the universe, p � w� (w � constant), where p and � are
the pressure and the density of dark energy, respectively, it
requires that w<� 1

3 .
However, according to more recent observations [4,5],

dark energy is even more biased towards larger negative
values of the barotropic index w & �1. This means that it

would have to violate the null energy condition %� p > 0
[3] and, consequently, all the remaining energy conditions
such as: the weak energy condition % > 0, %� p > 0, and
the dominant energy condition % > 0, �% < p< %. Dark
energy of this type was dubbed phantom [6,7]. A phantom
may be represented by an evolving scalar field which
possesses negative kinetic energy (often called ‘‘ghost
field’’). Although phantom fields lead to various problems
[8], they are observationally supported as a possible source
of dark energy and deserve thorough investigation (but see
[9] for an alternative view). Moreover, there may exist
phantom fields without pathologic behavior in the ultra-
violet regime [10]. Phantom models of the universe admit a
new type of singularity called a big-rip singularity [6,7,11].
At the big rip, energy density and pressure diverge as the
scale factor a�t� goes to infinity at a finite time. This is
different from an ordinary big crunch singularity, which
leads to a blowup of the energy density and pressure as the
scale factor approaches zero at a finite time. Another
possible singularity is the big brake where the expansion
rate is zero and the acceleration rate approaches minus
infinity [12]. Besides, more exotic types of singularities
may appear such as the sudden future singularity [13], the
generalized sudden future singularity [14] where there is a
blowup of the higher-order derivatives of the scale factor
with smooth evolution of the scale factor and the energy
density, the type III singularity [15] and the type IV singu-
larity [16] where the evolution of the scale factor is
smooth. These singularities have weaker properties than
a big rip [17].

In Ref. [18], classical phantom cosmologies were
studied and a large variety of possible cosmological sce-
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narios were found. Also, the duality relation between
standard matter and phantom matter models was revealed
(see also [19,20]) which has an analogon in the duality
symmetry present in superstring cosmology [21].

It is worth mentioning that, once the supernova data are
analyzed in a prior-free manner, an evolving equation of
state with a time-dependent barotropic index w � w�t� for
the dark energy is favored (cf. [22–24]). Such models were
also studied in the quantum context in [25] where a ca-
nonical momentum was attached to a time-dependent
barotropic index. Some authors have also studied the ther-
modynamical properties of phantom models [26,27].

In all these investigations, an evolving universe was
described by classical cosmology. Quantum effects were
only studied in certain phases of the evolution, for ex-
ample, close to a singularity, cf. [28], without applying
quantum theory to the universe as a whole. It is the purpose
of this paper to accomplish the latter goal, that is, to discuss
quantum cosmology with phantom fields. The interest
in this is due to the fact that for both experimental and
theoretical reasons it seems that quantum theory is univer-
sally valid [29]. Therefore, the universe as a whole has to
be described by quantum theory. If phantom fields play a
dominant role, it has to be investigated whether this
causes deviations from the standard formalism of quantum
cosmology and whether there are interesting physical
consequences.

Quantum cosmology must be based on a theory of
quantum gravity [30]. Candidates for such a theory include
string theory, loop quantum gravity and quantum geome-
trodynamics. Our present analysis will, like most investi-
gations of quantum cosmology, be based on the Wheeler-
DeWitt equation of quantum geometrodynamics. Inde-
pendently of the correct theory of quantum gravity, this
framework should yield an adequate description at least on
the energy scales below the Planck scale (if not on all
scales). If one approaches the Planck scale, modifications
such as loop quantum cosmology [31] might become nec-
essary. The investigations in our paper are independent of
such modifications and will be discussed in a future paper.

A central feature of the Wheeler-DeWitt equation is its
local hyperbolic signature [30,32]. In regions of configu-
ration space near closed Friedmann cosmologies, it is
globally hyperbolic, that is, there is only one minus sign
in the kinetic term [33]. The negative part of the kinetic
term is related to the scale factor of the Friedmann model,
which in a certain sense thus plays itself the role of a
phantom field. The presence of an indefinite kinetic
term is intimately connected with the attractive nature of
gravity [34].

Besides its hyperbolic character, the most important
feature of the Wheeler-DeWitt equation is its indepen-
dence of an external time parameter [30,32]. This holds,
in fact, for every system that is reparametrization invariant
at the classical level. Consistent discussions of quantum

cosmology must thus be based on the intrinsic structure of
this equation and avoid the use of an intuitive but wrong
picture of an external Newtonian time. For this purpose it is
necessary to study the classical trajectories in a configura-
tion space where the classical time parameter t is
eliminated.

The structure of the Wheeler-DeWitt equation is impor-
tant for the imposition of boundary conditions in quantum
cosmology. In the hyperbolic case one has a wave equation
whose form suggests imposing boundary conditions at
constant values of the scale factor, a. This is of importance,
for example, if one attempts to construct wave packets that
follow the classical trajectories in configuration space like
standing tubes [35–37]. It is also crucial for an under-
standing of what pre- and post big-bang phases mean in
quantum string cosmology [38,39]. The origin of the arrow
of time can in principle be traced back to the structure of
this wave equation [32,40,41].

The presence of a phantom field changes the structure of
the Wheeler-DeWitt equation: If only the phantom is
present besides the scale factor (‘‘phantom dominance’’),
its structure becomes elliptic, while in the general case it
becomes of a mixed (ultrahyperbolic) nature. This has
implications for the imposition of boundary conditions. A
change of signature in the Wheeler-DeWitt equation has
hitherto been noticed in the presence of nonminimally
coupled fields [42]. In our paper we shall present the
formalism of quantum phantom cosmology and some of
its main physical consequences.

Our paper is organized as follows. In Sec. II we shall
study and solve the classical equations of motion for the
phantom field in a Friedmann universe. After the presenta-
tion of the necessary equations, we give the solutions for
the classical trajectories in configuration space for three
models: A toy model with vanishing phantom potential
(Sec. II B), a model with exponential phantom potential
(Sec. II C), and a model with cosh-potential and a negative
cosmological constant (Sec. II D). For comparison, in all
these cases, we give the results for a nonphantom scalar
field. Section III contains in the same order the discussion
of the quantum theory for these models, both for a phantom
field and a corresponding ordinary scalar field. We are able
to solve the Wheeler-DeWitt equation exactly for the toy
model and the model with exponential potential. In par-
ticular, we discuss wave packet solutions and find that
quantum effects dominate in the region of the classical
big-rip singularity. Therefore, quantum effects occur at
large scales. Since the solutions of the Wheeler-DeWitt
equation are regular there, the big-rip singularity has van-
ished in the quantum theory. Furthermore, in the realistic
scalar field models, the wave function vanishes at the big
bang. Thus, this singularity is likewise excluded in the
quantum theory. In Sec. IV we give a summary of the
results and the outlook of the problem of the arrow of
time and possible modifications of the obtained picture
due to loop quantum cosmology.
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II. CLASSICAL PHANTOM COSMOLOGIES IN
CONFIGURATION SPACE

A. Classical equations

We consider a Friedmann universe with scale factor a�t�
and a homogeneous scalar field ��t�. We assume here that
the �-field dominates over other matter degrees of free-
dom, so that it is the only degree of freedom besides the
scale factor. The action reads
 

S �
3

�2

Z
dtN

�
�
a _a2

N2 �Ka�
�a3

3

�

�
1

2

Z
dtNa3

�
‘

_�2

N2 � 2V���
�
: (1)

Here, �2 � 8�G, N is the lapse function, � is the cosmo-
logical constant, V��� is a potential of the field�, K � 0,
�1 is the curvature index, and we have set c � 1. The
parameter ‘ distinguishes between a phantom field (where
‘ � �1) and an ordinary scalar field (where ‘ � �1).

We set N � 1, so the time parameter is the standard
Friedmann cosmic time. The action then becomes
 

S �
3

�2

Z
dt
�
�a _a2 �Ka�

�

3
a3

�

�
1

2

Z
dt�a3‘ _�2 � 2a3V����: (2)

The canonical momenta are given by

 �a � �
6a _a

�2 ; �� � ‘a3 _�: (3)

The canonical Hamiltonian H , which is constrained to
vanish, reads

 H � �
�2

12a
�2
a �

‘
2

�2
�

a3 � a
3 �

�2 � a
3V �

3Ka

�2 � 0:

(4)

Expressed in terms of the ‘‘velocities,’’ see (3), this con-
straint becomes identical to the Friedmann equation,

 

�
_a
a

�
2
� H2 �

�2

3

�
‘

_�2

2
� V���

�
�

�

3
�

K

a2 : (5)

The term in parentheses is the energy density of the scalar
field,

 � � ‘
_�2

2
� V���: (6)

We recognize that for the standard scalar field (‘ � 1), no
classically forbidden regions in configuration space exist
due to the indefiniteness of the total kinetic term. This is
different from the phantom case (‘ � �1), where only the
region

 V��� �
�

�2 �
3K

�2a2 � 0 (7)

is classically allowed (this restriction is due to the negative
definiteness of the total kinetic term).

The field � obeys the second-order equation of motion

 

��� 3
_a
a

_�� ‘V0��� � 0; (8)

which is equivalent to the conservation equation _��
3H��� p� � 0, provided the standard perfect-fluid
energy-momentum tensor is introduced. This equation is
trivially fulfilled by the cosmological constant � (� �
constant, p � ��). In (8) we recognize a formal reversal
of the potential in the phantom case compared to an
ordinary scalar field case, since the sign in front of the
V0-term changes. With the help of (5), the second-order
equation for a can be put into the form

 

�a
a
�

�

3
�
�2

3
�‘ _�2 � V���� � 0: (9)

Again, assuming the perfect-fluid energy-momentum ten-
sor, the scalar field exerts the pressure

 p � ‘
_�2

2
� V���: (10)

Note that the case of a cosmological constant is included
by having the additional equation of state

 p� � ��� � �
�

�2 : (11)

Assuming a constant barotropic indexw for the scalar field,
we can use (6) and (10) to find the relation between the
scalar field and its potential [43],

 V���t�� �
‘
2

1� w
1� w

_�2�t�; w � �1: (12)

This is analogous to the virial theorem in which the kinetic
energy is proportional to the potential energy of the field.
However, as has already been mentioned above, it may be
more physical to assume a time-dependent barotropic in-
dex [22–24].

B. Classical phantom trajectory for vanishing phantom
potential and vanishing cosmological constant

In this section we shall consider a simple model with
field potential V��� � 0 and cosmological constant � �
0. This leads to an equation of state for stiff matter, p � �,
w � 1, in contrast to the current observational status [1,4].
However, such an evolution may perhaps be valid in ekpyr-
otic/cyclic scenarios where this matter dominates the col-
lapsing phase of the cosmological evolution [44]. More-
over, in such a case the energy density � < 0, and thus this
model does not seem to represent dark energy which is
usually assumed to have positive energy density. However,
it captures interesting ‘‘phantom features,’’ since it violates
all energy conditions, and it has the merit that it is easily
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manageable. More realistic models will be discussed
below.

In order to get classical solutions in the phantom case
(‘ � �1) we have to choose K � �1 in (7). Since we are
interested in constructing wave packets from the Wheeler-
DeWitt equation, we want to find a classical trajectory in
configuration space, where the classical time t is elimi-
nated. This is motivated by the fact that no such parameter
is present in the Wheeler-DeWitt equation.

Since � is a cyclic variable, �� is constant, so from (3)
one has _�2 � C2

p=a6 with a constantCp. From (5) one then
has (we choose Cp > 0)

 

d�
da
� �

Cp

a
��������������������
a4 �

�2C2
p

6

q ; (13)

which can easily be integrated to yield

 ��a� � �
1

�

���
3

2

s
arccos

�Cp���
6
p
a2
: (14)

For convenience, we choose �2 � 6. Then the solution
reads

 ��a� � �
1

2
arccos

Cp
a2 : (15)

The classical trajectory (15) has a minimum value of the
scale factor, amin �

������
Cp

p
, and reaches infinite values of a at

finite values of � � ��=4. In this sense it resembles a big
rip solution. However, with respect to t the scale factor
reaches infinity only at t � �1 and, moreover, � / a�6

which is the density scaling appropriate to a stiff fluid.
Nonetheless, in configuration space the trajectory has some
features of a big rip, and this is why this toy model is of
interest.

For an ordinary scalar field (‘ � 1) and for K � �1,
one gets instead of (15),

 ��a� � �
1

2
arcsinh

Cf
a2 : (16)

There is no turning point; Eq. (16) just describes two
branches for which a! 1 if �! 0, and a! 0 if �!

�1. The two solutions (15) and (16) are depicted in Fig. 1.
For K � 1 one obtains the solution with a turning point
(arccosh instead of arcsinh) that was discussed in [35].

C. Classical trajectories for exponential scalar field
potential and vanishing cosmological constant

A model with phantom equation of state and a true big-
rip singularity for the phantom model appears if the po-
tential in (2) is chosen to be exponential [45,46]

 V��� � V0e����; (17)

and � � 0. Interest in this type of scalar field potentials in
cosmology arose when it became clear that the classical
model has an attractor solution with scalar field domination
[47,48]. This alleviates the fine-tuning problem of the
initial energy of the scalar field [49]. Such an attractor
exists not only in the case of a conventional scalar field, but
also for the phantom field [45,46]. Exponential potentials
for scalar fields arise in the context of Kaluza-Klein theo-
ries [50,51], higher-derivative gravity in (D� 4) dimen-
sions [52,53], higher-order gravity [54], supergravity and
superstring theories [55,56], see also [49] for an overview.

In the following, we shall consider the case of a flat
universe, K � 0. From Eq. (7) one sees immediately that
for this choice of parameters neither the ordinary scalar
field nor the phantom field model possesses classically
forbidden regions. The classical equations of motion (8)
and (9) can be transformed into a dynamical system with
the Friedmann Eq. (5) as a constraint [45–47,49]. For ‘ �
�1 and arbitrary values of �, as well as for ‘ � �1 and
� <

���
6
p

, this system has an attractor solution given by [19]:

 ��t� �
2

��
ln
�

1� ‘
�2H0

2
�t� t0�

�
; (18)

 

a
a0
�

�
1� ‘

�2H0

2
�t� t0�

�
‘�2=�2�

: (19)

Introducing � � ln�a� for later convenience, one obtains
the following simple trajectory in configuration space,
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FIG. 1. The classical trajectory in configuration space for the toy model with vanishing scalar field potential and vanishing
cosmological constant. The diagram on the left-hand side shows the trajectory for the phantom field model. On the right-hand side the
trajectory for the ‘ � 1 scalar field model is plotted.
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 ���� � ‘
�
�
�: (20)

For this attractor solution, the ‘‘kinetic energy’’
defined from (5)—writing this equation in the form
‘Ekin � Epot � 1—is given by (using �2 � 6 in the second
step)

 Ekin �
�2

6

�
d�
d�

�
2
�
�2

6

and thus constant. Therefore, also the ‘‘potential energy’’
of the scalar field is constant,

 Epot �
�2V

3H2 � 1�
‘�2

6
:

The equation of state parameter of the field is

 w � �1� ‘
�2

3
: (21)

Thus for ‘ � �1, � indeed describes a phantom field with
w<�1, whereas the scalar field with ‘ � 1 covers the
range w>�1. Accordingly, the energy density scales as
� � �0�

a
a0
��‘�

2
. As expected, this yields a big-rip singu-

larity for ‘ � �1, since in the limit t! t1 � t0 �
2‘=��2H0� the energy density and the scale factor diverge.
For t! 1, a and � vanish. This is in contrast to the ‘ � 1
model: In the limit t! t1, a goes to zero and � diverges,
yielding a big bang, while for t! 1, a diverges and �
goes to zero.

D. Classical trajectories for scalar field fluid and
negative cosmological constant

It is easy to obtain a simple set of classical solutions for
cosmological models with a negative cosmological con-
stant [18]. In contrast to a positive cosmological constant
which supports cosmological repulsion, the negative cos-
mological constant is a source of attraction and can over-
come the influence of repulsion from dark energy with
negative pressure such as cosmic strings, domain walls,
and phantom, see for example [18]. This allows models
with a negative cosmological constant and other fluids to
evolve symmetrically between two singularities with an
extremum in between. In particular, it is possible to have
an evolution between the two big rips which appear at
finite cosmic time, as will be shown below.

We assume a flat universe, K � 0, with a negative
cosmological constant �< 0 and a cosmological fluid
with barotropic equation of state p � w�; the latter will
be mimicked by a scalar field � of either standard or
phantom type. In this case, the energy conservation equa-
tion gives

 � � Ca�3�w�1�; (22)

and the energy conservation equation (11) for the cosmo-
logical constant remains valid. This can be used to solve

the system (5) and (9) in terms of the scale factor as

 a�t� �
�
A sin

�
jDj���

3
p ����1=2t

��
1=D
; (23)

where

 D �
3

2
�1� w�;

6C

A2 � ��> 0: (24)

Using (24), we can rewrite (12) in the form

 V���t�� �
‘
2

3�D
D

_�2�t�; (25)

which allows us to write (6) as (note that as in Sec. II B we
have assumed �2 � 6),

 � �
3‘
2D

_�2 �
_a2

2a2 �
�

6
: (26)

With all these assumptions we are able to calculate the
evolution of the scalar field as

 ��t� � �
1���

3
p
jDj

����
D
‘

s
ln

��������tan
�
jDj

2
���
3
p ����1=2t

���������: (27)

Let us note that ‘ � �1,D> 0 for an ordinary scalar field,
while ‘ � �1, D< 0 for the phantom. Then, the above
expressions make sense since D=‘ � jDj> 0. For D> 0
(negative cosmological term plus w>�1 fluid), the evo-
lution of the universe based on (23) begins with a big bang
at t � 0, reaches a maximum amax � A1=D, and terminates
with a big crunch at t � �. For D � �jDj< 0 (the phan-
tom case), the evolution starts with a big rip at t � 0,
reaches a minimum amin � A�1=jDj, and terminates with
a big rip at t � �. The latter case is of special interest
because it allows a symmetric evolution of the scale factor
in the presence of a phantom field. This model may also be
of interest to study the cosmological arrow of time, see
Sec. IV.

A similar type of symmetric evolution appears in con-
figuration space. Using (23) and (27) to eliminate the
classical time coordinate, we obtain the trajectory

 ��a� � �
1���

3
p
jDj

����
D
‘

s
ln
�

aD

A�
��������������������
A2 � a2D
p

�
: (28)

From this we can see that there are two branches. For
‘ � �1 each of them extends to infinity, that is,�! �1,
for a! 1 and reaches a minimum ��a� � 0, for amin �

A�1=jDj. For ‘ � 1 one recognizes the presence of the
maximum amax. The trajectories in configuration space
are depicted in Fig. 2. From (27) and (26) one can recon-
struct the potential of the scalar field,

 V��� � V0cosh2

�
�
F

�
; (29)

where
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 V0 � �
�

3

‘
2
�3�D�F2D; F �

1���
3
p
jDj

����
D
‘

s
:

Note that for ‘ � 1 the potential is positive only for D< 3
(i.e., w< 1). This restriction is similar to the restriction
� <

���
6
p

in Sec. II C.

III. QUANTUM COSMOLOGY FOR PHANTOM
AND ORDINARY FIELD

A. Wheeler-DeWitt equation and phantom duality

Quantization of the Hamiltonian constraint (4) leads to
the Wheeler-DeWitt equation. Choosing the Laplace-
Beltrami factor ordering and again the convention �2 �
6, it reads

 �
@

2

2
a
@
@a
a
@
@a
� ‘

@
2

2

@2

@�2

� a6

�
V��� �

�

6

�
�

Ka4

2

�
 �a;�� � 0: (30)

Let us note that under the phantom duality [19]

 a!
1

�a
; (31)

 �! �i ��; (32)

for K � 0 the Wheeler-DeWitt equation for a, �,

 

�
@

2

2
a
@
@a
a
@
@a
� ‘

@
2

2

@2

@�2 � a
6

�
V��� �

�

6

��
 �a;�� � 0;

(33)

transforms into the Wheeler-DeWitt equation for �a, ��, that
is,

 �
@

2

2
�a
@
@ �a

�a
@
@ �a
� ‘

@
2

2

@2

@ ��2
�

1

�a6

�
V�i ��� �

�

6

��
 � �a; ��� � 0:

(34)

The transformation for � is thus just a Wick rotation.
On the other hand, Eq. (33) can conveniently be rewrit-

ten in terms of the scale factor � � ln�a� as

 

�
@

2

2

@2

@�2 � ‘
@

2

2

@2

@�2 � e
6�
�
V��� �

�

6

��
���;�� � 0:

(35)

It is this form of the Wheeler-DeWitt equation with which
we shall work in the following.

B. Quantum phantom cosmology - no phantom
potential

For vanishing potential V � 0, � � 0, and K � �1 the
solution to the phantom (‘ � �1) Wheeler-DeWitt equa-
tion (30) is found by a separation ansatz,

  k�a;�� � Ck�a�’k���: (36)

We choose

 ’k��� � e�ik�=@; (37)

because real exponentials would lead to exponentially
increasing wave functions for �! �1 that would not
reflect classical behavior. From (30) one then gets the
following equation for the Ck (primes denote derivatives
with respect to a),

 a2C00k � aC
0
k �

1

@
2 �a

4 � k2�Ck � 0: (38)

Solutions of this equation are Bessel functions
Zk=2@�a

2=2@�. However, we have to impose the boundary
condition that  �a;��!a!00 in order to reflect the behav-
ior of the classical trajectories (15) which have in con-
figuration space a minimum with respect to a. We
therefore have to choose the Bessel function Jk=2@�a

2=2@�
with k > 0.

The connection to the classical solution (15) should be
performed through a formal WKB limit ‘‘@! 0.’’ We thus
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FIG. 2. The classical trajectories in configuration space for the models with cosh-potential and negative cosmological constant. On
the left-hand side, the trajectory for the phantom field model is shown. The classical trajectory for the scalar field model ‘ � 1 is
shown on the right-hand side. The similarity to the classical trajectories in the toy model in Sec. II B is obvious.
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have to look for an asymptotic expansion of J where both
the argument and the index are large. We use the expres-
sion [57]

 J���z� �
�

4�

1� z2

�
1=4
�
Ai��2=3��

�1=3

�
exp�� 2

3��
3=2�

1� �1=6j�j1=4
O

�
1

�4=3

��
(39)

and set � � k=2@, z � a2=k. The choice for � depends on
whether z2 � 1 or z2 < 1. Let us consider first the case
z2 � 1 which corresponds to a4=k2 � 1. From [57] one
sees that then

 � � �
�
3

2

��������������
a4

k2 � 1

s
�

3

2
arccos

k

a2

�
2=3
: (40)

We also use the asymptotic expression for the Airy func-
tion occurring in (39), see [58],

 Ai
��
k

2@

�
2=3
�
�
	 ��1=2

�
�

�
k

2@

�
2=3
�
�
�1=4

sin	k; (41)

where

 	k � �
k

3@
�3=2 �

�
4
: (42)

The classical trajectory is then recovered through the prin-
ciple of constructive interference: We look for the extre-
mum of the phase

 Sk � 	k �
k�
@

(43)

of the total wave function with respect to k. One then easily
finds that the requirement @Sk=@k � 0 at k � �k leads to
(15). One can thus identify Cp � �k.

What happens for z2 < 1? As one can easily see from the
corresponding expression in [58], � < 0 and the Airy
function decays exponentially. This is as expected, since
a4=k2 < 1 corresponds to the classically forbidden region.

One can also easily check that Sk, Eq. (43), is a solution
of the Hamilton-Jacobi equation arising from (4) through
the substitutions �a ! @Sk=@a and �� ! @Sk=@�.

In the case of the conventional scalar field, one gets a
change of sign for the k2-term in (38). The solutions for
Ck�a� are then the Bessel functions Jik=2@�a

2=2@� and
J�ik=2@�a2=2@�. Since there are no classically forbidden
regions, both solutions seem to be allowed. It can again
easily be checked that the classical solution (16) follows in
the formal limit ‘‘@! 0’’ from the principle of construc-
tive interference: One gets the two branches of (16) from
the two Bessel functions. This suggests to use one or the
other Bessel function if one wants to avoid interferences
(and thus nonclassical behavior) at large a. Since (30) is

hyperbolic for ‘ � 1, one is free to impose boundary
conditions at constant a, that is, one can either impose
one packet or two packets there, depending on whether one
wants one branch of the classical solution to be represented
or both.

In the phantom case discussed above, the Wheeler-
DeWitt equation is elliptic; one there only imposes the
boundary condition that  goes to zero at a! 0 and that
it is at most oscillating at the other boundaries. This fixes
the solution to be Jk=2@�a

2=2@� or a superposition thereof.
Explicitly, one would consider the following superposition
for the construction of a wave packet,

  �a;�� �
Z 1

0
dkA�k�e�ik�=@Jk=2@�a

2=2@�; (44)

where A�k� is a function of k that is peaked around a
particular value �k (e.g. a Gaussian). One would not expect
the packet to exhibit dispersion near the minimum of the
classical trajectory, since the phase of the Bessel function
is not rapidly varying with respect to k, in contrast to the
case of a massive scalar field discussed in [35]. We shall,
however, expect the occurrence of a dispersion at large
values of a. We shall discuss this explicitly for the more
realistic case in Sec. III C below.

Making an analogy to ordinary quantum mechanics, one
would compare the solution in the elliptic case to an
‘‘initial wave function’’  �t � 0; x�, whereas the hyper-
bolic case would correspond to the time evolution  �t; x�,
since one would have for (30) a distinguished set of folia-
tions with respect to an intrinsic time defined by the scale
factor. This intrinsic time could be used as a physical time
with respect to which, for example, further degrees of
freedom could be evolved, cf. Sec. IV.

C. Quantum phantom cosmology—exponential
phantom potential

For nonzero, exponential potential as in Sec. II C, the
Wheeler-DeWitt equation is most conveniently solved
after a transformation to new variables in such a way that
the potential cancels in front of �. This is obtained by
first transforming to light-cone type coordinates z1 � �����
‘
p
�, z1 � ��

���
‘
p
�. For ‘ � 1, these are just the char-

acteristics of the Wheeler-DeWitt equation. The equation
now takes the form

 @
2 @2�

@z1@z2
� f�z1; z2�� � 0; (45)

from which a transformation to new variables can be made
such that f�z1; z2� is canceled. This corresponds to a trans-
formation to the variables
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u‘��;�� �

��������
2V0

p

3

e3����
��
6
p
=2��

1� ‘� ���
6
p �2




�
cosh�X� �

1���
‘
p

����
6
p sinh�X�

�
;

v‘��;�� �

��������
2V0

p

3

e3����
��
6
p
=2��

1� ‘� ���
6
p �2




�
1���
‘
p sinh�X� � ‘

����
6
p cosh�X�

�
;

where X �
���
‘
p
�3�� ‘ �

��
6
p

2 ��. For both the phantom and
the ordinary field, u‘ and v‘ are real. The Wheeler-DeWitt
equation in these variables takes the simple form

 @
2

�
@2�

@u2
‘

� ‘
@2�

@v2
‘

�
�� � 0: (46)

Making a WKB-approximation ansatz, � � Ce�
i
@
S, one

obtains at lowest order the Hamilton-Jacobi equation

 

�
@S0

@u‘

�
2
� ‘

�
@S0

@v‘

�
2
� 1: (47)

This is solved via a separation ansatz by S0k �

ku‘ �
��������������������
‘�k2 � 1�

p
v‘. Of course, the Hamilton-Jacobi

equation is also solved by actions carrying different signs
in front of u‘ and v‘. These are obtained from the one
chosen above by rotations in the �u‘; v‘�-plane. For ‘ �
�1, all solutions can be mapped onto each other in this
way. This is an obvious consequence of the rotational
symmetry of Eq. (47) for ‘ � �1. As u1 > 0 (recall that
� <

���
6
p

for ‘ � 1) for the conventional scalar field, here
only two solutions can be mapped onto each other.

From the classical action S0k, the equations of motion
are obtained via @S0k

@k jk� �k � c. (Note that S0k evaluated at
k � �k is always real.) For the special case c � 0 and

 

�k 2 � 1=Epot �

�
1�

‘�2

6

�
�1

one obtains the classical trajectories

 ���� � ‘
����
6
p �; (48)

cf. (20).
Plugging this lowest-order ansatz into the Wheeler-

DeWitt equation, one finds that the equation is already
satisfied exactly. Thus we get the following exact wave
packet solution to the Wheeler-DeWitt equation,

 ��u‘; v‘� �
Z
dkA�k��C1e

�i=@��ku‘�
�������������
‘�k2�1�
p

v‘�

� C2e
��i=@��ku‘�

�������������
‘�k2�1�
p

v‘��: (49)

By construction, the classical trajectories can be recovered
from this equation through the principle of constructive
interference. We choose for the amplitude a Gaussian with
width 
 centered around �k,

 A�k� �
1

�
����
�
p


@�1=2
e���k� �k�2=2
2

@
2�:

Taking C1 � C2 for definiteness, one obtains wave packets
of the form

 

 �u‘; v‘� � C1�1=4

������������������������
2
@

1� i
2
@S000

s


 exp
�
iS0

@
�

S020
2�
�2 � i@S000 �

�
� c:c; (50)

where a Taylor expansion of S0k has been carried out
around �k (primes denoting derivatives with respect to k)
and the terms of the order �k� �k�3 in the exponent have
been neglected. (For simplicity, in this expression S0k� �k� �
S0.) This can be done if the Gaussian is strongly peaked
around �k, that is, if
 is sufficiently small. Since S00k� �k� � 0
gives the classical trajectory, the packet is peaked around
it. For the conventional scalar field as well as for the
phantom field, the wave packet thus follows the classical
trajectory but spreads as v2

‘ ! 1. This can be recognized
from (50), since the term proportional to �S000k� �k�

2 in the
width of the Gaussian increases without limit,

 S000k� �k� �
v‘

�‘� �k2 � 1��3=2
: (51)

It is even more obvious from the absolute square of the
wave packet [neglecting for simplicity the complex con-
jugate part in (50)],

 j �u‘; v‘�j
2 � jC1j

2
����
�
p 2
@������������������������������

1� 
4
@

2�S000 �
2

q

 exp

�
�

S020

�2 � 
2

@
2�S000 �

2

�
: (52)

The spreading occurs due to the nontrivial dispersion
relation, that is, due to the fact that S0k depends nonlinearly
on k. The semiclassical approximation is thus not valid
throughout configuration space.

For the phantom field we have u�1 ! �1, v�1 ! 1
when we approach the big-rip singularity. This singularity
thus lies in a genuine quantum region. Since for ‘ � �1
one has

 v2
‘ 	 e

6���
��
6
p
� � e6�V���;

DĄBROWSKI, KIEFER, AND SANDHÖFER PHYSICAL REVIEW D 74, 044022 (2006)

044022-8



it is obvious that the occurrence of the nontrivial potential
is responsible for the dispersion.

The big-rip singularity is thus ‘‘smoothed out’’—when
the wave packets disperse, we can no longer use an ap-
proximate time parameter; time and the classical evolution
come to an end, and one is just left with a stationary
quantum state. This corresponds to quantum gravity effects
at very large scales. Hitherto such a case has only be
encountered near the turning point of a classically recol-
lapsing universe, as a consequence of the demand that the
wave function go to zero for large scale factor [35,41].

Because of the fact that u1 > 0 for the conventional
scalar field model, here two inequivalent actions exist.
Apart from the wave packet constructed from the function
S0k � ku1 �

��������������
k2 � 1
p

v1, one gets a second wave packet
constructed from S0k � �ku1 �

��������������
k2 � 1
p

v1. Moreover,
the entire ��;��-plane is mapped into only one quarter
of the �u1; v1�-plane. One would therefore require the wave
packet to vanish at the boundary of the physical region.
The only solution satisfying this requirement is naturally
the trivial one. To get a nontrivial solution, one has to
lessen the boundary condition and require � � 0 only at
the origin of the �u1; v1�-plane. The fact that the wave
packet does not vanish at the u1 � 0 and v1 � 0 line is
due to the non-normalizability of the wave packet in both �
and �, which in turn has its origin in the fact that the
classical trajectory has no turning point.

The implementation of this condition results in a wave
packet which vanishes at the big-bang singularity, �! 0
as �! �1, and spreads for large �. The big-bang singu-
larity does therefore not exist in the quantum theory. In the
phantom field model, no such restriction occurs due to the
fact that the entire �u�1; v�1�-plane represents the entire
��;��-plane. The wave packets for both the phantom and
the ordinary scalar field are depicted in Fig. 3.

D. Quantum phantom cosmology—scalar field fluid
and negative cosmological constant

For the model discussed in Sec. II D, the classical
solutions require a potential of the form V��� �
V0cosh2��=F�, cf. (29). The Wheeler-DeWitt equation
therefore reads

 

@
2

2

�
@2

@�2 � ‘
@2

@�2

�
���;��

� e6�
�
V0cosh2

�
�
F

�
�

�

6

�
���;�� � 0: (53)

The classical singularities lie in a region of large j�j. In
order to study the quantum behavior there, it is thus suffi-
cient to approximate the potential for large j�j,

 

~V��� �
V0

4
e�2�=F; (54)

where in the following the upper sign refers to positive �,
and the lower sign to negative �. This makes the problem
very similar to the one of Sec. III C. The Wheeler-DeWitt
equation is here simplified by a transformation on the
variables

 u‘��;�� �

������
V0

p

3
���
2
p

e3����=F�

1� ‘
9F2

�
cosh�X� �

1

3F
���
‘
p sinh�X�

�
;

v‘��;�� �

������
V0

p

3
���
2
p

e3����=F�

1� ‘
9F2

�
1���
‘
p sinh�X� �

1

3F
cosh�X�

�
;

where X �
���
‘
p
�3�� ‘�=F�. In these variables, we re-

cover the form

 @
2

�
@2�

@u2
‘

� ‘
@2�

@v2
‘

�
�� � 0: (55)

Again, one obtains a solution from a WKB ansatz. The
Hamilton-Jacobi equation is again given by (47) (this
equivalence is, of course, only formal, since u‘ and v‘
are defined differently). It is again solved by S0k � ku‘ ���������������������
‘�k2 � 1�

p
v‘, where the remarks of Sec. III C concerning

the choice of action apply here as well. The equations of
motion obtained for @S0k

@k jk� �k � 0 are

 ���� � �
‘���
3
p

����
D
‘

s
�� C �k;‘: (56)

This solution coincides approximately with the classical
solutions (28): If one approximates (28) for ‘ � �1 for
large a, one gets (� label the different branches of the
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FIG. 3. The amplitude of the wave packet (50) for an exponential potential solution of the WDW equation for ‘ � 1 (left) and
‘ � �1 (right). Here, @ was set to unity and parameters 
 � 0:1 and � � �=2 have been chosen. The wave packet for the phantom
field model is seen to spread near the classical singularity. For the scalar field model one has �! 0 at the origin. In each sector
corresponding to one copy of the ��;�� plane, the same wave packet propagates.
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classical solution)

 ����� � �
1���
3
p

����
D
‘

s
�� F ln�2A�; (57)

where � � 0. Therefore, the limit of large positive � is
obtained on the ��-branch, while the limit for large nega-
tive � is reached on the ��-branch. On the other hand, an
approximation for small a in the case ‘ � 1 yields

 ����� � �
1���
3
p

����
D
‘

s
�� F ln�2A�; (58)

where � � 0. Because of this, the limit of large positive �
is obtained on the ��-branch, and for large negative � on
the ��-branch. Thus the solution to the approximated
Hamilton-Jacobi equation (47) coincides with the approxi-
mation of Eq. (28). Of course, a special choice for �k has to
be made to fix the onset. The fact that for ‘ � �1 large �
correspond to large a, and for ‘ � 1 large � correspond to
small a is due to phantom-scalar field duality.

With the help of the classical action S0k, the approximate
Wheeler-DeWitt equation can be solved. Again, the WKB
ansatz satisfies the equation exactly. The wave packet is of
the same form as in Sec. III C, with a different definition of
u‘ and v‘ and another choice of the center of the Gaussian,
�k. As in the case of vanishing cosmological constant, the
wave packet spreads for v2

‘ ! 1. The big-rip singularity in
these variables occurs at v2

�1 ! 1, u�1 ! 1. Thus, again,
the singularity is hidden in a quantum regime and the
semiclassical approximation is not valid throughout con-
figuration space. Because of the restriction D< 3 for the
‘ � 1 model, the same remarks concerning the range of the
coordinates as in Sec. III C apply here. So at the big bang,
�! 0. In analogy to [41] one would expect quantum
effects to occur also in the region of the classical turning
point. This will be addressed in a future publication.

IV. DISCUSSION AND OUTLOOK

In our paper we have applied the formalism of standard
quantum cosmology (using the Wheeler–DeWitt equation)
to a situation where phantom fields are present. This is of
interest because there are novel features with regard to both
the structure of the equation (elliptic or ultrahyperbolic
instead of hyperbolic) as well as the presence of new
scenarios (big-rip singularity at large scale factors in the
classical model). In fact, one of the most intriguing features
is the possible occurrence of quantum effects for large
scale factors.

For various models we have determined and discussed
the classical trajectories in configuration space. We have
then considered the corresponding Wheeler-DeWitt equa-
tions; we have given various solutions and addressed the
classical limit as well as the behavior of wave packets
following the classical trajectories in configuration space.
We have found that the packets disperse in the region of the

classical big-rip singularity. This singularity is thus
‘‘smeared out’’ by quantum effects at large scale factor.
Once the wave packets disperse, no approximate time
parameter can be defined [30] and the classical evolution
terminates in a singularity-free way.

For the conventional scalar field model we have found
that the wave packet vanishes at the big-bang singularity
due to the implementation of appropriate boundary con-
ditions. In this way, the big-bang singularity is removed
from the quantum theory. This is similar to the avoidance
of the singularity in models of loop quantum cosmology
[31] and shell collapse [59]. Without this boundary condi-
tion the wave packet would just have approached the
region �! �1 without spreading; this lack of dispersion
is a result of the Wheeler-DeWitt equation taking the form
of a free wave equation in this limit.

The present work can be extended in various directions.
The next step would be to add other ‘‘conventional’’ scalar
fields and to investigate the full quantum dynamics. In
particular, this would be of importance for a discussion
of the arrow of time [32]. In order to define an appropriate
entropy it is necessary to introduce a set of inhomogeneous
degrees of freedom. In the case of a classically recollapsing
universe it has been found that the arrow of time is corre-
lated with the scale factor of the universe, that is, the arrow
of time must formally reverse at the maximal expansion
[32,41]. (The reversal is formal because quantum effects
near the classical turning point do not allow classical
observers to survive this region.) It is of interest to inves-
tigate whether a similar behavior occurs here. Regarding
the classical evolution of the phantom fields depicted on
the left-hand sides of the Figs. 1 and 2, one would again
expect a correlation of the entropy with increasing scale
factor, that is, there would be no collapse followed by an
expansion but only two separate branches of expansion
separated by a quantum region. The classical evolution
would then start out of the quantum phase at small scales
and describe an expansion of the universe ended by a
quantum phase near the ‘‘big rip region.’’ We shall address
this scenario in a forthcoming paper. This will also deal
with a possible quantum phase near weak singularities
(sudden future singularity, generalized sudden future sin-
gularity, type III and type IV) as mentioned in the
Introduction.

We have based our discussion on the Wheeler-DeWitt
equation of quantum geometrodynamics. More recently, an
alternative formulation of canonical quantum gravity
called loop quantum gravity has gained considerable at-
tention, cf. [30]. A major prediction of this approach is the
presence of a discrete structure for geometric operators.
This formalism was applied to cosmology where it led to
new features [31]. Instead of the usual Wheeler-DeWitt
equation one gets a difference equation for the scale factor.
While near the Planck scale this equation gives different
results from the (differential) Wheeler-DeWitt equation
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(and therefore can prevent the occurrence of the classical
singularities), it coincides with it for higher values of a. It
thus seems that near the classical big-rip singularity the
same scenario emerges that has been discussed in the
present paper. However, it is of interest to investigate
quantitatively the differences and similarities of ordinary
quantum phantom cosmology and loop quantum phantom
cosmology. A first paper in this direction has studied the
effective dynamics from loop quantum cosmology and its
consequences [60]. The results indicate that the big rip can
be avoided. We hope to return to these and related issues in
a future publication.
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