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The stress-energy tensor for the classical nonminimally coupled scalar field is known not to satisfy the
pointwise energy conditions of general relativity. In this paper we show, however, that local averages of
the classical stress-energy tensor satisfy certain inequalities. We give bounds for averages along causal
geodesics and show, e.g., that in Ricci-flat background spacetimes, ANEC and AWEC are satisfied.
Furthermore we use our result to show that in the classical situation we have an analogue to the
phenomenon of quantum interest. These results lay the foundations for analogous energy inequalities
for the quantized nonminimally coupled fields, which will be discussed elsewhere.
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I. INTRODUCTION

Although the classical pointwise energy conditions are
the cornerstone of many important results in classical
general relativity (e.g., the singularity theorems), it is
well known that some classical matter models can violate
them. A standard example is the nonminimally coupled
classical scalar field �, with field equation (see
Appendix A for sign conventions)

 ��g �m2 � �R�� � 0; (1)

where R is the Ricci scalar curvature and �g is the
d’Alembertian with respect to the metric g on the space-
time M. Since we are considering the classical field, the
interpretation of m is an inverse characteristic ‘‘Compton
wavelength’’.

That the energy density for the nonminimal coupling can
violate the weak energy condition can easily be seen.
Following the simple example given in [1], we assume a
solution � of the wave equation in Minkowski spacetime
with m � 0 and � > 0, propagating in one spatial direc-
tion, say the x-direction. Then any C2�R� function h�u�
defines a solution ��t; x� � h�t� x� to the wave equa-
tion (1). Let h0 be the derivative of h, so that @t� �
�@x� � h0�t� x�. In this situation, the energy density
component Ttt of the stress-energy tensor, whose general
expression (4) is given in the next section, reduces at the
point �t; x�, to the form

 Ttt � �1� 2���h0�2 � 2�h00h; (2)

with h and its derivatives evaluated at t� x. Since h is
allowed to be an arbitrary twice differentiable function, we
can choose it to be positive (negative) and to have a local
minimum (maximum) at the origin, i.e. h and h00 have the
same sign and h0 vanishes. Then � obviously has a nega-
tive energy density Ttt on the hyperplane t � x, since the
nonvanishing part in (2) is strictly negative. Analogous

examples can be found for more general situations, e.g.,
where m> 0 or � < 0 or where the spacetime is not flat.
With the same arguments as used above, one can find that
the pointwise null energy condition is also violated.

In this paper, we will show that there are, nonetheless,
constraints on local averages of the stress-energy tensor for
the nonminimally coupled scalar field. We take our inspi-
ration from quantum field theory, where violations of the
energy conditions are in fact inevitable [2]. For example,
the minimally coupled scalar field respects the weak energy
condition, but its quantization admits states with negative
energy densities. However, quantum field theory appears to
contain mechanisms (related to the uncertainty principle)
which limit the magnitude and duration of energy condi-
tion violation. These mechanisms are expressed in so-
called Quantum Energy Inequalities (QEIs) (see [3,4])
which give state-independent lower bounds on certain
weighted averages of the energy density, using smooth
compactly supported weights. Applying the same basic
idea to the nonminimally coupled classical scalar field,
we obtain lower bounds which are typically controlled by
the geometry and the absolute value of the field in the
region of interest. Importantly, the derivatives of the field
do not appear in the lower bound, and this allows us to infer
that large, long-lasting violations of the energy conditions
must be associated with large amplitude field configura-
tions or large curvature.

A further inspiration for our approach stems from an
argument presented in Sec. 4.3 of [5] in connection with
violations of the strong energy condition by the minimally
coupled classical field. There, the (unweighted) integral of
TabWaWb � 1

2W
aWaTbb over a spacetime volume U

(with Wa a smooth timelike unit vector field) was shown
to be equal to a positive term plus an integral over the
boundary @U, which was argued to be small. By using
averages with smooth compactly supported weight, our
approach avoids the introduction of a boundary term and
leads to rigorous lower bounds. Furthermore, our results
lay the foundations for QEIs on the quantized nonmini-
mally coupled scalar field, which we will discuss
elsewhere.

*Electronic address: cjf3@york.ac.uk
†Electronic address: lwo500@york.ac.uk

PHYSICAL REVIEW D 74, 044021 (2006)

1550-7998=2006=74(4)=044021(6) 044021-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.044021


II. AVERAGING ON A CAUSAL GEODESIC

A. Main result

The stress-energy tensor for the nonminimally coupled
scalar field, and the wave equation (1), can be derived from
its Lagrangian

 L �
1

2
f�r��2 � �m2 � �R��2g: (3)

Variation of the action with respect to g�� leads to the
expression for the stress-energy tensor, which is given by

 

T�� � �r����r��� �
1
2g���m

2�2 � �r��2�

� �fg���g �r�r� �G��g�
2; (4)

where G�� is the Einstein tensor. One can easily see that
this expression is consistent with that for the minimally
coupled scalar field. Furthermore, this expression reduces
‘‘on shell’’, i.e., for a C2�M� solution of (1), to

 

T�� � �1� 2���r����r���

�
1

2
�1� 4��g���m

2�2 � �r��2�

� ��2�r�r��� R���2� �
1

2
�1� 4��g���R�2:

(5)

Even though the field equation (1) and the Lagrangian (3)
for nonminimal coupling in Ricci-flat spacetimes reduce to
those of minimal coupling, the stress-energy tensor does
not. The reason is that the variational derivative defining
T�� involves varying the action over nonflat metrics as
well as flat ones.

Now let � be a causal geodesic with affine parameter �.
We will be interested in expressions of the form

 

Z
�
d�T��u

�u�; (6)

where u is a vector field with compact support on �. For
our purposes, we restrict to situations where u is a C2

0�TM�
vector-field, tangent to �, i.e., we can always find a real-
valued function f 2 C2

0�R� such that u � f _�. This, to-
gether with the fact that � is an affinely parametrized
geodesic, gives u�u�r�r�� � f2@2

��. Therefore, insert-
ing expression (5) into (6), we get

 Z
�
d�T��u�u� �

1

2

Z
�
d��@���2f2 �

1

2
�1� 4��

�
Z
�
d��2f2fm2�2 � h���r���

� �r���g � 2�
Z
�
d�f2�@2

��

� �
Z
�
d��2f2

�
R�� _�� _��

�
1

2
�1� 4�� _�2R

�
; (7)

where we introduced h�� � u�u� � u2g��, which is posi-
tive semidefinite on TM because u is non-space-like, as �
is causal. Under the additional assumption that � � 1=4,
the first two terms on the right-hand side of (7) are positive.
Neglecting the curvature terms, there is then only one term
left, which can be either positive or negative, depending on
the value of the field and its second derivative. But it is
possible to write this term as a difference of positive terms.
To do so, we use a simple identity, which was used in [6] to
derive energy inequalities in quantum mechanics. In a
slightly different form, it is given by

 2f2�@2
��� @�f�@��f

2�� � f2�@��g

� 2@�ff�@��f��g � 2�@��f��	
2 � 2�2�@�f�

2; (8)

where we understand that � � � 
 ����. Its proof is a
straightforward calculation that, in a more general form,
we give in Appendix B. Now since f is a function of
compact support, we can integrate (8) and get (after multi-
plying by ��)

 � 2�
Z
�
d�f2�@2

�� � 2�
Z
�
d��@��f��	2

� 2�
Z
�
d��2�@�f�2: (9)

The expression on the right-hand side is obviously a dif-
ference of positive terms and if � is not negative, the first
term on the right-hand side is non-negative and we obtain
the following result by putting (9) into (7).

Theorem II.1. Let � be a causal geodesic with affine
parameter � in a spacetime �M;g�. Furthermore, let T�� be
the stress-energy tensor of the nonminimally coupled clas-
sical scalar field with coupling constant � 2 �0; 1=4	. For
every real-valued function f 2 C2

0�R� the inequality
 Z
�
d�T�� _�� _��f2 � �2�

Z
�
d�
�
�@�f�2 �

1

2
R�� _�� _��f2

�

�
1

4
� �

�
R _�2f2

�
�2 (10)

is satisfied ‘‘on-shell’’.
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In particular this result includes the case of conformal
coupling, i.e., where � � �c with

 �c �
1

4

n� 2

n� 1
: (11)

One can also check that both sides of (10) are invariant
under reparametrization of the affine parameter �! ~� �
��� �, if one also makes the replacement

 f��� ! ~f�~�� �
����
�
p

f��~�� �	=��: (12)

Now consider the case where �M;g� is a vacuum solution
to the Einstein equation, with vanishing cosmological con-
stant, so the curvature terms in (10) vanish. As we are
interested in C2 solutions �, the maximal amplitude

 �max��;�	 � sup
p2�
j��p�j (13)

is finite for all compact regions � of M. In any case we
may bound � by �max��; suppf	 in the remaining contri-
bution to (10), thus obtaining

 

Z
�
d�T�� _�� _��f2 � �2��2

max��; suppf	
Z
�
d��@�f�

2;

(14)

which can be used to analyze local averages of, e.g. the
energy density in a quite general form. Because of (14), it
is immediately obvious that, for a fixed coupling constant,
the extent of energy condition violation is controlled by the
maximal field amplitude.

Inequalities of the form (14) can also be derived for
more general spacetimes. This usually involves a loss of
generality, such as restricting the class of geodesics con-
sidered or the value of the coupling constant �. For ex-
ample in a vacuum spacetime with n � 3 and cosmological
constant � one has R�� � 2g���=�n� 2�. Therefore the
curvature dependent terms on the right-hand side in (10)
are

 � 2�
Z
�
d�
�
1

2
R�� _�� _��f2 �

�
1

4
� �

�
R _�2f2

�
�2

� �
�

1� �
4n
n� 2

�
�
Z
�
d� _�2f2�2: (15)

For a lightlike geodesic �, this term vanishes and if�max is
defined, we obtain (14). This result is independent of the
sign of the cosmological constant. However, if the geodesic
is timelike, (15) is non-negative either for � � 0 and � 2
�0; ��	 or for � � 0 and � 2 ���; 1=4	, where

 �� �
n� 2

4n
: (16)

Under either circumstance, one can omit the term (15) in
(10). Again, existence of �max leads to the lower bound
(14). Note that 0< �� < �c < 1=4 for any spacetime di-
mension n > 2.

B. Scaling arguments

We now investigate how the lower bound in (14)
changes under rescaling of a fixed smearing function f.
For this purpose we introduce the function

 f�0
��� � ��1=2

0 f��=�0�; �0 > 0; (17)

which is chosen in such a way that the normalization of f�0

is independent of the choice of �0, i.e.,

 

Z
d�f2

�0
��� �

Z
d�f2��� � 1; 8 �0 > 0: (18)

Furthermore, we can define

 Cf �
Z
d��@�f�

2; (19)

which again is a constant since f is fixed. Now let us
suppose that the field� is bounded on a complete geodesic
�. Then averaging with respect to f�0

gives

 

Z
�
d�T�� _�� _��f2

�0
��� � �

2�Cf
�2

0

�2
max��;�	: (20)

In the limit �0 ! 0, we obtain consistency with the fact
that the pointwise energy conditions can be arbitrarily
badly violated; on the other hand, in the scaling limit where
�0 tends to infinity, we find [7]

 liminf
�0!1

Z
�
d�T�� _�� _��f2

�0
��� � 0: (21)

If T�� _�� _�� is integrable on �, we can apply the dominated
convergence theorem and get the following:

Theorem II.2. Let � be a complete causal affinely pa-
rametrized geodesic in a Ricci-flat spacetime �M;g�. Let
T�� be the stress-energy tensor for the nonminimally
coupled scalar field with coupling constant � 2 �0; 1=4	.
If the field is bounded on the geodesic �, then we have

 

Z
�
d�T�� _�� _�� � 0; (22)

if the expression on the left-hand side exists.
We see that in the situation where � is timelike (light-

like), the expression (22) reduces to the AWEC (ANEC).
The inequality (21) may be regarded as a generalization of
these conditions, see, e.g., [8]. In Ricci-flat spacetimes it is
easy to give a direct proof of these conditions under the
hypothesis that �@��! 0 on � at infinity. See, e.g.,
Sec. II of [9], where it is noted in passing for ANEC in
Minkowski space (the main focus being the quantum case).
Our result achieves this end with weaker hypotheses.

A slight variant on the above approach is to estimate
T�� _�� _�� in (14) by its supremum over some open interval
I. Then for every normalized smooth f compactly sup-
ported in I, we obtain a bound

 sup
I
T�� _�� _�� � �2�Cf�2

max��; I	: (23)
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It is well known (but see, e.g., [10] for details), that the
infimum of Cf over functions of this class is inffCf �
	2=�2 where � is the length of the interval I. As we are
free to optimize the right-hand side over f, we obtain

 sup
I
T�� _�� _�� � �

2�	2

�2 �2
max��; I	; (24)

showing that long-lasting negative energy densities of
large magnitude must be associated with large magnitudes
of the field.

C. Energy interest

The previous results suggest that there should be an
analogue to the phenomenon in quantum field theory and
quantum mechanics known as quantum interest [11].
Roughly speaking, negative energy densities occurring in
these theories have to be overcompensated, i.e., a negative
energy density pulse has to be accompanied by an even
larger positive pulse, so that the overall averaged energy
density is positive. Additionally there are restrictions on
the amplitude and time separation for these pulses. For
further reading see [10] and references therein. We will
discuss this phenomenon in the classical situation for the
nonminimally coupled scalar field. Consider a complete
timelike geodesic � in a Ricci-flat spacetime, and, as an
illustration, suppose that the energy density takes the form

 T�� _�� _�� � ��
��� � �1� "�
�T � ��	�0; (25)

for some positive constants T and �0. (Of course this
should be regarded as an idealized model of a smooth,
highly peaked configuration.) We are interested in what
expression (14) can tell us about the parameters �0, T and
", in relation to �max � �max��;�	, which we assume to
be finite. Now it is clear that the unweighted average
energy density on � is given by "�0. Using (25) in (14)
and integrating by parts once gives
 Z
d�ff�2��2

max@2
�f� ��
���

� �1� "�
��� T�	�0fg � 0; (26)

where we assume f to be a real-valued function in C10 �R�.
An implication of (26) is that there exist no square-
integrable solutions to the eigenvalue problem (see [10])

 � f00�x� � ���
�x� � �
�x� T�	f�x� � �k2f�x�;

(27)

for k > 0, where the parameters are given by

 � �
�0

2��2
max

and � � �1� "�
�0

2��2
max

: (28)

That is, whenever this eigenvalue problem has a solution,
we are in contradiction with the result of theorem II.1. It
can be shown [10] that solutions to (27) do not exist if and
only if the parameters (28) satisfy

 0 � �T < 1 and �T � �T�1� �T�: (29)

Therefore theorem II.1 tells us that

 0 � �0T < 2��2
max and " �

�0T

2��2
max � �0T

: (30)

These inequalities tell us two things, the first of which is
that there is a restriction for time separation and amount of
energy density �0, in terms of the maximal field amplitude
and the coupling constant. The second result is that in
every nontrivial situation, the amount of positive energy
overcompensates the negative energy density since " > 0.

This phenomenon suggests that nonminimally coupled
scalar fields cannot be used to produce long-lasting viola-
tions of the second law of thermodynamics, except by very
large values of the field amplitude. See [12] for related
remarks in the context of quantum field theory (which
actually led to the development of the quantum energy
inequalities mentioned in the introduction).

III. AVERAGING OVER A SPACETIME VOLUME

We now show that it is also possible to find lower bounds
similar to those in II.1 for volume averaging. For this
purpose we take a compactly supported nowhere spacelike
vector field u 2 C10 �TM�. Local averages on supp u are
then given by expressions of the form

 

Z
dvolgT��u�u�: (31)

We want to find a similar procedure to decompose the
averaged stress-energy tensor, as done in the previous
section. For this purpose, let us look at the first term in
the second row of (5), i.e. 2�r�r��� R���

2.
Contracted with u, this term can be reformulated using
the identity
 

2�u�u�r�r��� R��u�u��2

�r���u�u�r����r��u�u���	

� f�r � u�2 � tr�ru�2g�2 � 2fr � ��u�g2

� 2r��u�r��u
�	; (32)

where

 tr �ru�2 � �r�u
���r�u

��: (33)

The expression (32) can be proved by a straightforward,
but lengthy, calculation, which we give in Appendix B.

Integrating both sides of (32) yields the identity

 � �
Z
dvolgu

�u��2�r�r��� R���
2�

� 2�
Z
dvolgfr � �u��g

2 � �
Z
dvolg��r � u�

2

� tr�ru�2	�2; (34)
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since, due to u being compactly supported, the divergence terms have vanishing integral. This identity is the generalization
of (9) for volume averages.

Returning to the averaged stress-energy tensor and inserting the ‘‘on shell’’ stress-energy tensor (5) into expression (31),
we find

 

Z
dvolgT��u�u� �

1

2

Z
dvolg�u�r���2 �

1

2
�1� 4��

Z
dvolg�m2u2�2 � h���r����r���	

� �
Z
dvolg

�
u�u��2�r�r��� R���

2� �
1

2
�1� 4��Ru2�2

�
: (35)

Here again we used h�� � u�u� � u2g��, which is positive semidefinite on TM because u is non-space-like. Therefore
the expression in the first line on the right-hand side of (35) is positive if � � 1=4.

Using the identity (34), we see that the averaged stress-energy tensor can be written in the form

 Z
dvolgT��u�u� �

1

2

Z
dvolg�u�r���2 �

1

2
�1� 4��

Z
dvolg�m2u2�2 � h���r����r���	

� 2�
Z
dvolg�r � �u��	

2 � �
Z
dvolg

�
�r � u�2 � tr�ru�2 �

1

2
�1� 4��Ru2

�
�2: (36)

Here we see that, in addition to the non-negative terms
mentioned above, the first term in the bottom line of (36) is
also non-negative for � � 0. This observation proves the
following result

Theorem III.1. Let T�� be the stress-energy tensor of the
nonminimally coupled classical scalar field, with coupling
constant � 2 �0; 1=4	 on a spacetime M. For any nowhere
spacelike vector field u 2 C2

0�TM�, the inequality
 Z
dvolgT��u�u� � �2�

Z
dvolg

�
1

2
�r � u�2 �

1

2
tr�ru�2

�

�
1

4
� �

�
Ru2

�
�2 (37)

is satisfied ‘‘on-shell’’.
Thus, there exist lower bounds for the volume averages

of the stress-energy density of a form similar to (10). We
will not discuss applications of theorem III.1 here, but
remark that the lower bound is again controlled by � and
not its derivatives. The form of (37) suggests, that one can
expect results similar to those in II B and II C.

IV. CONCLUSION

We have shown that there exist lower bounds for certain
averages of the stress-energy tensor for the classical non-
minimally coupled scalar field. These show similarities
with Quantum Energy Inequalities and entail that large,
long-lasting violations of the energy conditions are asso-
ciated with large magnitude field configurations or large
spacetime curvature (or coupling constants outside the
range �0; 1=4	). As corollaries, we showed that the non-
minimally coupled classical scalar field on a Ricci-flat
spacetime always satisfies the AWEC and ANEC condi-
tion, provided � is bounded on the geodesic in question.

Furthermore, we showed that there exists an energy
interest phenomenon, i.e., a pulse of negative energy den-
sity is always accompanied by an overcompensating posi-
tive one. The same analysis showed that there are also
restrictions on the amplitudes and time separation of these
pulses. These effects are well known for the minimally
coupled scalar quantum field.

It is worth mentioning that theorems II.1 and III.1 can
also be generalized to potentials other than the mass term.
If the vector field u is lightlike, any potential is possible. If
we average with respect to a timelike vector-field u, one
can show that the results are still true for any potentials
V��	, replacing 1

2m
2�2 in the Lagrangian, that satisfy

 V��	 � 2��

V

�
��	 � 0; (38)

for some � 2 �0; 1=4	. This relation originates in the fact
that we used the wave equation of the field in (5). As an
example, such a potential is V��	 � �2�2k, for positive
constants � and k, with �k � 1=4. It is clear that for
minimal coupling, the condition (38) reduces to the re-
quirement that V��	 is a positive potential.
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APPENDIX A: CONVENTIONS

The conventions used are ��;�;�� in the classification
of Misner, Thorne and Wheeler [13]. These can be found
in, e.g., Birrell and Davies’ book [14]. In detail this means
that the signature of the metric tensor of the spacetime is
�� �� . . .�. Furthermore the Riemann tensor is defined by
[15]
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 �r�r� �r�r��!� � R����!�; (A1)

where r is the Levi-Civita connection and ! is a vector
field on the manifold. Using (A1), we see that for the Ricci
tensor R�� � R���

�, we get

 �r�r� �r�r��!
� � R��!

�: (A2)

In these conventions, the Einstein equations with cosmo-
logical constant � are

 G�� ��g�� � �T��; (A3)

where the Einstein-tensor is defined in the usual way as
G�� � R�� �

1
2Rg�� and the coupling constant is given

by  � 8	G=c4. We use units in which c � 1.

APPENDIX B: PROOF OF AN IDENTITY

In this appendix we will prove the identity (32). We
begin by noting the identities
 

�r�r��u�u��� � �u�u�r�r��

�r���u�u�r����r��u�u���	

(B1)

and

 �u�r�r��u��� � r��u��r��u���	 � �r � �u��	2�2:

(B2)

Using these, it is obvious that (32) is proved, if we show
that

 �u�u�r�r����r�r��u
�u��� � R��u

�u��2

� f�r � u�2 � tr�ru�2g�2 � 2�u�r�r��u���:

(B3)

To see this we calculate the left-hand side of (B3) first.
Since u�r��r�	u� �

1
2R��u

�u�, we get

 

LHS � �u�u�r�r����r�r��u
�u���

��2u�r�r�u
� ��2u�r�r�u

�

� �u�u�r�r����r��u
�u�r��� u

��r�u
�

� u��r�u
�	 ��2u�r�r�u

� ��2u�r�r�u
�

� ��r�u��u�r����u��r�u��r��

� 2�u�u�r�r�����r�u���r�u���

��u��r�u��r��� 0���r�u���r�u���

���r�u��u��r��� � 2�2u�r�r�u�

� f�r � u�2 � tr�ru�2g�2 � 2f��r�u��u�r��

��u��r�u��r����u�u�r�r��

��2u�r�r�u
�g: (B4)

In the last step we simply reordered and used �r�u���
�r�u�� � tr�ru�2. To prove (B3) it remains to show that

 �u�r�r��u
��� � ��r�u

��u�r����u
��r�u

��r��

��u�u�r�r����2u�r�r�u�;

(B5)

which follows by the Leibniz rule. This completes the
proof of (B3) and therefore, as remarked above, the proof
of (32). In a simplified, but analogous way, one proves (8).
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