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We generalize Starobinski��’s stochastic technique to the theory of a massless, minimally coupled scalar
interacting with a massless fermion in a locally de Sitter geometry. The scalar is an ‘‘active’’ field that can
engender infrared logarithms. The fermion is a passive field that cannot cause infrared logarithms but
which can carry them, and which can also induce new interactions between the active fields. The
procedure for dealing with passive fields is to integrate them out, then stochastically simplify the resulting
effective action following Starobinski��. Because Yukawa theory is quadratic in the fermion this can be
done explicitly using the classic solution of Candelas and Raine. We check the resulting stochastic
formulation against an explicit two loop computation. We also derive a nonperturbative, leading log result
for the stress tensor. Because the scalar effective potential induced by fermions is unbounded below,
backreaction from this model might dynamically cancel an arbitrarily large cosmological constant.

DOI: 10.1103/PhysRevD.74.044019 PACS numbers: 04.30.Nk, 04.62.+v, 98.80.Cq

I. INTRODUCTION

Massless, minimally coupled scalars and gravitons are
unique in achieving zero mass without classical conformal
invariance. This means that inflation rips their virtual
quanta out of the vacuum, which greatly strengthens the
quantum loop effects they mediate [1]. In the expectation
values of familiar operators these enhanced quantum ef-
fects typically manifest as infrared logarithms. A simple
example is provided by the stress tensor of a massless,
minimally coupled scalar with a quartic self-interaction,
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When the expectation value of the stress tensor of this
theory is computed in de Sitter background,

 ds2 � �dt2 � a2�t�d~x � d~x with a�t� � eHt; (2)

and renormalized so as to make quantum effects vanish at
t � 0, the results for the quantum-induced energy density
and pressure are [2,3],
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Infrared logarithms are the factors of ln�a� � Ht. They
arise from the fact that inflationary particle production
drives the free scalar field strength away from zero [4–6]

 h�j’2�x�j�i0 �
H2

4�2 ln�a� � divergent constant: (5)

This increases the vacuum energy contributed by the
quartic potential and the result is evident in (3) and (4).

Infrared logarithms arise in the one particle irreducible
(1PI) functions of this theory [7]. They occur as well in
massless, minimally coupled scalar quantum electrody-
namics (SQED) [8–11] and in massless Yukawa theory
[12,13]. The 1PI functions of pure gravity fields on de
Sitter background show infrared logarithms [14–16]. A
recent all orders analysis of scalar-driven inflation was
unable to exclude the possibility that they might even
contaminate loop corrections to the power spectra of cos-
mological perturbations [17]. And infrared logarithms
have been discovered in the 1PI functions of gravity�
Dirac fields [18,19].

Infrared logarithms are fascinating because they intro-
duce a secular element into the usual, static expansion in
the loop counting parameter. No matter how small the
coupling constant � is in (3) and (4), the continued growth
of the inflationary scale factor must eventually overwhelm
it. When this happens perturbation theory typically breaks
down. For example, the general form of the induced energy
density (3) is

 ��t� � H4
X1
‘�2

�‘�1fC‘0ln2‘�2�a� � C‘1ln2‘�3�a� � . . .

� C‘2‘�4ln2�a�g: (6)

The �‘�1C‘0ln2‘�2�a� terms are the leading logarithms at ‘
loop order; the remaining terms are subdominant loga-
rithms. Assuming that the numerical coefficients C‘k are
of order one, we see that the leading infrared logarithms all
become order one at ln�a� � 1=

����
�
p

. At this time the highest
subdominant logarithm terms are still perturbatively small
(�

����
�
p

), so it seems reasonable to attempt to follow the
nonperturbative evolution by resumming the series of lead-
ing infrared logarithms,
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This is known as the leading logarithm approximation.
Starobinski�� has long maintained that his stochastic field

equations reproduce the leading logarithm approximation
[20]. With Yokoyama he exploited this conjecture to ex-
plicitly solve for the nonperturbative, late time limit of any
model of the form [21],
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assuming only that the potential V�’� is bounded below.
When the potential is unbounded below the conjecture still
gives the leading infrared logarithms at each order, how-
ever, the theory fails to approach a static limit.

Starobinski��’s conjecture has recently been proved to all
orders [22,23]. The field equations are first rewritten in
Yang-Feldman form [24], then the free field mode expan-
sion is truncated at horizon crossing, and the free field
mode functions are replaced with their leading long wave
length forms. This procedure converts the original quan-
tum field into a commuting random variable, but it pre-
serves the leading infrared logarithms. Although it was not
evident at the time, the reason the field can be infrared
truncated is that every pair of fields in a simple potential
model of the form (8) is capable of inducing an infrared
logarithm, and the leading log term derives from requiring
them to do so. Because only the infrared part of the field is
responsible for infrared logarithms, we can truncate and
take the long wave length limit of the mode functions,
u�t; k� ! H=

��������
2k3
p

.1 For example, the infrared logarithm in
(5) is
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A field which can generate infrared logarithms is called
active. Scalar potential models of the form (8) possess only
active fields. However, more general theories can possess
fields which are not themselves capable of engendering an
infrared logarithm. We call these passive fields. A example
of such a model is SQED,
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In this model the charged scalar is active whereas the
photon is passive.

Although passive fields cannot cause infrared loga-
rithms, they can propagate their effects. That is, an expec-
tation value of passive fields can acquire an infrared
logarithm from a loop correction involving an active field.
For example, the diagram in Fig. 1 gives a contribution to
h�jF���x�F���x�j�iwhich acquires an infrared logarithm
through the scalar loop at the bottom.

Passive fields can also induce interactions between ac-
tive fields. For example, the photon loop in Fig. 2 induces
an effective �’�’�2 interaction in SQED.

SQED—and also gravity fields—feature another com-
plication in which derivatives of active fields can induce
interactions between undifferentiated active fields. For
example, the 3-point interaction of SQED,

 ie�’�@�’� @�’
�’�A�g

�� �������
�g
p

; (11)

can induce an effective ’�’ coupling through the diagram
of Fig. 3, this is part of the full 1PI 2-point function which
has recently been computed at one loop order [25].

In generalizing Starobinski��’s technique to theories
which include passive fields, and/or differentiated active
fields, it is crucial to realize that the ultraviolet parts of
passive fields and differentiated active fields contribute on
an equal footing with the infrared parts in propagating
infrared logarithms and in mediating interactions between
undifferentiated active fields. So one cannot infrared trun-
cate the passive fields, or even differentiated active fields.
Instead the correct procedure is:

(1) Integrate out the passive fields and renormalize the
resulting effective action.

(2) Integrate out the differentiated active fields and
renormalize the resulting effective action. Note
that this can always be done because the original
action is at most quadratic in derivatives.

(3) Infrared truncate and stochastically simplify the
effective action of active fields.

x

x

FIG. 1. Two loop contribution to h�jF���x�F���x�j�i.

FIG. 2. Effective �’�’�2 coupling in SQED.

1It is also necessary to take the first nonzero term in the long
wavelength limit for the retarded Green’s function of the Yang-
Feldman equation. This turns out to require a higher order term
in u�t; k�.
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One might suspect that the third step is not possible owing
to the nonlocality of the effective action. However, this
nonlocality must be mediated by differential operators
which, precisely because they derive from passive fields,
must contain positive powers of the scale factor whose
rapid time dependence weights the integral overwhelm-
ingly at its upper limit and totally dominates the logarithms
which might derive from the active fields. A typical ex-
ample is the integral,

 Z t
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dt0a02 ln�a0� �

Z t
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For ln�a� 	 1 it is as though we simply divide the inte-
grand by 2H and evaluate it at the upper limit. Hence the
hopelessly complicated ‘‘effective action’’ degenerates, in
the leading log approximation, to a very tractable ‘‘effec-
tive potential,’’ and the resulting local theory assumes the
form (8) already solved by Starobinski�� [20,21].

Yukawa theory is especially simple because it possesses
no differentiated active fields, and because it is free of the
subtle gauge fixing problems of SQED [25] and gravity
fields [18,26]. In Sec. II we review the full apparatus of
perturbation theory for massless Yukawa theory on a lo-
cally de Sitter background. In Sec. III we integrate out the
fermion and renormalize the effective potential. A curious
and possibly significant property of Yukawa theory is that
its effective potential is unbounded below, a fact that
survives in the flat space limit and has even earned a place
in standard model parameter estimation. We check the
stochastic formalism against an explicit two loop vacuum
expectation value in Sec. IV. In Sec. V we employ the
stochastic formalism to obtain the leading log approxima-
tion for the Yukawa theory stress tensor. Because the
effective potential depends upon the inflationary Hubble
constant, the induced vacuum energy of the stress tensor
does not quite agree with it. In fact the latter is initially
positive whereas the former is always negative. However,
their asymptotic large field behaviors are identical, so there
seems no avoiding the conclusion that gravitational back-
reaction in this model must eventually halt inflation,
although not in an acceptable fashion. Our conclusions
comprise Sec. VI. An appendix presents the less interest-
ing, technical analysis behind the perturbative calculation
described in Sec. IV.

II. MASSLESS YUKAWA THEORY IN DE SITTER

The coupling of gravity fields to particles with half
integer spin is usually accomplished by shifting the funda-
mental gravitational field variable from the metric g���x�
to the vierbein e�m�x�, although there are other approaches
[27]. Greek letters stand for coordinate indices, Latin
letters denote Lorentz indices, and both sorts take values
in the set f0; 1; 2; . . . ; �D� 1�g. One recovers the metric by
contracting two vierbeins into the Lorentz metric �bc,

 g���x� � e�b�x�e�c�x��bc: (13)

The coordinate index is raised and lowered with the metric
(e�b � g��e�b), while the Lorentz index is raised and
lowered with the Lorentz metric (e�b � �bce�c). We em-
ploy the usual metric-compatible and vierbein-compatible
connections,

 g��;� � 0) ���� �
1
2g
���g��;� � g��;� � g��;��;

(14)

 e�b;� � 0) A�cd � e�c�e�d;� � ����e�d�: (15)

Fermions also require gamma matrices, 	bij. We assume
their spinor indices run over i � 1; . . . ; 4 in any dimension.
The anticommutation relations are

 f	b; 	cg 
 �	b	c � 	c	b� � �2�bcI: (16)

The Dirac Lorentz representation matrices are

 Jbc 

i
4
�	b; 	c� �

i
4
�	b	c � 	c	b�: (17)

They can be combined with the spin connection (15) to
form the Dirac field covariant derivative operator,

 D � 
 @� �
i
2
A�cdJcd: (18)

In a general vierbein background the bare Lagrangian of
massless, minimally coupled, Yukawa theory scalars with
massless fermions is
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The bare fields in this expression are’�x�, � i�x�, and  i�x�.
The symbols �0, �0, and f0 stand for, respectively, the bare
conformal coupling, the bare 4-point coupling constant and
the bare Yukawa theory coupling constant. Neither the
scalar nor the fermion requires a mass term because we
desire the special model with zero renormalized masses,
and no mass counterterms are required because mass is
multiplicatively renormalized in dimensional
regularization.FIG. 3. Effective ’�’ coupling in SQED.
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Renormalization is begun by expressing the bare fields
in terms of the renormalized ones,
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 r: (20)

Substituting (20) into the bare Lagrangian (19) gives
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We next enforce the conditions that the renormalized scalar
should have neither a conformal coupling nor a 4-point
coupling,

 Z�0 
 0� ��;

Z2�0 
 0� �� and
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Z
p

Z2f0 � f� �f:
(22)

Of course the model does require conformal and 4-point
counterterms. We also define the field strengths as usual,

 Z 
 1� �Z and Z2 
 1� �Z2: (23)

The structure of renormalized perturbation theory is com-
plete when we express the Lagrangian in terms of primitive
interactions and counterterms,
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The preceding analysis has so far been for a general
geometry. Of course we are interested in the special case of
inflation, for which de Sitter is an excellent paradigm. We
work on the open submanifold of D dimensional de Sitter
space in the conformal coordinate system for which the
invariant element is

 ds2 � a2�����d�2 � d~x � d~x� and a��� � �
1

H�
:

(25)

Of course this makes the metric g�� � a2������. We also
employ the ghost-free, Lorentz symmetric gauge [28]
which determines the vierbein,

 e�b � eb� ) e�b � a��b: (26)

At this stage there is no more point in distinguishing
Lorentz indices from coordinate ones. With these conven-
tions the covariant derivative operator takes the simple
form,

 D � ! @� �
1
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0; 	��: (27)

The special case of its contraction into e�b	
b is even

simpler,

 	be�bD� 
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 a���D�1�=2�	�@�a��D�1�=2�: (28)

The scalar and fermion propagators can be largely ex-
pressed in terms of the following function of the invariant
length ‘�x; x0� between x� and x0�,

 y�x; x0� 
 4sin2�12H‘�x; x0�� � aa0H2�x2�x; x0�; (29)
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The most singular term for each case involves the propa-
gator for a massless, conformally coupled scalar,
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It has long been known that there is no de Sitter invariant
solution for the propagator of a massless, minimally
coupled scalar [29]. If one elects to break de Sitter invari-
ance while preserving homogeneity and isotropy—this is
known as the ‘‘E(3)’’ vacuum [30]—the minimal solution
is [2,3]
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This expression may seem daunting but it is actually
simple to use because the infinite sum vanishes in D � 4,
and the terms of this sum go like higher and higher powers
of y�x; x0�. Hence the infinite sum can only contribute when
multiplied by a divergent term, and even then only the first
few terms can contribute.

It is useful, in the stochastic analysis to follow, for us to
consider the fermion propagator in the presence of an
arbitrary, potentially spacetime dependent, scalar field
’�x�

 iS�f’��x; x0� 
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x
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�g
p
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�
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Of course this can only be evaluated for a handful of field
configurations. The case of a constant, f’�x� � m, was
solved by Candelas and Raine [31],
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The propagator we use in perturbative calculations is the massless limit of this one,

 i�S��x; x0� �
HD�2

�4��D=2
�
�
D
2
� 1

�
aiD6

1�������
aa0
p 2F1

�
D
2
� 1;

D
2

;
D
2

; 1�
y
4

�
; (35)

 � aiD6
1�������
aa0
p i�cf�x; x0�; (36)

 � �aa0����D�1�=2�  i@6 
��D2 � 1�

4�D=2

1

�xD�2 : (37)

The final expression is just a conformal rescaling of the propagator for a massless fermion in flat space, as it should be in
conformal coordinates.

It is useful to recast the Candelas-Raine solution (34) using the transformation formula of hypergeometric functions (see
expression 9.131.2 in [32]),
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In dimensional regularization all D-dependent powers of
y�x; x0� vanish at coincidence. Hence we obtain,2
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III. STOCHASTIC EFFECTIVE ACTION

Integrating out the fermions gives rise to a scalar effec-
tive action,

 ei��’� � ,�d � ��d �eiS�’; � ; �

� eiSs�’� det�
�������
�g
p

�iD6 � f0’��: (42)

Here Ss�’� stands for the action associated with the purely
scalar part of the bare Lagrangian,

2Note that the back-acting covariant derivative is D
 

� � @
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1
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0; 	��.
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The exact effective scalar field equation is
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Were we trying to solve the full quantum field theory,
Eq. (45) would be a dead end because we lack an explicit
expression for the coincidence limit of the fermion propa-
gator in the presence of a general ’�x�. However, we are
focused instead on the leading infrared logarithms, and this
fact permits a crucial simplification: we can evaluate the
fermion propagator as if the scalar were constant. Making
use of (39) we infer a local field equation which agrees
exactly with the full theory in the leading log approxima-
tion,
 

���’�
�’�x�

!@��
�������
�g
p

g��@�’���0’R
�������
�g
p

�
�0

6
’3 �������
�g
p

�
4f2

0H
D�2

�4��D=2

��D2� i
f0’
H ���

D
2� i

f0’
H ���1�

D
2�

��1� if0’
H ���1� i

f0’
H �

’
�������
�g
p

:

(46)

Of course the final term in (46) is also related to the
effective potential (it is �V 0eff�’�

�������
�g
p

) and has appeared
many times before in this guise [31,33,34].

The factor of ��1� D
2� in Eq. (46) is the only divergence

we shall see in the stochastic formalism. It can be removed
using the parameters of the scalar potential, �0 and �0. In
particular, the stochastic formalism does not require either
field strength renormalization or renormalization of the
Yukawa theory coupling,

 �Z � �Z2 � �f � 0) �0 � �� and �0 � ��:

(47)

To renormalize (46) we setD � 4�  and make use of the
following expansions,
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D
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� 	� 1�O��; (48)
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�O�2�: (49)

The symbol ‘‘ �z�’’ in this last expression of course stands
for the psi function rather than the fermi field (see sec-
tion 8.36 of [32]),

  �1� z� 

d
dz

ln���1� z�� � �	�
X1
n�2

��1�n��n�zn�1:

(50)

Note that (49) is both real and even in ’,
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2 � i
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H �

��1� i f’H ���1� i
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�
f’
H

�
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�O�2�:

(51)

From these expansions it is apparent that we can renormal-
ize so as to keep the scalar massless and free to order f6,

 �� �
4f2HD�4

�4��D=2

��1� D
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D�D� 1�
�
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24�2 �1� 	�; (52)
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D
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�
�

3f4

�2 ���3� � 	�: (53)

Substituting in (46) and taking the limit D! 4 gives the
following effective equation of motion,
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: (55)

It is well to digress at this point to establish an important
correspondence limit that bears upon the validity and
physical interpretation of our renormalization condition
(52). Duffy and Woodard computed the one loop scalar

S. P. MIAO AND R. P. WOODARD PHYSICAL REVIEW D 74, 044019 (2006)

044019-6



self-mass-squared in this theory and used it to solve the
effective scalar field equation [35]. They found (Eqs. (38)
and (77) in [35]) that the following choice for the confor-
mal counterterm results in there being no significant late
time corrections to the scalar mode functions at one loop
order,

 ��DW �
f2HD�4

�4��D=2

�D� 2���D2 � 2�

2�D� 1��D� 3�
�

f2

32�2 ; (56)

 �
f2HD�4

�4��D=2

�
�

2

3

�
�

f2

16�2

�
	
3
�

1

18

�
�O��: (57)

Up to irrelevant terms of order , this is precisely the same
renormalization (52) as we have used. Therefore our sto-
chastic renormalization conventions agree with the full
theory in the regime of significant late time effects, just
as they should.

Up to some different renormalization conventions, our
expression for the scalar effective potential agrees with
Eq. (30) of Candelas and Raine [31],
 

V�’� � �
H4
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X1
n�2

��1�n

n� 1
���2n� 1�

� ��2n� 1��
�
f’
H
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; (58)
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� 2
Z f’=H

0
dx�x� x3�� �1� ix� �  �1� ix��

�
: (59)

We have now reduced the theory to a completely finite,
scalar model of the form already solved by Starobinski��
[20,21]. An interesting and possibly significant result of
applying his technique is that this model fails to approach a
static limit at late times. This is obvious once one recog-
nizes that the potential V�’� is unbounded from below.

One might expect that V�’� is negative because a non-
zero scalar (of either sign) drives the fermion mass positive
[12,13], which must lower the vacuum energy. The absence
of a lower bound is most easily proved by making use of
the asymptotic expansion Stirling’s formula implies for the
psi function,

  �z� � ln�z� �
1

2z
�

1

12z2 �O
�

1

z4

�
; (60)

to evaluate the strong field limit of (59),
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Of course the large ’ regime is also the small H regime, at
which point we make contact with Eq. (6.10) in the classic
paper by Coleman and Weinberg [36]. The negative poten-
tial has long been recognized to render pure Yukawa theory
unstable in flat space [37]. A constraint on the Higgs mass
can be derived in the standard model from the need to avoid
this instability for the large Yukawa theory coupling of the
top quark [38].

Although we have just seen that the instability is present
in flat space, inflation does have a role to play. A flat space
scalar would simply roll down an unbounded, negative
potential. However, the Hubble friction of expansion re-
tards the scalar’s downward progress. The potential’s cur-
vature is slight, for small f, so the scalar’s evolution is for a
very long time driven by the pressure of inflationary par-
ticle production. Only when the scalar’s magnitude ap-
proaches the nonperturbatively large scale of ’�H=f
does the unbounded potential begin to dominate the sca-
lar’s evolution. This is distinct from the point at which the
potential comes to dominate cosmology. That occurs for
’�H=f�GH2�1=4, which is when the potential becomes
comparable in magnitude to the bare vacuum energy of
3H2=8�G.

IV. REALITY CHECK

In this section we will test the stochastic formalism by
comparing its prediction with an explicit two loop evalu-
ation of the coincident vertex function (see Fig. 4),

 h�jT�’r�x� � r�x� r�x��j�i: (62)

Because there is no field strength renormalization in the
stochastic formalism, we can ignore the distinction be-
tween renormalized and unrenormalized fields in working
out the stochastic prediction for (62). Integrating the fer-
mions out exactly gives the trace of the field-dependent
fermion propagator, which we can again evaluate for con-
stant field configurations in the leading logarithm approxi-
mation,

 e�i��’�,�d � ��d �eiS�’; � ; �  ’�x� � �x� �x�

� ’�x�Tr��iS�f’��x; x��; (63)

x

x

FIG. 4. Lowest order contribution to
h�jT�’r�x� � r�x� r�x��j�i.
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�4��D=2
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D
2

��������
D
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f’
H �

��1� i f’H �

�����2

; (64)

 � �
4fHD�2

�4��D=2
�
�
1�

D
2

�
�2

�
D
2

�
’2�x� �O�f3�: (65)

Hence our prediction for the order f infrared logarithm is
divergent,

 h�jT�’r�x� � r�x� r�x��j�i ! �
fH4

8�4

ln�a�

� finite

�O�f3�: (66)

Note that the divergence arises from integrating out coin-
cident fermion fields. It has nothing to do with the stochas-
tic formalism per se, except for being the correct leading
log result for the expectation value we have chosen to
compute.

That was easy. A measure of the power of the stochastic
formalism is that we could just as simply have obtained the
leading log result at order f3 or higher. We turn now to the
much more difficult task of perturbatively computing the
full order f result for comparison.3 In models for which the
‘‘in’’ and ‘‘out’’ vacua differ, the in-out matrix elements
computed with the usual Feynman rules are not true ex-
pectation values. To obtain an expectation value such as
(62) one must employ the Schwinger-Keldysh formalism
[39– 45]. For a recent review of the position-space formal-

ism see [46]. Here we simply summarize the modified
Feynman rules:

(1) Each line has a polarity which can be either ‘‘�’’ or
‘‘�’’.

(2) Vertices, including counterterms, are either all � or
all �.

(3) A � vertex is the familiar one of the in-out formal-
ism, whereas a � vertex is its complex conjugate.

(4) External lines from time-ordered operators are �,
whereas external lines from anti-time-ordered op-
erators are �.

(5) Propagators can be �� , �� ,�� , or �� . For
our theory these are all obtained from the Feynman
propagators (32) and (37) by replacing the confor-
mal coordinate interval �x2�x; x0� with the appro-
priately polarized interval,

 �x2
���x;x0�
k ~x� ~x0k2��j���0j� i��2; (67)

 �x2
���x; x0� 
 k ~x� ~x0k2 � ��� �0 � i��2; (68)

 �x2
���x; x0� 
 k ~x� ~x0k2 � ��� �0 � i��2; (69)

 �x2
���x;x0�
k ~x� ~x0k2��j���0j� i��2: (70)

Because the operators in (62) are all time-ordered, the
associated external lines have � polarity. At lowest order
they can connect to either a � or a � vertex. Hence the
Schwinger-Keldysh result for (62) is

 h�jT�’r�x� � r�x� r�x��j�i � �if
Z
dDx0a0D

(
i����x; x0�i�iSj����x; x0�i�jSi����x

0; x�
�i����x; x0�i�iSj����x; x0�i�jSi����x

0; x�

)
�O�f3�: (71)

We will ignore the distinction between�� and�� until it
becomes significant. In view of (37) the spinor trace gives

 i�iSj��x; x0�i�jSi��x
0; x� �

�2�D2�

4�D
	�ij	

�
ji�x��x�

�aa0�D�1�x2D

� �
�2�D2�

�D
�aa0�1�D

�x2D�2 : (72)

And the lowest order contribution to the vacuum expecta-
tion value (VEV) takes the form

 h�j’r�x� � r�x� r�x�j�i � �if
�2�D2�

�DaD�1


Z
dDx0a0

�
i����x; x0�

�x2D�2
��

�
i����x; x0�

�x2D�2
��

�
�O�f3�: (73)

Here is where the analysis becomes tedious. We have
accordingly moved the technical details to the appendix,

and will here quote only the divergent parts of the result.
The superficially most singular contribution to (73) derives
from the first line of the scalar propagator (32). We call it
A,
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4��3=2�D
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; (74)

 � finite: (75)

The next most singular contributions come from the
second line of (32),
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; (76)

3This computation was done in collaboration with P. M. Ho.
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� finite: (81)

Only the n � 1 term from the third line makes a nonzero
contribution in the limit of D � 4,
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�
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(85)

The n � 2 term goes like �x4, which is enough to make
denominator integrable in D � 4. We can therefore take
D � 4 for these terms, at which point one sees that they
vanish. The same argument applies to all terms with n � 2.

The sum of (75), (77), (79), (81), (83), and (85) gives

 �divergent constant� �
fH4

8�4

ln�a�

� finite; (86)

in perfect agreement with the stochastic prediction (66). It

is worth noting that the only the B-terms contribute diver-
gent infrared logarithms, and those from B1 and B2 cancel.
So the result seems to derive entirely from B3, which itself
originated from the explicit factor of ln�aa0� on the second
line of the scalar propagator (32).

Although it is not really necessary for our purpose of
checking the stochastic formalism, we remark that the
reason the coincident vertex diverges is that ordinary re-
normalization does not generally suffice for composite
operators such as (62). To renormalize local composite
operators one must allow them to mix with operators of
the same or lower dimension. There are three local, dimen-
sion four operators that can mix with ’r�x� � r�x� r�x�,

 R’2
r ; @�’r@�’rg�� and � re�b	

bD� r: (87)

The expectation value of the last term vanishes in dimen-
sional regularization. The expectation value’s of the first
two are
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H4�

23��2��=2�

��5� �
��2� 

2�



�
�
2

cot
�
�
2

�
� ln�a�

�
; (88)
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���j�i

�
H4�
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�4� ���3� �
��2� 

2�
: (89)

We can choose the coefficient of R’2
r �x� to completely

cancel the second term of (86). Then we can choose the
coefficient of @�’r�x�@�’r�x�g�� to cancel whatever con-
stant terms remain.

V. STOCHASTIC STRESS TENSOR

To understand how this model sources gravitational
back-reaction we must study the Yukawa theory stress
tensor,

 T�� 
 �
1�������
�g
p e

��
b �S

�e��b
; (90)
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Integrating out the fermions converts the fermionic terms
to a purely scalar expression that we can evaluate for
constant field configurations using (40) and (41),
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Because the differentiated fields in T�� cannot contribute
leading order logarithms we see that the stress tensor takes
the form

 T�� ! �Vs�’�g��; (95)

where the potential is
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This is not the same potential V�’� we found in
section III! Unlike that potential, Vs�’� has positive curva-
ture at ’ � 0. However, the leading asymptotic behavior
for large ’ is the same
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The evolution of ’ is controlled by V�’�. So the scalar
rolls away from ’ � 0, even though this initially means
moving up the potential Vs�’�.

What Vs�’� gives is the expectation value of the operator
which is the source of gravitational back-reaction. The two

potentials disagree because the scalar effective potential
V�’� involves the square of the Hubble parameter, which is
really H2 ! R=12 for a general metric.4 That has conse-
quences for the way V�’� sources gravity fields. One can
see this from the familiar case of a conformal coupling
term in the Lagrangian,� 1

2’
2R

�������
�g
p

. In 4-dimensional de
Sitter the Ricci scalar is R � 12H2, so the contribution to
the scalar effective potential is

 �L � �1
2’

2R
�������
�g
p

) �V�’� � 6H2’2: (99)

But the stress tensor takes account of the way the Ricci
scalar depends upon the metric for a general geometry,

 �L � �1
2’

2R
�������
�g
p

) �T��

� �R�� �
1
2g��R�’

2 � g���’2�;�� � �’2�;��:

(100)

Differentiated scalars cannot contribute leading order in-
frared logarithms, and the de Sitter Einstein tensor is
R�� �

1
2 g��R � �3H2g��, so the induced potential in

the stress tensor is

 �L � �1
2’

2R
�������
�g
p

) �Vs�’� � 3H2’2: (101)

VI. DISCUSSION

Any theory which includes either massless minimally
coupled scalars or gravitons will show infrared logarithms
in the expectations values of certain operators. These en-
hance loop effects by powers of ln�a�t��, where a�t� � eHt

is the inflationary scale factor. Of course loop effects are
still down by powers of the (presumed small) loop counting
parameter, but continued evolution must eventually bring
about a situation in which the factors of ln�a�t�� overcome
the small loop counting parameter and cause the break-
down of perturbation theory. Starobinski�� has long advo-
cated gaining control over this nonperturbative regime by
studying the series comprised of the leading infrared loga-
rithm at each loop order [20]. In fact he has completely
solved for the leading log limit of a massless, minimally
coupled scalar with arbitrary potential [21].

In scalar potential models every field is ‘‘active.’’ That
is, it can potentially contribute to an infrared logarithm.
Because the leading log result requires that all fields at a
given order contribute infrared logarithms, one can per-
form an infrared truncation on the fields. This is why
Starobinski��’s formalism ends up being so wonderfully
simple. More general theories also possess ‘‘passive’’
fields which cannot themselves contribute to an infrared
logarithm. However, these passive fields can propagate
infrared logarithms obtained from interaction with active

4This nonlinear dependence upon the Ricci scalar does not
imply the usual kinetic instability associated with higher deriva-
tive gravity fields [47].
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fields. They can also mediate interactions between active
fields. Differentiated active fields play much the same role.

In propagating infrared logarithms, and mediating inter-
actions between active fields, the ultraviolet parts of the
passive fields (and differentiated actives) contribute on an
equal footing with the infrared. It is therefore invalid to
infrared truncate either passive fields or differentiated ac-
tive fields which appear in interactions. The correct proce-
dure instead is to formally integrate out the passive fields,
and the differentiated active fields, both from the action
and from whatever operator is being studied. The expres-
sion which results is generally not local, but it contains
only active fields. Because the nonlocality is confined to
inverse differential operators of passive fields, which can-
not cause infrared logarithms, the associated Green’s func-
tions are always dominated by positive powers of the scale
factor whose explosive growth weights the result com-
pletely at the upper limit in the leading logarithm approxi-
mation. Hence the nonlocal effective action degenerates to
a completely local and computable effective potential. At
this point one has a local potential model of the form
Starobinski�� has already solved in toto [20,21].

Massless Yukawa theory is a wonderfully simple testing
ground for these ideas because it contains a passive field—
the fermion—without any differentiated active fields.5 It
also lacks the subtle gauge fixing problems of SQED [25]
and gravity fields [18,26]. In this paper we have exploited
the classic solution of Candelas and Raine [31] to derive
the Yukawa theory stochastic effective potential V�’� (59).
We have checked the technique with an explicit two loop
computation of the coincident vertex function. The result is
in perfect agreement with the stochastic prediction.

We have also obtained a leading log result for the stress
tensor as a function of the scalar. Although this stress
tensor takes the form �g��Vs�’�, our result for Vs�’�
(96) it is not quite the same as the effective potential
V�’� (59) which governs the scalar’s evolution. The reason
for this is that both potentials depend upon the dimension-
less quantity, �f’=H�2, and the factors of H2 � R=12 in
this exert a nontrivial influence upon the way in which this
model sources gravity fields. So one determines the sca-
lar’s evolution using V�’�, and one finds its impact upon
gravity fields from Vs�’�. The two potentials differ, but
they are each correct.

A curious and potentially significant feature of both
potentials is that they are unbounded below. The physics
behind this seems to be very solid: inflationary particle
production drives the scalar away from zero, which induces
a fermion mass. That increases the magnitude of the fer-
mion 0-point energy, which makes for a negative effective
potential because fermion vacuum energy is negative. We

note that scalars seem always to induce growing mass [11–
13,51], so we expect that the effective potential of SQED
will be positive for large fields. By comparison, gravitons
seem to induce a growing field strength renormalization
[19]. It is intriguing to speculate on what that might mean
for back-reaction in theories of gravity fields plus matter.

Because the scalar effective potential is unbounded be-
low, this model should decay forever. However, Hubble
friction will make the evolution dominated by inflationary
particle production until the scalar reaches nonperturba-
tively large values. Although the initial effect is to raise the
gravitating energy density, the large field results for V�’�
and Vs�’� agree. It seems inevitable that pure Yukawa
theory must be unstable against slow decay to a phase of
deflation which culminates in a big rip [52]. In the standard
model of flat space this same tendency is controlled by the
positive effective potential from the gauge bosons. One
naturally wonders what the result might be for inflation,
and whether or not this might be parleyed into a model in
which inflation might be gotten to end without endless
decay.
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APPENDIX: INTEGRALS FROM SEC. IV

In Sec. IV we reduced the perturbative expression for the
two loop contribution to (62) to a sum of dimensionally
regulated integrals (74), (76), (78), (80), (82), and (84). The
next step is to partially integrate the inverse powers of �x2

until they become integrable in D � 4. There is no dis-
tinction between �� and �� terms at this stage. The
identities we need are
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5Yukawa theory is so much simpler than SQED that this paper
was complete well before a very similar analysis of SQED which
was begun at approximately the same time [48–50].
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Because we are integrating over x0�, derivatives with
respect to x� can be taken outside the integral, leaving an
integrand which is integrable in D � 4 dimensions. The
limit D � 4 could be taken at this point except for the
factors of 1=�D� 4� which were picked up from the last
partial integration. To segregate the divergence on a local
term we add zero in the form,

 @2

�
1

�xD�2
��

�
�

i4�D=2

��D2 � 1�
�D�x� x0� � 0 � @2

�
1

�xD�2
��

�
:

(A6)

Once this has been added we can take the limit D � 4 in
the nonlocal term.

We will work this out for the �� term
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The other result �� we need is
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It is only on account of the explicit factors of 1=�D� 4� in B1�x� and cot��2 D� in B2�x� that we must keep the order �D� 4�
terms in relations (A9) and (A11). The analogous �� relations are
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The use of these partial integration identities results in each of the terms (74), (76), (78), (80), (82), and (84) having a
finite, nonlocal part and a potentially divergent, local part. For A�x� these are
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Before giving the nonlocal and local terms for the Bi�x�
and Ci�x� we will evaluate the two above. The local term is
simple because the derivatives in the numerator are so easy,
 

a2��3D=2�@4a2��D=2� �

�
2�

D
2

��
3�

D
2

��
4�

D
2

�



�
5�

D
2

�
H4a8�2D: (A16)

The factor of �2� D
2�means that AL�x� is actually finite and

we can set D � 4,
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To evaluate any of the nonlocal terms it is best to extract
two more derivatives,
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The point of doing this is that we can now exploit the exact
cancellation between �� and �� terms outside the past
light-cone. (Note that we do not want to do this before the
last derivative is extracted because the limits of integration
must be constant for us to extract derivatives.) We define
the temporal and spatial intervals in the obvious ways,
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It is then straightforward to show
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These relations bring the nonlocal term to the form
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where the initial time is �I 
 �1=H. Note that AN�x� is
now manifestly real.

The next step is to make the change of variables ~r �
~x0 � ~x and perform the angular integrals

 

AN�x��
�fa�4

293�4 @
8
0

Z �

�I
d�0

Z ��

0
drr2fln��2���2�r2���1g:

(A23)

We then make the change of variables r � ��z and per-
form the integration over z,
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Owing to the factor of ��3, three of the external deriva-
tives can be brought inside the integral,

 AN�x� �
�fa�4

293�4 @
5
0

Z �

�I
d�04 ln�2����: (A25)

At this stage one performs the integral over �0 and acts the
derivatives,
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For the B-terms it is best to convert from D to  � 4�
D. All three of the B terms (76), (78), and (80), contain an
overall factor of
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The integrand of the B1 term (76) is this overall factor
times
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The associated local term is,
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The integrand of the B2 term (78) is the factor (A27)
times
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The appropriate local term for B2 is
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The integrand of the B3 term (80) is the factor (A27) times
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The appropriate local term for B3 is
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For the nonlocal terms it is useful to extract a factor to go
with (A27) making a total multiplicative factor of
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It is also useful to note the expansions for the Gamma
function
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and the cotangent
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We can expand the nonlocal integrands without regard to�
variations.

The integrand for the nonlocal part of B1�x� is (A37)
times
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The integrand for the nonlocal part of B2�x� is (A37) times
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And the integrand for the nonlocal part of B3�x� is (A37)
times
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Combining (A40)–(A42), multiplying by (A37), including
the integral, and taking  � 0, gives the following result
for the nonlocal part of the B term,
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The reduction of BN�x� proceeds very much like that of AN�x�. We begin by extracting another d’Alembertian, then
combine �� and �� parts to make causality and reality manifest, and perform the angular integrations,
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The next step is to make the change of variables r � ��z
and perform the integration over z. For this purpose it is
useful to note the integrals
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Applying these identities gives,
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The next step is to bring three of the derivatives inside
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Before performing the integral it is best to rearrange the
integrand
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where the constant K is
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The integral gives a complicated result,
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In acting the derivatives there is no point to keeping any but
the logarithmically enhanced terms
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By comparison the C terms are straightforward. The two
nonlocal terms cancel
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The corresponding local terms are,
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