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We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of
view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-
dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by
requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation
from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly
derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.
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I. INTRODUCTION

Understanding of physics of the black hole horizon, such
as the black hole entropy and the Hawking radiation, is
believed to be a hint for the quantum theory of gravity.
Many efforts have been devoted to this theme. Recently,
there was a progress in understanding of black hole entropy
[1]. There, the breakdown of the diffeomorphism symme-
try at the horizon, namely, anomalies, played an important
role. Since the Hawking radiation [2] as well as the black
hole entropy is the property inherent in the horizon, it is
natural to expect that the Hawking radiation is also asso-
ciated with anomalies.

Many years ago, Christiansen and Fulling found that
Hawking radiation can be derived from the trace anomaly
[3] in the case of �1� 1�-dimensional Schwarzschild
spacetime. In this approach, as is usual, boundary condi-
tions both at the horizon and at the infinity are required to
specify the vacuum. Hence, it is difficult to attribute the
Hawking radiation to the property of the event horizon. It
should be also mentioned that the method is not applicable
to more than �2� 1�-dimension. Recently, Robinson and
Wilczek suggested a new derivation of Hawking radiation
from Schwarzschild black holes through gravitational
anomalies [4]. It should be noted that this derivation is
applicable to any dimension. In their work, the Hawking
radiation is understood as compensating flux to cancel
gravitational anomalies at the horizon. The advantage of
this derivation is that it requires the information only at the
horizon. In order to prove that this gravitational anomaly
method is relevant, we need to show the universality of it.
Concerning this, Iso et al. have shown that the Hawking
radiation from Reissner-Nordstrom black holes can be
explained as the flux which cancel gravitational and U�1�
gauge anomalies [5]. They have also clarified the boundary
condition at the horizon.

In this paper, we further extend Robinson and Wilczek’s
derivation of Hawking radiation [4] to rotating black holes.
We also discuss the boundary condition at the horizon by

comparing the gravitational anomaly method with the trace
anomaly method [3].

The organization of this paper is as follows: in Sec. II,
we review the gravitational anomaly method. In Sec. III,
we apply the gravitational anomaly method to Kerr black
holes. In Sec. IV, higher dimensional black holes, the so-
called Meyers-Perry solutions, are considered. The final
section is devoted to the conclusion. In the appendix, we
present the trace anomaly method to argue the validity of
the boundary condition at the horizon.

II. HAWKING RADIATION AND GRAVITATIONAL
ANOMALIES

In this section, we will review the gravitational anomaly
method [4,5] to make the paper self-contained.

Consider the metric of the type

 ds2 � �f�r�dt2 �
1

f�r�
dr2 � r2d�2

D�2; (1)

where f�r� is some function which admits the event hori-
zon. The horizon is located at r � rH, where f�rH� � 0.
The surface gravity is given by � � 1

2@rfjrH . First, we
show that the scalar field theory on this metric can be
reduced to the 2-dimensional theory. The action of the
scalar field is
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where � is the determinant of d�2
D�2 and �� is the

collection of the angular derivatives. Now we take the limit
r! rH and leave only dominant terms. Thus, the action
becomes
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in the second line ’ is expanded by (D� 2)-dimensional
spherical harmonics. This action is infinite set of the scalar
fields on the 2-dimensional metric

 ds2 � �f�r�dt2 �
1

f�r�
dr2: (4)

Thus, we can reduce the scalar field theory in
D-dimensional black hole spacetime to that in 2-
dimensional spacetime near the horizon.

In this 2-dimensional spacetime, we treat the black hole
horizon as the boundary of the spacetime and discard in-
going modes near the horizon because these ingoing modes
cannot affect the dynamics of the scalar fields out of
horizon. This 2-dimensional theory is chiral. Let us split
the region into two ones: rH � r � rH � �, where the
theory is chiral and rH � � � r, where the theory is not
chiral. We will take the limit �! 0 ultimately. It is known
that the gravitational anomaly arises in 2-dimensional
chiral theory and its explicit form takes [6–8]

 r�T�� � �
1

96�
�������
�g
p ���@�@	�	��; (5)

where the convention �01 � �1 is used. We define A� and
N�

� as

 r�T
�
� 	 A� 	

1�������
�g
p @�N

�
�: (6)

In the region of rH � � � r, we have A� � N�
� � 0. But

in the near horizon, rH � r � rH � �, the components of
these are

 Nt
t � Nr

r � 0; Nr
t � �

1

192�
�f02 � f00f�;

Nt
r � �

1

192�f2 �f
02 � f00f�;

(7)

and

 At � �
1

192�
�f02 � f00f�0; Ar � 0; (8)

where 0 	 @r denotes the derivative with respect to r.
The effective action for the metric g�� after integrating

out the scalar field is

 W�g��� � �i ln
�Z

D
eiS�
;g���
�
; (9)

where S�
; g��� is the classical action. The infinitesimal
general coordinate transformation

 x� ! x� � �� (10)

induces the variation of the effective action
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 ��r� rH � ��; (11)

where ���r� � ��r� rH � �� and H�r� � 1����r�.
The subscript H and o represent the value in the region
rH � r � rH � � and rH � � � r, respectively. To obtain
the last result, we used the fact that T

�o�
�
� is covariantly

conserved and T�H�
�
� obeys anomalous Eq. (5).

Taking into account the time independence of T
�H�

�
�

and T
�o�
�
�, we can integrate Eq. (6) as
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where T represents T�H� or T�o�,
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and K and Q are constants of integration. From Eq. (8),
B�r� should be zero. In the limit r! rH, we haveC�r� ! 0
and I�r�=f ! 1

2T
	
	�rH�. Thus, Eq. (12) becomes
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(14)

The four constants KH, Ko, QH, and Qo have to be deter-
mined to cancel the gravitational anomaly. Substituting
Eq. (14) into Eq. (11) and taking the limit �! 0, we obtain
 

���W �
Z
d2x�tf@r�Nr

tH� � ��KH � Ko � Nr
t�


 ��r� rH�g

�
Z
d2x�r

KH �QH � Ko �Qo

f
��r� rH�:

(15)

In order to keep the diffeomorphism invariance, this varia-
tion should vanish. Since the first term cannot be canceled
by delta function terms, it should be canceled by the
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quantum effect of the ingoing modes. Therefore, we ignore
the first term. Setting ��W � 0, we get

 Ko � KH ��; Qo � QH ��; (16)

where

 � 	
f02

192�

��������r�rH

�
�2

48�
: (17)

We need to know KH to obtain the Hawking flux. For this
purpose, we adopt the boundary condition proposed in [5].
Let us introduce the covariant energy momentum tensor
~T�� which satisfies the covariant anomaly equation

 r� ~T�� �
1

96�
�������
�g
p ���@

�R: (18)

We impose the boundary condition on the covariant
anomalous energy momentum tensor ~T��

�H�, since the
boundary condition at the horizon should be diffeomor-
phism invariant. The boundary condition we take is

 

~T �H�
r
t � T�H�

r
t �

1

192�
�ff00 � 2f02� � 0: (19)

We discuss the validity of this boundary condition in the
Appendix. Thus, we obtain KH � 2� and therefore

 T�o�
r
t � ��: (20)

So, � is the flux of Hawking radiation. The flux of black
body radiation in 2-dimension is � � �

12T
2. Comparing

this with (17), we get the correct Hawking temperature of
the black hole

 T �
�

2�
: (21)

It is important to extend the above analysis to more real-
istic rotating black holes.

III. HAWKING RADIATION FROM KERR BLACK
HOLES

In this section, we will show that the Hawking radiation
from Kerr black holes can be understood as the flux can-
celling the gravitational anomaly. The point is that, near the
horizon, the scalar field theory in 4-dimensional Kerr black
hole spacetime can be reduced to the 2-dimensional field
theory. As the spacetime is not spherically symmetric, this
is an unexpected result.

In Boyer-Linquist coordinates, Kerr metric reads
 

ds2 � �
�� a2sin2�

�
dt2 � 2asin2�

r2 � a2 � �

�
dtd


�
�r2 � a2�2 ��a2sin2�

�
sin2�d
2 �

�

�
dr2

� �d�2 (22)

where

 � � r2 � a2cos2�;

� � r2 � 2Mr� a2 � �r� r���r� r��:
(23)

The outer and inner horizon are located at r � r�, r�
respectively. The determinant of the metric is

 

�������
�g
p

� � sin�; (24)

and the inverse of the metric of �t; 
� parts is

 gtt � �
�r2 � a2�2 � �a2sin2�

��
;

g
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a�r2 � a2 ���

��
:

(25)

The action for the scalar field in the Kerr spacetime is
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Taking the limit r! r� and leaving the dominant terms,
we have

 S�’� �
1
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Now we transform the coordinates to the locally nonrotat-
ing coordinate system by

 

� � 
��Ht;


 � t;
(28)

where

 �H 	
a

r2
� � a

2 : (29)

Using �
; r; �;  � coordinates, we can rewrite the action
(27) as

 S�’� �
a

2�H

Z
d4x sin�’

�
�

1

f�r�
@2

 � @rf�r�@r

�
’;

(30)

where

 f�r� 	
�H�

a
: (31)
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One can see the angular derivative terms disappear com-
pletely. The spherical harmonics expansion ’�x� �P
l;m’lm�
; r�Ylm��;  � finally gives the effective 2-

dimensional action

 S�’� �
a

�H

X
l;m

1

2

Z
d
dr’lm

�
�

1

f�r�
@2

 � @rf�r�@r

�
’lm:

(32)

The effective 2-dimensional metric can be read off from
the above action as

 ds2 � �f�r�d
2 �
1

f�r�
dr2: (33)

Thus, we have reduced the 4-dimensional field theory to
the 2-dimensional one. This 2-dimensional metric tells us
that, near the horizon, the geometry of Kerr spacetime is
the Rindler spacetime when r� > r�. In the extremal case
r� � r�, the near horizon geometry reduces to AdS2

which is consistent with the result of [9].
Now we can derive the Hawking radiation from Kerr

black holes using the formalism explained in Sec. II. The
flux determined by the anomaly cancellation arguments is
given by Eq. (18) from which we can read off the tempera-
ture as

 T �
1

4�
@rfjr� �

r2
� � a

2

4�r��r
2
� � a

2�

�

������������������
M2 � a2
p

4�M�M�
������������������
M2 � a2
p

�
: (34)

This is nothing but the Hawking temperature of Kerr black
holes. Although we have not yet shown that this flux is
Planckian, we assume this is so. In the view of 4-
dimensional theory, the distribution function is
�exp�!=T� � 1��1 near the horizon in the �
;  � coordi-
nates. In this coordinate, the scalar field with energy ! and
axial quantum number m is ’ / exp�i!
� im �. In the
(t; 
) coordinates, ’ / exp�i�!�m�H�t� im
��.
Hence, in �t; 
� coordinates, we obtain the distribution
function

 

1

exp��!�m�H�=T� � 1
: (35)

Thus, we get the correct chemical potential for Kerr black
holes. It is also easy to calculate the flux of the angular
momentum from this result.

In the case of Kerr-Newman black holes with the electric
charge Q and the magnetic charge P, the Hawking tem-
perature of the neutral scalar field can be calculated simi-
larly by replacing a2 ! a2 �Q2 � P2.

IV. THE CASE OF MYERS-PERRY BLACK HOLES

The discussion in the previous section can be extended
to Myers-Perry black holes with only one rotating axis. The
Myers-Perry metric in D-dimension is [10,11]

 ds2 � �dt2 �
Udr2

V � 2M
�

2M
U

�
dt�

Xn
i�1

ai�2
i d
i

�
2

�
Xn
i�1

�r2 � a2
i ���

2
i d


2
i � d�

2
i � � �r

2d�2
n��

(36)

where

 V � r��2
Yn
i�1

�r2 � a2
i �; U � V

�
1�

Xn
i�1

a2
i �

2
i

r2 � a2
i

�
;

(37)

and n is the integer part of �D� 1�=2 and � � 1�D: even�,
0�D: odd�. The coordinates �i are not independent but
obey the relation

 

Xn
i�1

�2
i � ��

2
n�� � 1: (38)

We consider the Myers-Perry black hole with one rotating
axis. Denote a1 � a, ai � 0�for i � 1�, �1 � �, and

1 � 
. Using the polar coordinates

 � � cos�; �2 � sin� cos�2;

�3 � sin� sin�2 cos�3; . . .
(39)

we can write the metric as
 

ds2 �

�
�1�

2M
U

�
dt2 ��2

�
r2 � a2 �

2Ma2�2

U

�
d
2

�
4Ma�2

U
dtd
�

Udr2

V � 2M
�
�r2 � a2�U

V
d�2

� r2d�2; (40)

where

 d�2 	 sin2�d�2
n���2 � ��

2
2d


2
2 � . . .��2

nd
2
n�; (41)

and d�2
n���2 is the metric of Sn���2 with coordinates

��2; � � � ; �n���1�. The inverse of the metric of �t; 
� parts
is given by
 

gtt � �
Vf�r2 � a2�U � 2a2�2Mg

�r2 � a2��V � 2M�U
;

g

 �
�U � 2M�V

�2�r2 � a2��V � 2M�U
;

gt
 �
2aMV

�r2 � a2��V � 2M�U
;

(42)

and the determinant of the metric is
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Note that the horizon is located at r � r�, determined by
V�r � r�� � 2M. The �t; r; 
� parts and ��; �2; . . . ;
�n���1; 
2; . . . ; 
n� parts of the metric are decoupled
and the inverse metric of ��; �2; � � � ; �n���1; 
2; � � � ; 
n�
parts are nonsingular at the horizon, so these are negligible
in the scalar field action near the horizon. Thus, near the
event horizon, the scalar field action becomes
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Let us make the following transformation
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r2
��a
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(45)

The result is given by
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where

 f�r� �
V � 2M

2M
: (47)

In the last line, we expanded ’ using the complete set
of orthonormal functions of ��; �2; . . . ; �n���1;  ;

2; . . . ; 
n� with the measure

����
�
p

�. Equation (46) is the
action for infinite set of scalar fields in the 2-dimensional
spacetime with the metric

 ds2 � �f�r�d
2 �
1

f�r�
dr2: (48)

Using the procedure of Sec. II, we can get the correct
Hawking temperature of Myers-Perry black holes as

 T �
V0�r��
8�M

�
�D� 3�r2

� � �D� 5�a2

4�r��r2
� � a

2�
: (49)

V. CONCLUSION

We have shown that the Hawking radiation from Kerr
blacks holes can be explained from gravitational anomalies
point of view. The key to show this is the dimensional
reduction of the scalar field in the Kerr spacetime. This
result has been further generalized to Myers-Perry black

holes with the single angular momentum. We have also
argued the validity of the boundary condition by compar-
ing the gravitational anomaly method with the trace anom-
aly method in the case of 2-dimensional black holes. Thus,
we have given an evidence of the universality of the
gravitational anomaly method.

It is interesting to extend the present method to other
tensor fields such as the gravitons. If we succeed to explain
the Hawking radiation for these fields using gravitational
anomaly method, our understanding of black hole physics
would become more profound.

Some of recent researches on counting the black hole
entropy are also related to anomalies [1,12,13]. It is inter-
esting to give a unified view for both the black hole entropy
and the Hawking radiation from gravitational anomalies
point of view. In particular, incorporating the backreaction
of Hawking radiation into the framework of the gravita-
tional anomaly method is more challenging.
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APPENDIX: COMPARISON WITH TRACE
ANOMALY METHOD

We examine the validity of the boundary condition
proposed by [5] in the context of 2-dimensional
Schwarzschild black hole.

 ds2 � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2: (A1)

We will show that the gravitational anomaly method with
the above boundary condition gives the same result as the
one derived using the trace anomaly [3,14]. Let us consider
the massless scalar field theory in the 2-dimensional
Schwarzschild black hole

 S � �
1

2

Z
d2x

�������
�g
p

g��@�’@�’: (A2)

It is known that trace anomaly appear in this theory as
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From this trace anomaly, one can obtain the quantum
effective action

 W�g� � �
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Using the auxiliary field �, we can rewrite this effective
action as
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The energy momentum tensor is given by
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The equation of motion for � is
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The solution of this equation is

 � � at� log
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� A�r� 2M log�r� 2M�� � B;

(A8)

where a, A, B are constants. Using this �, the energy

momentum tensor is

 hTtti �
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48�
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48�
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48�
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(A9)

We adopt Unruh vacuum condition [15], ingoing flux
should be vanish at r � 1 and free fall observer should
observe regular energy momentum at r � 2M. That is

 

�
hTvvi � 0 �at r � 1�;

hTuui � 0 �at r � 2M�;
(A10)

where

 

�u � t� r� 2M log�r�2M
2M �;

v � t� r� 2M log�r�2M
2M �:

(A11)

From this boundary condition, we obtain A � �a �
1=4M. Thus, we get the flux of Hawking radiation

 Trt � �
1

768�M2 	 ��: (A12)

Comparing this result with Eq. (12), we get Ko � �. That
is KH � 0 from Eq. (16). This means that the boundary
condition proposed in [5] is justified at least in the case of
2-dimensional Schwarzschild black hole. This supports the
validity of the boundary condition ~Trt � 0 at the horizon in
any dimension.
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