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This is an extended version of our previous letter [S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett.
96, 151302 (2006).]. In this paper we consider rotating black holes and show that the flux of Hawking
radiation can be determined by anomaly cancellation conditions and regularity requirement at the horizon.
By using a dimensional reduction technique, each partial wave of quantum fields in a d � 4 rotating black
hole background can be interpreted as a �1� 1�-dimensional charged field with a charge proportional to
the azimuthal angular momentum m. From this and the analysis [S. P. Robinson and F. Wilczek, Phys. Rev.
Lett. 95, 011303 (2005), S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006).] on
Hawking radiation from charged black holes, we show that the total flux of Hawking radiation from
rotating black holes can be universally determined in terms of the values of anomalies at the horizon by
demanding gauge invariance and general coordinate covariance at the quantum level. We also clarify our
choice of boundary conditions and show that our results are consistent with the effective action approach
where regularity at the future horizon and vanishing of ingoing modes at r � 1 are imposed (i.e. Unruh
vacuum).
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I. INTRODUCTION

Hawking radiation is the most prominent quantum effect
to arise for quantum fields in a background space-time with
an event horizon. There are several derivations and all of
them take the quantum effect in black hole backgrounds
into account in various ways. The original derivation by
Hawking [1,2] calculates the Bogoliubov coefficients be-
tween the in and out states in a black hole background. A
tunneling picture [3,4] is based on pair creations of parti-
cles and antiparticles near the horizon and calculates WKB
amplitudes for classically forbidden paths. A common
property in these derivations is the universality of the
radiation: i.e. Hawking radiation is determined universally
by the horizon properties (if we neglect the gray body
factor induced by the effect of scattering outside the
horizon.)

Another approach to the Hawking radiation is to calcu-
late the energy-momentum (EM) tensor in the black hole
backgrounds. It has a long history and there are many
investigations (see for example [5] and references therein).
Here we would like to mention the seminal work by
Christensen and Fulling [6]. In this paper the authors
determined the form of the EM tensor by using symmetry
arguments and the conservation law of the EM tensor
together with the trace anomaly. In d � 2, such informa-
tion is sufficient to determine the complete form of the EM
tensor and accordingly the Hawking radiation can be cor-

rectly reproduced. But in d � 4 there remains an indeter-
minable function and the full form of the EM tensor can not
be determined by symmetries only. Since the Hawking
radiation is a very universal phenomenon, it should be
discussed based on fundamental properties at the horizon.

In a previous paper [7], we have shown that the flux of
Hawking radiation from Reissner-Nordström black holes
can be determined by requiring gauge and general coor-
dinate covariance at the quantum level. The work was
based on [8] but with a slightly different procedure. In
the following we take the procedure adopted in [7]. The
basic idea is the following. We consider a quantum field in
a black hole background. Near the horizon, the field can be
effectively described by an infinite collection of (1� 1)-
dimensional fields on �t; r� space where r is the radial
direction. Furthermore, due to the property of the black
hole metric, mass or potential terms for quantum fields in it
can be suppressed near the horizon. Therefore we can treat
the original higher dimensional theories as a collection of
two-dimensional quantum fields. In this two-dimensional
reduction, outgoing modes near the horizon behave as right
moving modes while ingoing modes as left moving modes.
Since the horizon is a null hypersurface, all ingoing modes
at the horizon can not classically affect physics outside the
horizon. Then, if we integrate the other modes to obtain the
effective action in the exterior region, it becomes anoma-
lous with respect to gauge or general coordinate symme-
tries since the effective theory is now chiral at the horizon.
The underlying theory is of course invariant under these
symmetries and these anomalies must be cancelled by
quantum effects of the classically irrelevant ingoing
modes. We have shown that the condition for anomaly
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cancellation at the horizon determines the Hawking flux of
the charge and energy-momentum. The flux is universally
determined only by the value of anomalies at the horizon.

In this paper, we further extend the analysis to Hawking
radiations of quantum fields from rotating black holes. In
the case of Kerr black hole, the metric is axisymmetric and
the azimuthal angular momentum is conserved. Because of
this isometry, the effective two-dimensional theory for
each partial wave has U�1� gauge symmetry. The effective
background gauge potential for this U�1� symmetry is
written in terms of the metric while the quantum field in
the Kerr background has a charge m of this gauge symme-
try, where m is an azimuthal quantum number. The effec-
tive theory is now interpreted as a two-dimensional field
theory of charged particles in a charged black hole. Hence
we can apply the same method for the charged black holes
to obtain the Hawking flux from rotating black holes.

Our calculation based on anomaly cancellations repro-
duces the Hawking fluxes in the so-called Unruh vacuum
[9]. This vacuum violates the time reversal symmetry by
boundary conditions. Namely regularity at the future hori-
zon is imposed, which fixes the flux of the outgoing modes.
On the other hand, for ingoing modes, it is assumed that
there is no ingoing flux at r � 1. In deriving the flux in our
method, we demand that covariant current at the horizon
should vanish. We show that this is nothing but the regu-
larity condition. On the other hand, the boundary condition
for ingoing modes is also imposed. We clarify these points
in this paper.

The content of the paper is as follows. In Sec. II, we will
first show that, near the horizon of Kerr black hole, each
partial wave of scalar fields behaves as a charged field in
two-dimensional charged black hole. In Sec. III, we relate
symmetries in the original d � 4 system and the dimen-
sionally reduced �1� 1�-dimensional system and derive
modified conservation laws of current and energy-
momentum tensor in d � 2. By using the dimensional
reduction technique, we derive the Hawking flux from
Kerr black hole in section IV. Here we demand gauge
and general coordinate covariance at the horizon and im-
pose that the covariant currents should vanish at the hori-
zon. We discuss our choice of boundary conditions. In
Sec. V we derive the flux of Hawking radiation from
Kerr-Newman black holes. Section VI is devoted to con-
clusions and discussions. In Appendix A we calculate the
flux of Hawking radiation from Kerr-Newman black hole
by integrating the Planck distribution. In Appendix B we
derive the flux of radiation from charged black holes by an
effective action approach. Since quantum fields near hori-
zons of black holes are effectively described by �1�
1�-dimensional conformal fields, we can explicitly calcu-
late expectation values of a current or an energy-
momentum tensor near the horizon by imposing boundary
conditions, such that physical quantities are regular at the
future horizon and there is no ingoing flux at r � 1. This is

the boundary condition for the Unruh vacuum and the
fluxes coincide with those derived in this paper.

II. QUANTUM FIELDS IN KERR BLACK HOLE

The metric of the Kerr black hole is given by
 

ds2 �
�

r2 � a2cos2�
�dt� asin2�d’�2

�
sin2�

r2 � a2cos2�
�adt� �r2 � a2�d’�2

� �r2 � a2cos2��
�
dr2

�
� d�2

�
; (1)

where

 � � r2 � 2Mr� a2 � �r� r���r� r��; (2)

and r���� are radii of outer (inner) horizons

 r� � M�
������������������
M2 � a2

p
: (3)

We will consider matter fields in the Kerr black hole
background. For a while we will consider a scalar field for
simplicity. The action consists of the free part

 Sfree �
1

2

Z
d4x

�������
�g
p

g��@��@��

� �
1

2

Z
dtdrd�d’ sin��

��
�r2 � a2�2

�

� a2sin2�
�
@2
t � 2a

�
r2 � a2

�
� 1

�
@t@’ � @r�@r

�
1

sin2�
@�sin2�@� �

1

sin�2

�
1�

a2sin2�
�

�
@2
’

�
�;

(4)

and the other parts Sint including a mass term, potential
terms and interaction terms. Performing the partial wave
decomposition of � in terms of the spherical harmonics,
� �

P
l;m�lmYl;m, the theory is reduced to a two-

dimensional effective theory with an infinite collection of
fields with quantum numbers �l;m�. These two-
dimensional fields are interacting with each other.
Because of the axial symmetry of the Kerr black hole
metric in the ’ direction, the azimuthal quantum number,
m of Ylm, is conserved.

Upon transforming to the r� tortoise coordinate, defined
by

 

dr�
dr
�
r2 � a2

�
� f�r��1; (5)

and considering the region near the outer horizon r�, one
finds that the effective two-dimensional action is much
simplified. The effective radial potentials for partial waves
(	 l�l� 1�=r2) or mixing terms between fields with dif-
ferent angular momenta contain a suppression factor
f�r�r��� and vanish exponentially fast near the horizon.
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The same applies to a mass term or interaction terms Sint.
Thus it is straightforward to show that the physics near the
horizon can be effectively described by an infinite collec-
tion of massless �1� 1�-dimensional fields with the fol-
lowing action,

 S �
Z
dtdr�r2 � a2���lm

�
r2 � a2

�

�
@t �

iam

r2 � a2

�
2

� @r
�

r2 � a2 @r

�
�lm: (6)

From this action we find that �lm can be considered as a
�1� 1�-dimensional complex scalar field in the back-
grounds of the dilaton �, metric g�� and U�1� gauge field
A�,

 � � r2 � a2; gtt � f�r�; grr � �
1

f�r�
;

grt � 0; At � �
a

r2 � a2 ; Ar � 0:
(7)

The U�1� charge of the two-dimensional field �lm is m.

III. SYMMETRIES AND CONSERVATION LAWS

The U�1� gauge symmetry in the effective two-
dimensional theories originates from the axial isometry
of the Kerr black hole. Since the fields are in the back-
ground of dilaton and gauge potentials, the conservation
law for the energy-momentum tensor is modified.

In this section we will see how the U�1� symmetry arises
from the general coordinate invariance in the axial direc-
tion and then show that the conservation law for the
energy-momentum tensor in d � 4 is rewritten as modified
conservation laws of the U�1� current and energy-
momentum tensor in d � 2.

The quantum fields in the d � 4 Kerr black hole back-
ground is invariant under the general coordinate symme-
tries. In particular we are interested in the general
coordinate transformations in the ’ direction �’ which is
independent of the angles ��;’�. They generate the U�1�
gauge transformations with the transformation parameter
�’�t; r�. For such transformations, since the metric trans-
forms as �g�� � ��r��� �r����, we can define a
gauge potential as A� � �g�’ with a transformation
�A� � r��’. Here � is restricted to t or r. g’’ is inter-
preted as a dilaton which is invariant under the above
transformation. A matter field �lm transforms as a charged
field with a charge m; ��lm � im���lm.

The energy-momentum tensor T�� of matter fields in the
Kerr black hole background is conserved in d � 4,

 r�T�� � 0: (8)

Since the Kerr background is stationary and axisymmetric,
the expectation value of the energy-momentum tensor in
the background depends only on r and �, i.e. hT��i �

hT���r; ��i. (In the following we omit the bracket for nota-
tional simplicity.)

First, the � � ’ component of the conservation law (8)
is written as

 @r�
�������
�g
p

Tr’� � @��
�������
�g
p

T�’� � 0: (9)

Noting
�������
�g
p

� �r2 � a2cos2�� sin�, we define a spacial
component of U�1� current Jr

�2� for each partial wave mode
as follows:

 Jr�2��r� � �
Z
d�2�r2 � a2cos2��Tr’: (10)

Then by integrating the Eq. (9) over the angular coordi-
nates the U�1� current is shown to be conserved,

 @rJr�2� � 0: (11)

Second, the � � t component r�T�t � 0 becomes a
modified conservation law of the two-dimensional
energy-momentum tensor. It is written as

 

1

r2 � a2cos2�
@r
�r2 � a2cos2��Trt � � FrtTr’ � 0; (12)

where Frt � @rAt with the gauge potential At defined in
Eq. (7). By defining the energy-momentum tensor Trt�2� of
the two-dimensional effective theory from Trt as

 Trt�2� �
Z
d�2�r2 � a2cos2��Trt ; (13)

we find the following conservation law with the U�1�
gauge field background At,

 @rTrt�2� � FrtJ
r
�2� � 0: (14)

This equation is the conservation law for the energy-
momentum tensor in an electric field background. (See
Eq. (18) in our previous paper [7]).

IV. ANOMALIES AND HAWKING FLUXES

As explained in the introduction, if we neglect classi-
cally irrelevant ingoing modes near the horizon, the effec-
tive two-dimensional theory becomes chiral near the
horizon and the gauge symmetry or the general coordinate
covariance becomes anomalous due to the gauge or gravi-
tational anomalies.

The following procedure to obtain the Hawking fluxes
from the anomalies is parallel to the analysis for Reissner-
Nordström black holes [7].

First we determine the flux of the U�1� current. In the
d � 4 language, the U�1� flux corresponds to the flux of
angular momentum carried by Hawking radiation from
rotating black holes. The effective theory outside the hori-
zon r� is defined in the region r 2 
r�;1�. We will divide
the region into two. One is a near horizon region where we
neglect the ingoing modes since such modes never come
out once they fall into black holes. The other region is apart
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from the horizon. The current is conserved

 @rJr�o� � 0; (15)

in the latter region. On the contrary, in the near horizon
region r 2 
r�; r� � ��, since there are only outgoing
(right handed) fields, the current obeys an anomalous
equation

 @rJ
r
�2� �

m2

4�
@rAt: (16)

The right hand side is a gauge anomaly in a consistent form
[10–12]. The current is accordingly a consistent current
which can be obtained from the variation of the effective
action with respect to the gauge potential. We can solve
these equations in each region as

 Jr
�o� � co; (17)

 Jr�H� � cH �
m2

4�
�At�r� � At�r���; (18)

where co and cH are integration constants. co is the value of
the current at r � 1. cH is the value of the consistent
current of the outgoing modes at the horizon. Current is
written as a sum in two regions

 J� � J�
�o����r� � J

�
�H�H�r�; (19)

where ���r� � ��r� r� � �� and H�r� � 1����r�
are step functions defined in the region r 2 
r�;1�. Note
that since we have neglected the ingoing modes near the
horizon this current is only a part of the total current. The
total current including a contribution from the near horizon
ingoing modes is given by

 J�total � J� � K�; (20)

where

 K� � �
m2

4�
At�r�H�r�: (21)

This cancels the anomalous part in J� near the horizon.
We now consider the effective action W where we have

neglected the classically irrelevant ingoing modes at the
horizon. Hence the variation of the effective action under
gauge transformations is given by

 � �W �
Z
d2x

������������
�g�2�
p

	r�J
�; (22)

where 	 is a gauge parameter. By integration by parts we
have
 

��W �
Z
d2x	

�
��r� r� � ��

�
Jro � JrH �

m2

4�
At

�

� @r

�
m2

4�
AtH

��
: (23)

As well as the current (19), this effective action does not

contain a contribution from the near horizon ingoing
modes. The total effective action must be gauge invariant
and the last term should be cancelled by quantum effects of
the classically irrelevant ingoing modes. Namely a contri-
bution from the ingoing modes (21) cancels the last term.
The coefficient of the delta function should also vanish,
which relates the coefficient of the current in two regions;

 co � cH �
m2

4�
At�r��: (24)

This relation ensures that the total current J�total is con-
served in all the regions; @rJrtotal � 0.

In order to fix the value of the current, we impose that the
coefficient of the covariant current at the horizon should
vanish. This assumption is based on the following physical
requirement. In the near horizon region, we have first
neglected ingoing modes. Hence the current there has
contributions from only the outgoing modes which depend
on u � t� r�. Namely the vanishing condition for the
covariant current is nothing but the vanishing condition
for the current of the outgoing modes, which is usually
imposed to assure regularity of the physical quantities at
the future horizon. We will discuss it more in the discus-
sions and in Appendix B. Another condition we have
implicitly assumed is the constant value of the ingoing
current (21). We could have added an arbitrary constant
in (21). The boundary condition for K� to vanish at r � 1
corresponds to a condition that there is no ingoing modes at
radial infinity.

Since the covariant current ~Jr is written as ~Jr � Jr �
m2

4�At�r�H�r�, the condition ~Jr�r�� � 0 determines the
value of the charge flux to be

 co � �
m2

2�
At�r�� �

m2a

2��r2
� � a

2�
: (25)

This agrees with the flow of the angular momentum asso-
ciated with the Hawking thermal (blackbody) radiation.
(See Eq. (A3) in the appendix, with Q � 0.)

Similarly we can determine the flux of the energy-
momentum tensor radiated from Kerr black holes. Since
there is an effective background gauge potential, the
energy-momentum tensor satisfies the modified conserva-
tion equation outside the horizon:

 @rTrt�o� � FrtJr�o�: (26)

By using Jr
�o� � co it is solved as

 Trt�o� � ao � coAt�r�; (27)

where ao is an integration constant. This is the value of the
energy flow at r � 1. In the near horizon region, there are
gauge and gravitational anomalies and the conservation
equation is modified as

 @rTrt � FrtJr � Atr�J� � @rNr
t ; (28)

SATOSHI ISO, HIROSHI UMETSU, AND FRANK WILCZEK PHYSICAL REVIEW D 74, 044017 (2006)

044017-4



where Nr
t � �f

02 � ff00�=192�. (Refer to [7] for the deri-
vation.) The second term comes from the gauge anomaly
while the third one is the gravitational anomaly for the
consistent energy-momentum tensor [13]. The first and the
second terms can be combined in terms of the covariant
current ~Jr�H� as Frt~J

r
�H�. By substituting ~Jr�H� � co �

m2

2�At�r� into this equation, Trt�H� can be solved as

 Trt�H� � aH �
Z r

r�
dr@r

�
coAt �

m2

4�
A2
t � Nr

t

�
: (29)

The energy-momentum tensor combines contributions
from these two regions, T�� � T���o��� � T

�
��H�H. This

does not contain a contribution from the ingoing modes
near the horizon. The total energy-momentum tensor is a
sum of T�� and U�

� , where

 Ur
t � �

�
m2

4�
A2
t �r� � N

r
t �r�

�
H; (30)

is a contribution from the ingoing modes. The freedom to
add a constant value is fixed by a requirement that it should
vanish at r � 1. This condition corresponds to a condition
that there is no ingoing energy flow at r � 1.

Under the following diffeomorphism transformation
with a transformation parameter �t, the effective action
(without the near horizon ingoing modes) changes as
 

��W �
Z
d2x

������������
�g�2�
p

�tr�T
�
t

�
Z
d2x�t

�
co@rAt�r� � @r

�
m2

4�
A2
t � N

r
t

�

�

�
Trt�o� � T

r
t�H� �

m2

4�
A2
t � Nr

t

�
��r� r� � ��

�
:

(31)

The first term is the classical effect of the background
electric field for constant current flow. The second term
should be cancelled by the quantum effect of the ingoing
modes (30). The coefficient of the last term should vanish
in order to restore the diffeomorphism covariance at the
horizon. This relates the coefficients:

 ao � aH �
m2

4�
A2
t �r�� � N

r
t �r��: (32)

In order to determine ao, we impose a vanishing condi-
tion for the covariant energy-momentum tensor at the
horizon. This condition corresponds to the regularity con-
dition for the energy-momentum tensor at the future hori-
zon. Since the covariant energy-momentum tensor is
related to the consistent one by [12,14]

 

~T r
t � Trt �

1

192�
�ff00 � 2�f0�2�; (33)

the condition reads

 aH � 
2=24� � 2Nr
t �r��; (34)

where

 
 � 2�=� �
1

2
@rfjr�r� �

r� � r�
2�r2
� � a

2�
(35)

is the surface gravity of the black hole. The total flux of the
energy-momentum tensor is given by

 ao �
m2a2

4��r2
� � a

2�2
� Nr

t �r�� �
m2�2

4�
�

�

12�2 ; (36)

where � is an angular velocity at the horizon,

 � �
a

r2
� � a

2 : (37)

This value of the flux is the same as the Hawking flux from
Kerr black holes in Eq. (A4) with Q � 0.

V. QUANTUM FIELDS IN KERR-NEWMAN BLACK
HOLE

In this section we generalize our analysis to rotating
charged (Kerr-Newman) black holes and obtain Hawking
fluxes. The analysis in the previous section can be straight-
forwardly applied to this case.

The metric of the Kerr-Newman black hole is given by
replacing � in (1) with

 � � r2 � 2Mr� a2 �Q2 � �r� r���r� r��; (38)

where Q is the electric charge of the black hole and r����
are radii of outer (inner) horizons

 r� � M�
�������������������������������
M2 � a2 �Q2

q
: (39)

The background gauge field is given by

 A � �
Qr

r2 � a2cos2�
�dt� asin2�d’�: (40)

Let us consider a complex scalar field in this background.
As well as the case of the Kerr black hole background, each
partial wave mode of fields can be described near the outer
horizon by the following effective �1� 1�-dimensional
theory in the �r� t� section

 S � �
Z
dtdr�r2 � a2���lm

�
r2 � a2

�

�
@t �

ieQr

r2 � a2

�
iam

r2 � a2

�
2
� @r

�

r2 � a2 @r

�
�lm; (41)

where e is the electric charge of�. The dilaton background
and the metric have the same forms as the ones of the Kerr
geometry (7).U�1� gauge field background is now given by

 A t � �
eQr

r2 � a2 �
ma

r2 � a2 : (42)

The first term is originated from the electric field of the
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Kerr-Newman black hole while the second one is the
induced gauge potential from the metric which is associ-
ated with the axisymmetry of the Kerr-Newman
background.

In this case, there are two U�1� gauge symmetries and
correspondingly two gauge currents. One is the original
gauge symmetry while the other is the induced gauge
symmetry associated with the isometry along the ’ direc-
tion. The gauge potential (42) is a sum of these two fields,

 A t � eA�1�t �mA
�2�
t : (43)

The U�1� current jr associated with the original gauge
symmetry is defined from the electric current Jr in the
four-dimensional space-time as

 jr �
Z
d�2�r

2 � a2cos2��Jr: (44)

Since the background is time-independent, the current in
the Kerr-Newman background satisfies

 @rjr � 0: (45)

In the region r 2 
r�; r� � ��, this equation is modified by
the gauge anomaly,

 @rjr �
e

4�
@rAt: (46)

Following the procedure in the case of Kerr black hole, we
can obtain the flux of the electric charge as

 �
e

2�
At�r�� �

e
2�

�
eQr�
r2
� � a

2 �
ma

r2
� � a

2

�
: (47)

This reproduces the flux of the electric current derived
from the Hawking radiation in (A2).

Next the current Jr�2� associated with the axial symmetry
can be defined from the �r; ��-component of the four-
dimensional energy-momentum tensor Tr’ as Eq. (10).
The anomalous equation near the horizon is

 @rJr�2� �
m
4�

@rAt: (48)

Hence the flux of the angular momentum is obtained as

 �
m
2�

At�r�� �
m
2�

�
eQr�
r2
� � a

2 �
ma

r2
� � a

2

�
; (49)

which is equal to (A3). It should be noted that jr and Jr
�2�

are not independent for a fixed azimuthal angular momen-
tum m. Actually as is clear from the gauge potential (43)
their expectation value in the Kerr-Newman background
are related as 1

e j
r � 1

m J
r
�2��� J r�.

Finally the anomalous equation for the energy-
momentum tensor in the region r 2 
r�; r� � �� is given
by

 @rTrt � F rtJ
r �At@rJ r � @rNr

t ; (50)

where F rt � @rAt. J � is defined above and satisfies
@rJ

r � 1
4� @rAt. Applying the same method as in the

previous section, the flux of the energy-momentum is
determined as
 

1

4�
A2

t �r�� � N
r
t �r�� �

1

4�

�
eQr�
r2
� � a

2 �
ma

r2
� � a

2

�
2

�
�

12�2 ; (51)

where � is the Hawking temperature of the Kerr-Newman
black hole,

 

2�
�
�

r� � r�
2�r2
� � a

2�
: (52)

This is the flux of energy expected from the Hawking
radiation (A4).

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we extended our previous analysis of
Hawking radiation from charged black holes based on
gauge and gravitational anomalies to the cases of rotating
black holes, i.e. Kerr and Kerr-Newman black holes. In
the case of Hawking radiations from Kerr black hole,
though there is no gauge symmetry in the original four-
dimensional setting, the technique for a Reissner-
Nordström black hole can be utilized since the effective
two-dimensional theory near the horizon can be described
by charged matter fields in an electric field. This is because
the axial direction of the four-dimensional general coor-
dinate transformations can be interpreted as U�1� gauge
symmetry for each partial mode. The charge of the field is
given by the azimuthal quantum number. By this identi-
fication, we have reproduced the correct Hawking flux
from Kerr black holes by demanding gauge and diffeo-
morphism symmetry. This analysis was straightforwardly
extended to the Hawking radiations of charged particles
from a Kerr-Newman black hole.

The derivation is based only on the anomaly equation for
gauge current and energy-momentum tensor in effective
two-dimensional field theories near horizons and the result
is universal. Namely it does not either depend on the de-
tailed dynamics of fields apart from the horizon or the spin
of the radiated particles. Of course, when these radiated
particles travel to the infinity, they experience potentials or
interactions and the spectrum is modified. Our treatment
considered only the near horizon effect and neglected such
the scattering effect outside the horizon (i.e. gray body
factor).

Our derivation is partial since we have not been able to
derive the frequency-dependent spectrum of the Hawking
radiation. For this purpose, we may need to develop
frequency-dependent formulation of anomalies or renor-
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malization group type analysis near the horizon. This is left
for future investigation.

Finally we would like to comment on our choice of
boundary conditions and the regularity of the physical
quantities at the future horizon. As is well known,
Hawking radiation is derived by assuming regularity of
the energy-momentum tensor at the future horizon and an
assumption that there is no ingoing current at the past
horizon [9]. This boundary condition corresponds to the
Unruh vacuum, and fluxes for other vacua correspond to
other choices of boundary conditions. In the case of
Reissner-Nordström black hole or rotating black holes,
each partial mode of four-dimensional fields is effectively
described by a massless free two-dimensional conformal
field in an electric and gravitational background. Hence
we can calculate the effective action exactly and the cur-
rents or energy-momentum tensor are also exactly obtained
up to boundary conditions of Green functions. (See
Appendix B.) If we impose a regularity at the future
horizon and absence of ingoing fluxes at r � 1, we can
obtain the fluxes for Unruh vacuum. (In the Schwarzschild
case, see a review [15].) We have chosen the boundary
condition that the radial component of the covariant cur-
rent should vanish at the horizon. This corresponds to the
above regularity condition in the following sense. Near the
horizon, we have first neglected the quantum effect of
ingoing modes. Hence the current in the near horizon
region should be considered as the outgoing current. In
the �u; v� coordinates where u � t� r� and v � t� r�,
the vanishing condition for the covariant current corre-
sponds to the condition Ju ! 0 at the future horizon.
This is the regularity condition at the future horizon. On
the other hand, the boundary condition for ingoing modes
at infinity is implicitly assumed. We have derived the
Hawking flux by using anomalies and conservation laws
for currents or energy-momentum tensor. But there is a
freedom to add an extra constant ingoing flux in the whole
region because such an addition does not break the con-
servation laws. (Such a constant cannot be added to the
outgoing flux because this addition violates the regularity
at the future horizon.) We have taken into account the
quantum effect of ingoing modes through the anomalous
contribution (WZ term). This corresponds to the boundary
condition that the ingoing modes should vanish at infinity.
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APPENDIX A: BLACKBODY RADIATION

In the body of the paper, we have treated a scalar field in
rotating black holes. The same trick to reduce the system to
effective d � 2 theory can be applied to fermions with
slightly more complication. In this appendix we calculate
the flux of Hawking radiations in the case of fermions in
order to avoid the problem of superradiance. The Hawking
distribution is given by the Planck distribution with chemi-
cal potentials for an azimuthal angular momentum m and
an electric charge e of the fields radiated from the black
hole. For fermions the distribution for the Kerr-Newman
black hole is given by

 Ne;m�!� �
1

e��!�e��m�� � 1
; (A1)

where � � Qr�=�r2
� � a

2�, and � was defined in
Eq. (37). The inverse temperature � is defined in (52).
From this distribution, we can calculate fluxes of the
electric current j, angular momentum J�2� and energy-
momentum tensor, defined, respectively, as FQ, Fa, and
FM;

 FQ � e
Z 1

0

d!
2�
�Ne;m�!� � N�e;�m�!��

�
e

2�
�e��m��; (A2)

 Fa � m
Z 1

0

d!
2�
�Ne;m�!� � N�e;�m�!��

�
m
2�
�e��m��; (A3)

 FM �
Z 1

0

d!
2�

!�Ne;m�!� � N�e;�m�!��

�
1

4�
�e��m��2 �

�

12�2 : (A4)

Here we added contributions from a particle with a quan-
tum number �e;m� and its antiparticle with ��e;�m� in
order to compare our results.

APPENDIX B: EFFECTIVE ACTION AND
HAWKING RADIATION

It is shown that each partial wave mode in black hole
backgrounds can be described near the outer horizon by a
two-dimensional effective theory. Since mass, potential,
and interaction terms can be neglected near the horizon,
the effective d � 2 theories are free conformal theories.
Thus we can evaluate fluxes of the current or energy by
calculating the effective action directly. Here we will cal-
culate such fluxes in the Reissner-Nordström case because
Kerr or Kerr-Newman cases are reduced to the same cal-
culation, as explained in the body of the paper.

In the Schwarzschild case, many works have been done
to derive Hawking flux from effective actions in black hole
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background [15,16]. Since the effective d � 2 theories
contain dilaton background, it seems necessary to include
the effect of dilaton in such investigations and there
have been many discussions on it. However, as we have
briefly commented in our previous paper [7], the effect of
the dilaton does not change the property of the
�r; t�-component of the energy-momentum tensor and ac-
cordingly the Hawking flux is independent of the dilaton
background. It only affects the other nonuniversal compo-
nents like Ttt . In this sense, Hawking radiation is universal.
Once we impose the boundary conditions, the value of the
flux is determined only by the value of anomalies at the
horizon. Therefore, in the following, we calculate fluxes of
current and energy in the Reissner-Nordström black hole
for free massless scalar fields without dilaton backgrounds.

The gauge potential and the metric of the Reissner-
Nordström black hole is given by

 A � �
Q
r
dt; (B1)

 ds2 � f�r�dt2 �
dr2

f�r�
� r2d�2; (B2)

where f�r� is

 f � 1�
2M
r
�
Q2

r2 �
�r� r���r� r��

r2 : (B3)

r� � M�
�������������������
M2 �Q2

p
are the radii of the outer and inner

horizons. We also use the other coordinate system �u; v�,

 v � t� r�; u � t� r�;
�
dr� �

1

f
dr
�
; (B4)

and the Kruskal coordinates

 U � �e�
�u; V � e
�v; (B5)

where 
� is the surface gravity on the outer horizon, 
� �
r��r�

2r2
�

.

Each partial wave of charged matter fields in the
Reissner-Nordström black hole background is effectively
described by a charged field in a d � 2 charged black hole
with a metric

 ds2 � f�r�dt2 �
dr2

f�r�
(B6)

and the gauge potential (B1). The two-dimensional curva-
ture obtained from this metric is given by

 Rtt �
ff00

2
; Rrr � �

f00

2f0
; Rtr � 0; R � f00:

(B7)

Effective action � of a conformal field with a central
charge c � 1 in this gravitational and electric field back-
ground consists of the following two parts; the gravita-
tional part �grav and gauge field part �U�1�. The

gravitational part (Polyakov action) is given by

 �grav �
1

96�

Z
d2xd2y

�������
�g
p

R�x�
1

4g
�x; y�

�������
�g
p

R�y�;

(B8)

while the U�1� gauge field part is

 �U�1� �
e2

2�

Z
d2xd2y���@�A��x�

1

4g
�x; y���@�A�y�:

(B9)

R is the two-dimensional scalar curvature (B7) and 4g is
the Laplacian in this background. From these effective
actions, we can obtain the energy-momentum tensor T��
and U�1� current J� (see [17] for a chiral case),

 T�� � Tgrav
�� � T

U�1�
�� �

2�������
�g
p

��

�g��
; (B10)

 Tgrav
�� �

1

48�

�
2g��R� 2r�r�S�r�Sr�S

�
1

2
g��r�Sr�S

�
; (B11)

 TU�1��� �
e2

�

�
r�Br�B�

1

2
g��r

�Br�B
�
; (B12)

 J� �
1�������
�g
p

��

�A�
�
e2

�
1�������
�g
p ���@�B; (B13)

where

 S�x� �
Z
d2y

1

4g
�x; y�

�������
�g
p

R�y�; (B14)

 B�x� �
Z
d2y

1

4g
�x; y����@�A��y�: (B15)

Hence B is a solution of the equation,

 4g B � ���@�A� � �@rAt�r�: (B16)

This equation is solved as

 B � B0 � b�u� � ~b�v�; (B17)

 @rB0 �
1

f
�At�r� � c�; (B18)

where b�u� and ~b�v� are solutions of the homogeneous
equation4gB �

4
f @u@vB � 0, and c is an integration con-

stant. Thus the electromagnetic current (B13) becomes

 Jt �
e2

�
@rB �

e2

�f
�At�r� � c� �

e2

�
@r�b�u� � ~b�v��;

(B19)
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 Jr � �
e2

�
@tB � �

e2

�
@t�b�u� � ~b�v��: (B20)

In the �u; v� coordinates they are given by

 Ju �
f
2

�
Jt �

1

f
Jr
�
�
e2

2�
�At�r� � c� �

e2

�
@ub�u�;

(B21)

 Jv �
f
2

�
Jt �

1

f
Jr
�
�
e2

2�
�At�r� � c� �

e2

�
@v ~b�v�:

(B22)

In order to determine the homogeneous parts, we impose
the following boundary conditions. First we require that
free falling observers see a finite (not infinite) amount of
the charged current at the outer horizon and accordingly
the current in the Kruskal coordinate U is required to be
finite at the future horizon. Since JU � ��1=
�U�Ju and
U !

���������������
r� r�
p

for r! r�, Ju must vanish on the horizon

 Ju ���!r!r� e2

2�
�At�r�� � c� �

e2

�
@ub�u�jr�r� � 0: (B23)

This determines the homogeneous part b�u� as @ub�u� �
1
2 �At�r�� � c�. Second we impose that there is no ingoing
current at r � 1 and require

 Jv ���!r!1 e2

2�
c�

e2

�
@v ~b�v�jr!1 � 0: (B24)

This determines the other homogeneous part ~b�v� as
@v ~b�v� � �c=2. By these boundary conditions the U�1�
current is completely determined as

 Ju �
e2

2�
�At�r� � At�r���; (B25)

 Jv �
e2

2�
At�r�: (B26)

In the �t; r�-coordinate, the U�1� current is given by

 Jr � Ju � Jv � �
e2

2�
At�r�� �

e2Q
2�r�

; (B27)

 Jt �
1

f
�Ju � Jv� �

e2

�f

�
At�r� �

1

2
At�r��

�
: (B28)

This is the expectation value of the current for the Unruh
vacuum in the d � 2 Reissner-Nordström black hole.

The energy-momentum tensor can be similarly obtained.
S�x� satisfies the equation

 4g S � R � f00 (B29)

and it can be solved to be a sum of an inhomogeneous and
homogeneous parts.

Hence the energy-momentum tensor is written as
 

Tuu �
1

192�
��f02 � 2ff00� �

e2

4�
�At�r� � At�r���2 � t�u�;

(B30)

 Tvv �
1

192�
��f02 � 2ff00� �

e2

4�
A2
t �r� � ~t�v�; (B31)

 Tuv �
1

96�
ff00; (B32)

where t�u��~t�v�� is an arbitrary function of u�v� that are
determined by boundary conditions. Similarly to the U�1�
current we impose the following boundary conditions,

 Tuu ���!r!r� � 1

192�
f02�r�� � t�u�jr�r� � 0; (B33)

 Tvv ���!r!1~t�v�jr!1 � 0: (B34)

Then components of the energy-momentum tensor become
 

Ttt �
1

f
�Tuu � Tvv � 2Tuv�

�
1

96�f

�
��f0�2 � 4ff00 �

1

2
�f0�r���2

�

�
e2

2�f

�
A2
t � At�r��At �

1

2
A2
t �r��

�
; (B35)

 

Trr � �
1

f
�Tuu � Tvv � 2Tuv�

�
f

96�

�
�f0�2 �

1

2
f0�r��2

�

�
e2

2�f

�
A2
t � At�r��At �

1

2
A2
t �r��

�
; (B36)

 Trt � Tuu � Tvv

� �
e2

2�
At�r��At�r� �

1

192�
f02�r�� �

e2

4�
A2
t �r��:

(B37)

Therefore the flux of the energy Trt is obtained as

 Trt ���!r!1 1

192�
f02�r�� �

e2

4�
A2
t �r��: (B38)
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