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We solve semiclassical Einstein equations in two dimensions with a massive source and we find a static,
thermodynamically stable, quantum black hole solution in the Hartle-Hawking vacuum state. We then
study the black hole geometry generated by a boundary mass sitting on a nonzero tension 1-brane
embedded in a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole. We show that the two
geometries coincide and we extract, using holographic relations, information about the conformal field
theory (CFT) living on the 1-brane. Finally, we show that the quantum black hole has the same
temperature of the bulk BTZ, as expected from the holographic principle.
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I. INTRODUCTION

In the framework of the proposed duality between grav-
ity on (d� 1)-dimensional anti-de Sitter (AdSd�1) spaces
and d-dimensional conformal field theory (CFTd) living on
the AdSd�1 boundary, first proposed by Maldacena [1],
Witten [2] suggested a duality between Schwarzschild-
AdS black holes (SAdS) and a conformal field theory
(CFT) at high temperature (TCFT) on the SAdS boundary.
This idea can be naively understood thinking that very
massive black holes, although stable, emit a black body
radiation [3]. However, as the black body spectrum does
not carry information, the Hawking mechanism is usually
associated to a nonunitary process [4]. ATCFT is a unitary
theory therefore SAdS black holes cannot be fully dual to a
TCFT. Indeed this is the case [5]. We can easily understand
why by considering the three-dimensional Banados-
Teitelboim-Zanelli (BTZ) black hole [6].

The metric for the BTZ black hole is

 ds2 � �F�r�dt2 �
dr2

F�r�
� r2d�2; (1)

where

 F�r� �
r2

L2 �m; � � �� 2�; 0 � r <1: (2)

The horizon of this black hole is in rh �
����
m
p

L, m is its
mass, and L the AdS length. This spacetime is a solution of

Einstein equations

 R�� �
1

2
Rg�� �

1

L2 g��:

For a scalar field � propagating in this background the
action is given by

 A ��� �
Z

BTZ

�������
�g
p

jd�j2 �
Z
@BTZ

�������
�h
p

�0d�j@BTZ;

where the first integral represents the bulk action and the
second the boundary action, h and �0 are the induced
metric and the value of the scalar field on the BTZ bound-
ary (here denoted by @BTZ), respectively. The AdS/CFT
correspondence relates the above boundary action to the
partition function of a scalar operator in the dual conformal
field theory, in this case a TCFT, in the following formal
way

 

�
exp

Z
@BTZ

�0O

�
TCFT

�Ab��0�:

�0 now represents the source of a scalar operator O of

conformal dimension � � �1�
���������������������
1��2L2

p
�=2, where �

are the Kaluza-Klein masses of the solutions of
�@BTZ�0 � ��2�0 [7]. With this prescription, one can
calculate correlation functions of the scalar operator O in
the usual way. For the two-point correlation function we
have

 hO�xa�O�xa0�iTCFT �
�2

��0�xa���0�xb0�

�
exp

Z
@BTZ

�0O

�
TCFT

���������0�0
�

�2

��0�xa���0�xb0�
Ab��0�

���������0�0
� G�xa; xa0�; (3)

where xa, xa0 are the boundary coordinates and G�xa; xa0� is
called the bulk to boundary correlator. At very large time
(3) is given by [7]

 G�xa; xa0� � e
�2

���
m
p

��t�t0�=L: (4)

We note that the correlator (4) is exponentially decaying
and this is a signal that information has been lost for this
background. Indeed, for a conformal field theory at finite
temperature, we expect that its two-point correlation func-
tions oscillate in a quasiperiodic manner with the quasi-
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periodicity dictated by the Poincarè recurrence [5,8,9]. To
solve this puzzle, Maldacena in [10] and then Hawking in
[11] suggested that the correct bulk to boundary operator
describing the boundary theory should be of the form

 G �
X
Mi

Gi�Mi�; (5)

where the sum is over all the possible topologies Mi
satisfying the same boundary conditions. This is very
reminiscent of the path integral sum over histories.
Taking account of only the BTZ background is similar to
coarse graining the phase space in the Feynman path
integral. In this way the apparent information loss as
seen from the black hole perspective is very similar to
the information loss in the collapse of wave functions in
ordinal quantum mechanics.

However bulk black hole solutions might be very useful
to understand the behavior of semiclassical black holes. In
fact if we consider a conformal field theory at finite tem-
perature with a UV cutoff (equivalent to a coarse grained
process), this will induce a classical gravitational field and
will not necessarily need to be unitary. Obviously this
approximation will break down at the quantum gravity
regime where we should restore the unitarity. In order to
obtain this theory as a boundary of some asymptotically
AdS spacetime we need to truncate the boundary from
spatial infinity to a finite point, as suggested by [12,13]
(see [14] for the zero temperature case) to holographically
explain the no-go theorem of [15]. The d-dimensional
gravitational effective theory on the boundary will be
governed by the semiclassical Einstein equations

 Rab �
1
2Rgab ��gab � k2hTabi: (6)

Rab is the Ricci tensor projected onto the brane, k�2 �
Md�2
	 with M	 being the fundamental mass scale (for d �

2 k2 � 1), and hTabi is the expectation value of the energy
momentum tensor of the conformal field theory with a UV
cutoff � related with the boundary tension, i.e. the trace of
the boundary extrinsic curvature K�

� � K. The duality
has been checked for the case of three-dimensional brane
black holes embedded in a four-dimensional bulk space-
time [12] and evidences were given in the case of a four-
dimensional black hole formation in a five-dimensional
embedding [16].

If the bulk is a three-dimensional space, as in the BTZ
case, the boundary is a two-dimensional surface and (6)
reduces to [17,18]

 �gab � hTabi: (7)

This case is very interesting as the dynamics of the gravi-
tational field is of purely quantum origin. Note also that the
presence of a cosmological constant is necessary because
of the trace anomaly hTaai � 0.

In this paper we will find a solution to (7) in the presence
of a boundary mass. We will find a static, thermodynami-

cally stable quantum black hole solution in thermal equi-
librium in the Hartle-Hawking state. We will then consider
a three-dimensional braneworld model with a BTZ bulk
and we will show how our quantum solution can also be
obtained by slicing this three-dimensional spacetime with a
nonzero tension, asymptotically AdS, 1-brane. In this way
we prove that the conjectured duality between classical
bulk black holes and quantum brane black holes of [12,13]
applies to our case and we extract, using holographic
relations, information about the CFT living on the 1-brane.

II. QUANTUM BLACK HOLE IN TWO
DIMENSIONS

We start by considering the two-dimensional action

 I �
1

2

Z
d2x�R� 2��

�������
�h
p

�
Z
d2x

�������
�h
p

LCFT;

where LCFT is the Lagrangian of a conformal field theory.
At this action we add a Gibbons-Hawking term [19]

 Ib � �
Z
dxaba�K �Lb�; (8)

where ba is the normal to the boundary, Lb is a boundary
Lagrangian, and Kab is the extrinsic curvature of the
boundary. Since the boundary (8) is unidimensional the
only possible boundary Lagrangians are either of a point
particle or a world sheet of mass � for a timelike or
spacelike worldline. As we show in the appendix, the
variation of the boundary action (8) is trivial. We therefore
have the choice of setting the boundary action to vanish on
the semiclassical solution. In this way the boundary term
will be irrelevant in the semiclassical calculations and
therefore the techniques used in [18] straightforwardly
apply to our case.

In the semiclassical approximation this theory is de-
scribed by the set of equations
 

�gab � hTabi; (9a)

K � �; (9b)

where we consider negligible the quantum correction to the
boundary Lagrangian.

The trace anomaly of the conformal field theory can be
determined by the only knowledge of the background
geometry and it is [20]

 hTaai � �
@�

24�
R: (10)

� is proportional to the number of fields in the theory
where matter fields are counted with opposite signs with
respect to the graviton contribution.

Using the gauge freedom in fixing the coordinates we
can write the spacetime metric as

 ds2 � ��2�u; v�dudv: (11)
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Conservation equations rbhTabi � 0, Eqs. (9a) and (10)
give the following equations
 

�1
2��2 � hTuvi; (12a)

0 � hTuui � hTvvi; (12b)

hTuui � �
�

12�
�@2

u��1 � ~U�u�; (12c)

hTvvi � �
�

12�
�@2

v��1 � ~V�v�; (12d)

@
�1hTaai � �

�
24�

R; (12e)

where ~U and ~V set the vacuum state in which Eq. (7) is
solved.

We now set ~U and ~V constant and proportional to the
number of fields � by writing

 

~U � ~V �
q

48�
�; (13)

where q is a constant. As we will see later this choice
corresponds to setting the vacuum to be the Hartle-
Hawking state.

Equations (12) can now be solved for � and give

 �2 �
4q

	2

e�v�u�
��
q
p

�1� e�v�u�
��
q
p
�2
; (14)

where

 	2 �
48��

@�
: (15)

In order to understand the physical meaning of the two
constants q and 	 we rewrite our metric in the
Schwarzschild gauge

 ds2 � �f�x�dt2 �
dx2

f�x�
(16)

by setting

 q � 	2N �M2; t �
v� u

2

and
 

x� � �
���
q
p

	2

�1� e�v�u�
��
q
p
�

�1� e�v�u�
��
q
p
�
�
M

	2 ; (17a)

f��x�� � 	2x2
� � 2Mx� � N (17b)

with

 M< x�	2 <
���
q
p
�M: (18)

Alternatively, we can use, in place of x�, the following
coordinate
 

x� � �
���
q
p

	2

�1� e�v�u�
��
q
p
�

�1� e�v�u�
��
q
p
�
�
M

	2 ; (19a)

f��x�� � 	2x2
� � 2Mx� � N (19b)

with

 �M< x�	2 <
���
q
p
�M: (20)

The interval (20) can also be restricted to

 �M< x	2 < 0: (21)

We can analytically extend the ranges of values for x� in
(18) and x� in (21) to 0 � x� <1 and �1< x� � 0,
respectively. We now implement the boundary condition
(9b) and we set the boundary at x � 0. The manifold
satisfying the boundary conditions (9b) can be constructed
by matching the two patches x� and x� in x� � x� � 0
and defining

 f�x� � 	2x2 � 2Mjxj � N; (22)

where�1< x<1 and� � M=
����
N
p

and so, for a positive
mass �, it follows that M and N must be both non-
negative. The black hole horizon is at

 jxhj �
�M�

���
q
p

	2 (23)

and it is purely quantum. In fact, using Eqs. (15) and (23) it
becomes

 jxhj � @
�

48��
��M�

���
q
p
�; (24)

and lim@!0xh � 0.
Rescaling the coordinates, by defining ~t �

����
N
p

t and ~x �
x=

����
N
p

, we can rewrite our metric as

 ds2 � �~f�~x�d~t2 �
d~x2

~f�~x�

with

 

~f�~x� � 	2~x2 � 2�j~xj � 1:

It is now clear that the metric depends only on the two
physical quantities 	2 and � and it is asymptotically AdS
with AdS length l � 1=	. The black hole mass, the space-
time mass when the AdS contribution is subtracted, is
therefore only determined by the boundary mass and it is
E � � [21].

The black hole metric (16) with (22) was first found in
[22] (where, due to different boundary conditions, the
boundary mass is � � M) as a solution of a different
two-dimensional gravity theory [23] and also here the
black hole mass is proportional to the mass on the bound-
ary [24].

A. Conformal properties

In this section we explore the conformal properties of
our solution. Although the (~x, ~t) coordinates seem more
natural, we will continue to use (x, t) coordinates because,
as we will see later, these are the ones in which the
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correspondence with the BTZ brane black hole is clearly
manifest.

Being x � 0 a physical boundary we can just consider
the patch 0< x<1. The black hole horizon is defined in
(23). We introduce a tortoise coordinate r	 as

 r	 �
Z dx

	2x2 � 2Mx� N

�
1

2
���
q
p ln

���������
���
q
p
� 	2x�M���

q
p
� 	2x�M

��������
�
; (25)

and the horizon is now moved to r	 ! 1. Introducing null
coordinates u and v, such that

 u � t� r	; (26)

 v � t� r	; (27)

the conformal factor becomes the one in Eq. (14). Note
that the null coordinates u and v cover the full spacetime
(�1< u, v <1) and at the horizon u! 1 and v!
�1. These coordinates do not anyway represent a con-
tinuous and complete set of coordinates across the horizon.
In order to have a global set of coordinates we introduce

 U � �
1���
q
p e�

��
q
p
u; (28)

 V �
1���
q
p e

��
q
p
v; (29)

and the metric becomes

 ds2 � �
4q

	2

1

1� qUV
dUdV: (30)

In this coordinate system the horizon is at U ! 0 and V !
0 and�1<U < 0 and 0< V <1. The spacetime can be
now analytically extended to the whole plane �1<U,
V <1. We can also define the new Cartesian coordinates

 T �
U� V

2
; (31)

 R �
V �U

2
: (32)

The Penrose diagram of this maximally extended space-
time is shown in Fig. 1.

B. Temperature

In this section we show that at our black hole is asso-
ciated with a physical quantum temperature due to the
presence of a boundary in x � 0. Similar features are
studied in [25] for the dilatonic case.

We consider the quantization of a massless scalar field

in our two-dimensional spacetime, in this section we will
use units such that @ � 1. The wave equation

 �
 � 0

has solutions, with respect to the extended coordinates
defined in (28) and (29), given by the orthonormal modes

 �k �
1�����������

4�!
p ei�kX�!T�;

where ! � jkj> 0 and �1< k<1. These modes are
positive frequency with respect to the timelike Killing
vector @T , in fact they satisfy

 L @T�k � �i!�k:

The modes with k > 0 consist of right-moving waves
�4�!���1=2�e�i!U along the rays U � constant, and they
are analytic functions of U and bounded in the upper-half
V-plane. The modes with k < 0 consist of left-moving
waves �4�!���1=2�e�i!V along the rays V � constant,
and are analytic functions of U and bounded in the
lower-half U-plane.

The general solution of the wave equation may be
expanded as

 
 �
X1

k��1

�ak�k � â
y
k�	k�: (33)

Upon quantization, ak and âyk become annihilation and
creation operators and the vacuum state for the inertial
observer is defined, as usual, by

 akj0Ai � 0: (34)

FIG. 1. Conformal diagram of the maximally extended black
hole solution of metric (16) with (22). The lines in bold represent
the boundary x � 0.
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We can now also adopt an alternative quantization pre-
scription based on modes defined using the null coordi-
nates of Eqs. (26) and (27). The wave equation is
conformally invariant and we have mode solutions given
by

 
k �
1�����������

4�!
p ei�kx
!t�; (35)

where ! � jkj> 0 and �1< k<1. The upper sign in
(35) applies in region IV of the Penrose diagram in Fig. 1
and the lower sign in region I. The presence of this sign
change can be regarded as due to the fact that a right-
moving wave in region I moves towards increasing values
of x, while in region IV it moves towards decreasing values
of x, or simply due to the time reversal we have in
region IV. These modes are positive frequency modes
with respect to the timelike Killing vector @t in region I
and �@t in region IV, satisfying

 L
@t
k � �i!
k;

in region I and IV, respectively.
We can now define

 
�1�k �
� 1��������

4�!
p ei�kx�!t�; in region I;
0; in region IV;

(36)

and

 
�4�k �
�

0; in region I;
1��������

4�!
p ei�kx�!t�; in region IV: (37)

The set in Eq. (36) is complete in region I while the set in
(37) is complete in region IV, but neither set separately is
complete on all our spacetime. However both sets together
are complete, and lines t � constant taken across both
region I and IV are Cauchy surfaces for the whole space-
time. Therefore, these modes can also be analytically
continued into the regions II and III and so can be used
as a base for quantizing the field 
 that can be then
expanded as

 
 �
X1

k��1

�b�1�k 

�1�
k � b

�1�y
k 
�1�	k � b�2�k 


�4�
k � b

�2�y
k 
�4�	k �;

(38)

and the vacuum state can be now defined as the one
satisfying

 b�1�k j0Bi � b�2�k j0Bi � 0: (39)

This vacuum state is obviously not equivalent to the one
defined in (34) as we can easily see by analyzing the
different modes. To derive the Bogolubov transformations
relating the operators b�1�k and b�2�k to the operators ak of the
inertial observer we will follow an argument due to Unruh
[26].

Note that the solution (36) with support in region I can
be extended to region II and the solution (37) with support
in region IV can be extended to region III and we can
define the new following modes

  �1�k � 
�1�k � e
��!=

��
q
p

�4�	�k ; (40)

  �4�k � 
�1�	�k � e
�!=

��
q
p

�4�k ; (41)

that are all defined in the entire spacetime (all four regions)
and that represent a set of positive-energy solutions of the
wave equation. Therefore, an inertial observer may expand
a general solution as

 
 �
X1

k��1

�C�1�k  
�1�
k � C

�1�y
k  �1�	k � C�2�k  

�4�
k � C

�2�y
k  �4�	k �;

(42)

and the vacuum state can be now defined as the one
satisfying

 C�1�k j0Ai � C�2�k j0Ai � 0: (43)

We can now easily relate these modes to the b�1�k and b�2�k
by using Eqs. (40)–(42) and we obtain

 b�1�k � C�1�k � e
��!=

��
q
p
C�2�yk ; (44)

 b�2�k � C�2�k � e
��!=

��
q
p
C�1�yk : (45)

The C-modes are not properly normalized. From the com-
mutation relations for the b-modes

 �b�r�k ; b
�s�y
k0 � � �rs�kk0

we deduce

 �C�r�k ; C
�s�y
k0 � �

e�!=
��
q
p

2 sinh��!=
���
q
p
�
�rs�kk0

and so we define the normalized creation and annihilation
operators by

 c�r�k � e��!=
��
q
p ��������������������������������

2 sinh��!=
���
q
p
�

q
C�r�k

so that

 �c�r�k ; c
�s�y
k0 � � �rs�kk0 :

The b�r�k operators can now be written in terms of the c�r�k as
follows

 b�1�k �
1��������������������������������

2 sinh��!=
���
q
p
�

q fe�!=2
��
q
p
c�1�k � e

��!=2
��
q
p
c�2�yk g;

(46)
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 b�2�k �
1��������������������������������

2 sinh��!=
���
q
p
�

q fe�!=2
��
q
p
c�2�k � e

��!=2
��
q
p
c�1�yk g;

(47)

and these are the Bogolubov transformation relating the
states j0Ai and j0Bi.

Now suppose the system is the state j0Ai, the number
operator for the observer associated to j0Bi, is simply given
by

 N�k� � b�1�yk b�1�k

since b�2�yk excites modes which vanish in region I and are
therefore nonaccessible to the observer whose trajectory is
in region I. Using the Bogolubov transformation (46) and
(47) and the definition (43) of the vacuum state j0Ai, we
obtain the expectation value of the number operator

 h0AjN�k�j0Ai �
e��!=

��
q
p

2 sinh��!=
���
q
p
�
�

1

e2�!=
��
q
p
� 1

;

and this is precisely the Planck spectrum for radiation at
temperature, replacing @,

 T � @

���
q
p

2�kB
; (48)

where kB is the Boltzman constant. Note that we get the
same result for the temperature by considering the Wick
rotation in imaginary time as it was done in [22] for the
black hole of the two-dimensional Jakiw Teitelboim (JT)
gravity theory [23].

The heat capacity of our black hole is given by

 C �
d�
dT
�

4�2k2
B

�@N
T: (49)

We can see that the black hole has a positive heat capacity
and therefore it can reach thermal equilibrium with the
thermal bath due to the Hawking radiation.

From Eqs. (12) and (13) we have that the vacuum
expectation value of the normal ordered stress tensor op-
erator is simply given by

 h: Tuu :i � ~U �
�

48�
q; h: Tvv :i � ~V �

�
48�

q

after transforming to extended coordinates U and V via the
Schwarzian derivative we get [27]

 h: TUU :i � h: TVV :i � 0

and so, as we stated before, our semiclassical equation is
actually solved in the Hartle-Hawking vacuum state [28].

III. A BRANE IN BTZ

As we previously discussed, the two-dimensional black
hole described above is purely quantum, by means that the
presence of the horizon is due only to quantum mechanical

effects. The holographic conjecture of [12,13] implies that
boundaries of some asymptotically AdS spaces should
correspond to our semiclassical solution. The only known
(asymptotically AdS) black hole in three dimensions is the
BTZ one [6]. We then expect our solution to be a slice of a
BTZ black hole.

A boundary solution with nonzero vacuum energy
(equivalent to a UV cutoff on the brane) is equivalent to
a braneworld solution [29]. A braneworld is a slice (brane)
of a given bulk once a Z2 symmetry with respect to the
brane is introduced. In our case the system is governed by
the following action

 A g �
1

2k2
3

Z
d3x

�
R�

2

L2

� �������
�g
p

�
2�

k2
3

Z
�
d2x

�������
�h
p

;

(50)

where n� is the normal to the brane � and L is the AdS3

length; � and h�� represent the vacuum energy of and the
induced metric on the brane and k2

3 is the inverse of the
three-dimensional Planck mass.

The vanishing of the variation of the action (50) implies
the Einstein equations

 R�� �
1

2
Rg�� �

1

L2 g��;

with the boundary condition [30]

 K�� � �h��; (51)

where K is the extrinsic curvature of �.

A. 1-brane

We want to introduce a static 1-brane in the 3D BTZ
black hole spacetime. In order to do that we consider the
surface

 � : ����r� � 0 (52)

whose normal is given by

 n� � 
A�0;��0; 1�; (53)

where 0 � @r and the normalization factor A �
r��0r2F�r� � 1��1=2. The 
 sign is related to the orienta-
tion of � as we shall see later.

Equation (51) is solved, in the BTZ background, by the
function ��r�

 �
�r� � 

ln�

2�2L4m�2�L2
���
m
p ��������������������������������

r2�1��2L2���2L4m
p

Lr �����
m
p : (54)

As we can see there are two different branches of the
solution. We will call these two branches the � and �
branch and we will indicate them with �� and ��,
respectively. The periodicity condition of � in (2) implies

 �
�r� � �
�r� � 2�:

To have a lighter notation we introduce the following
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quantities

 � � 2�2L3m; � � 4�2L2m�1� �2L2�; (55)

so that

 �
�r� � 

1����
m
p ln

�
��

��������������������
�r2 � �2

p
r

�
:

The induced metric on the brane is given by

 ds2

 � �

�
r2

L2 �m
�
dt2 �

�
1

r2

L2 �m
� r2�02


�
dr2; (56)

and so the Ricci scalar is given by

 R
 � �
2m�

mL2�� �2 � �
2

L2 �1� �
2L2�:

We can easily see that the two-dimensional brane is indeed
asymptotically AdS (if �2 � L�2) with cosmological con-
stant

 �2 � �
1

L2 �1� �
2L2�:

We now turn our attention to the properties of the slice
and we consider only the� branch ���r� of (54) that from
now on we will simply indicate as ��r� (the analysis of the
� branch is completely analogous to the following one).
We have

 �0 �
@�

@r
� �

���������������������
�r2 � �2

p ����
m
p

r
< 0;

so our function ��r� is always decreasing and also

 �r2�02�0 � �
2�2�r

��r2 � �2�2m
: (57)

The right-hand side of (57) is equal to zero in r � 0 and
always decreasing after that. Considering this, since

 htt�0�hrr�0� � �1< 0; (58)

we have that htthrr < 0 always, avoiding Euclidean
patches on the brane.

Given the periodicity of � we are now interested in the
points r � rn in which the brane makes a full loop (i.e.
where the two branches intersect on the Cartesian x axis,
see Fig. 2). These points are defined by the equation

 ��r � rn� � n�

with n integer. A solution is r0 � 0 and the others are

 rn �
2�en�

���
m
p

e2n�
���
m
p

� �
: (59)

Note that

 

drn
dn

< 0

and rn blows up if there exists an integer n � nc such that

 e2nc�
���
m
p

� 4L2�2m�1� �2L2�

if such an integer does not exist, the value of r at which the
two branes intersect is r � rnmax

, where

 nmax �

�
1

2�
����
m
p ln�4L2�2m�1� �2L2��

	
!
> 0; (60)

and with �a�! we mean the next integer after a if a is not an
integer. So if 1

2�
���
m
p ln�4L2�2m�1� �2L2�� is an integer the

brane will wrap around an infinite number of times. This
will also happen in the asymptotically flat case in which
�2 � L�2. In the more likely case in which this is not an
integer, the brane will wrap around only for a finite number
of times and will then reach infinity with a defined asymp-
totic angle as is shown in Fig. 2.

B. Black hole

The induced metric (56) does not represent yet a black
hole, the presence of the horizon is indeed only due to an
accelerated coordinate system. In fact (56) can be easily
transformed to the AdS2 metric [25]. In order to find a
black hole solution, we consider a positive mass � local-
ized on the brane which acts as a boundary of the brane.
The global three-dimensional Z2-symmetric solution im-
plementing this scenario, will therefore be constructed by
considering the portion of the spacetime whose boundary is
given by the two profiles �
 from the last intersection
point (r � rnmax

) in the increasing r direction (see Fig. 2).
In doing this we need to choose the sign of the normal in
Eq. (53). We must impose that, in Cartesian coordinates,
the ny component of the normal is negative and, since we
have

FIG. 2 (color online). Plot of �� and �� in a Cartesian plane
(x, y), x � r cos� and y � r sin� with � � �
. P is the point
(rnmax

, 0) and it is the last point in which the two branches
intersect.
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 ny � � sin�nr � r cos�n�;

with � � ��r�, we can just impose that

 lim
r!1

ny < 0)
���������
�m
p

L2 sin��1�< 0;

where

 �1 � lim
r!1

��r� �
1

2
����
m
p ln�4L2�2m�1� �2L2��;

and so the sign is related to the sign of sin�1. Note that
when �1 � n�, where n is an integer, the sign of the
normal cannot be defined and this is in complete agreement
with what we saw above (see discussion after Eq. (60)).

The conical singularity formed by the intersection of
�� and �� describes a spacelike particle sitting on our 1-
brane. From the action point of view this is equivalent to
add to the action (50) the boundary Lagrangian (8).

To make the above discussion more concrete we will use
a different coordinate gauge (we will again consider only
the � branch). By making the coordinate change

 � �

�������������������������������������������������
r2�1� �2L2� � �2L4m

p
1� �2L2 ;

the transformed metric will verify the property gtt � g�1
�� .

As we said we would like to truncate the range of r to be
rnmax

� r <1. This implies a minimum value for the new
coordinate �, given by

 �m �

����������������������������������������������������
r2
nmax

1� �2L2 �
�2L4m

�1� �2L2�2

s
:

We now shift this point to the origin by setting

 x � �� �m;

so that 0 � x <1. We now copy and paste the branch ��
in x � 0. Equivalently we extend x to the range�1< x<
1 and we require that g����x� � g���x�. By setting

 	2 �
1� �2L2

L2 ; (61)

and

 M �
1

L

�������������������������������������������������������
r2
nmax

L2 �1� �
2L2� � �2L2m

s
; N � m�

r2
nmax

L2 ;

we obtain the induced metric on the brane to be

 ds2 � ��	2x2 � 2Mjxj � N�dt2 �
dx2

�	2x2 � 2Mjxj � N�
:

(62)

The metric (62) is equivalent to the metric (16) with the
function f given by (22) and therefore represents a black
hole surrounding a boundary mass �.

Given that boundary mass � � M=
����
N
p

is not negative,
we find again that N > 0. This condition now implies that
our brane must cross the BTZ horizon and therefore that
brane and bulk black hole must share the same horizon. In
fact from the condition N > 0 we get that

 rnmax
< rh �

����
m
p

L; (63)

so

 

2�enmax�
���
m
p

e2nmax�
���
m
p

� �
<

����
m
p

L:

By setting x � enmax�
���
m
p

we have that

 x�
�

x2

4L2�2m
� �1� �2L2�

� ����
m
p

< 0;

and so being x > 0 we need

 x > 2
����
m
p

L��1� L��;

or

 nmax >
ln�2

����
m
p

L��1� L���
�

����
m
p : (64)

We can always write

 nmax � 1�
1

2�
����
m
p ln�4L2�2m�1� �2L2�� � ;

where 0< < 1. With this (64) reduces to

 e2�1���
���
m
p 1� �L

1� �L
> 1:

As 1��L
1��L < 1, to satisfy (63) we need a massive enough

BTZ black hole. This is in line with the discussion of [2]
which requires the bulk black hole to have a large mass in
order to be quantum mechanically stable and to correspond
to a CFT in thermal equilibrium.

IV. CONCLUSIONS

Motivated by the conjectured duality between brane-
world bulk black holes and semiclassical black holes of
[12,13] we studied two-dimensional quantum black holes
and 1-brane slices of a three-dimensional BTZ bulk black
hole.

We found a new static two-dimensional quantum black
hole solution surrounding a boundary mass, in thermody-
namical equilibrium in the Hartle-Hawking vacuum state.
This solution exists only if the two-dimensional cosmo-
logical constant is nonzero, as the conformal field theory
relates the trace anomaly to the cosmological constant.

The proposed duality would imply the existence of a
static asymptotically AdS two-dimensional brane black
hole with nonzero tension as a slice of an asymptotically
AdS thermodynamically stable [2] three-dimensional
space. Studying slices of the BTZ black hole we found
that indeed, for a massive enough bulk black hole, such a
solution does exist only in the nonvanishing cosmological
constant case and we showed that it shares the same
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geometry of our quantum solution. We also found a reso-
nance between the BTZ parameters and the 1-brane tension
for which such a construction is impossible. It would be
interesting to reinterpret it, in the holographic prospective,
from the point of view of a deformed conformal field
theory living on the spacial infinity of BTZ, extending
[31] to the finite temperature case, however this is beyond
the scope of this paper.

In any case, we can go a bit further with the duality
between the two black holes, expressing the temperature of
our two-dimensional quantum black hole in terms of the
parameter M and N obtained from the slicing of BTZ. We
find that

 T � @

���
q
p

2�kB
� @

����
m
p

2�kBL
: (65)

The temperature (65) is the same temperature of the bulk
BTZ black hole [7]. The boundary theory must therefore be
a TCFT (with a UV cutoff) and temperature given by the
bulk black hole as we would expect [2]. This also fixes the
choice of the time coordinate to be t instead of ~t. It there-
fore seems that the conjectured duality between classical
bulk black holes and quantum brane black holes [12,13]
applies to our case.

In three dimensions the holographic relation [32] reads

 � �
12�L

k2
3

> 0:

As we said � is proportional to the sum of the number of
matter fields and the number of gravitons. Matter fields are
counted positively and gravitons negatively [18]. It is then
clear that the theory describing our black hole has to be a
matter dominated one.

Equating (15) with (61) we obtain

 � � @
1� �2L2

�L
> 0:

The configuration �> 0 and � > 0 cannot be obtained
classically, indeed if �> 0 (positive energy density in the
Universe) one expects, classically, to have a positive cur-
vature (this is the case in dilatonic gravity). In our case
instead, starting from a positive cosmological constant, we
get a negative curvature. This is one of the possibilities
envisaged in [18] absent in the classical theory.

The fact that our black hole solution is due to the
presence of matter might imply that our solution should
correspond to the ending state of a gravitational collapse. A
very interesting question is therefore if a classical collapse
of a brane can be also holographically described as a
quantum gravitational collapse in the semiclassical theory
we considered, however this is beyond the scope of this
paper and we leave it for future work.
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APPENDIX: BOUNDARY ACTION

We here show that the variation of the boundary extrin-
sic curvature with respect to the boundary induced metric
is trivial. Consider in fact

 

Z
@�
dt

���
h
p
K;

standard calculations show that its variation reads (see for
example [33])

 

Z
@�
dt

���
h
p
�K�� � h��K��h��;

and since in one dimension K�� � h��K � 0, the above
variation is zero. This result implies that in two dimensions
the extrinsic curvature of a given boundary can be freely
fixed to a value �, where � represents the mass associated
with the boundary. In particular, in this paper, we would
like to interpret the boundary mass � as the mass of a
spacelike particle.

The action associated with a spacelike point particle is

 Ib � �
Z
d�

�������������������
u�u�g��

q
; (A1)

where dx�u� � d� is the proper length of the particle
world sheet and u� is the two-velocity of the particle. In
two dimensions, the boundary metric defined by the parti-
cle worldline is h�� � u�u�. Therefore the action (A1)
can be rewritten as an explicit boundary action

 Ib � �
Z
@�
dt

���
h
p �������������������

u�u�h��
q

;

where �> 0 is the positive boundary mass [22] and @� is
the boundary defined by the particle world sheet.

The variation of this action with respect to �h�� is
 

�Ib ��
�
2

Z
@�
dt

���
h
p
�h��

� u�u��������������������
u�u�h��

p �h��
�������������������
u�u�h

��
q �

:

Imposing now the normalization of the worldline vector
u�u� � 1 we find that the above variation is zero.
Therefore the only dynamical equation is obtained from
the variation of x�, i.e. the equation of motion of the
particle world sheet. In order to interpret the boundary
mass � as the particle mass we therefore need to show
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that the particle can sit on the boundary chosen, given a
spacetime metric.

We consider our spacetime in the natural coordinates
(~t, ~x), so that

 ds2 � �~f�~x�d~t2 �
d~x2

~f�~x�
;

where ~f�~x� � 	2~x2 � 2�j~xj � 1. The geodesic equation is
solved for

 u~t �
C
~f
; u~x �

�������������������
�~f� C2

q
; (A2)

where C is the energy per unit mass of the particle. For
physical reasons jCj  1, as the total energy of the particle

cannot be smaller than the mass of the particle itself. In
particular the particle is at ‘‘rest’’ [34] for jCj � 1. From
(A2) we can therefore see that the only point in which the
particle is at rest is in ~x � 0, so that u~t � 1 and u~x � 0.
This point is of an (unstable) equilibrium as the potential
V � �~f has a maximum in ~x � 0. We wish to comment
here that since ~x � 0 represents a point of unstable equi-
librium for the world sheet, the point particle approxima-
tion of a totally collapsed body can no longer be used under
perturbations and therefore, in this case, a more detailed
model for the collapsed matter has to be introduced to
study the stability of our system. However this study is
beyond the scope of the current paper and it is postponed
for future research.
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