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We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres
in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The
temperature is calculated for each solution, using a hyperbolic transport equation, which permits to
exhibit the influence of relaxational effects on the dynamics of the system.
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I. INTRODUCTION

Our purpose in this work is to provide some analytical
solutions to Einstein equations, describing collapsing dis-
sipative spheres in the difussion approximation. Such so-
lutions may serve as test-bed for numerical relativity, and
for probing cosmic censorship and hoop conjecture, among
other important issues, and represent a natural tool to bring
out the influence of dissipation on the evolution of a
collapsing object.

Analytical solutions although generally are found, either
for too simplistic equations of state and/or under additional
heuristic assumptions whose justification is usually uncer-
tain, are more suitable for a general discussion than purely
numerical solutions, which usually hinder to catch quali-
tative, aspects of the process.

Therefore it seems useful to consider analytical models
which are relatively simple to analyze but still contain
some of the essential features of a realistic situation.

Our endeavour is further justified by the following two
considerations:

(i) It is already an established fact, that gravitational
collapse is a highly dissipative process (see [1–3]
and references therein). This dissipation is required
to account for the very large (negative) binding
energy of the resulting compact object (of the order
of �1053 erg)
Indeed, it appears that the only plausible mechanism
to carry away the bulk of the binding energy of the
collapsing star, leading to a neutron star or black
hole is neutrino emission [4].

(ii) In the diffusion approximation, it is assumed that
the energy flux of radiation (as that of thermal
conduction) is proportional to the gradient of tem-
perature. This assumption is in general very sen-
sible, since the mean free path of particles
responsible for the propagation of energy in stellar
interiors is in general very small as compared with

the typical length of the object. Thus, for a main
sequence star as the sun, the mean free path of
photons at the center, is of the order of 2 cm.
Also, the mean free path of trapped neutrinos in
compact cores of densities about 1012 g:cm:�3 be-
comes smaller than the size of the stellar core [5,6].
Furthermore, the observational data collected from
supernovae 1987A indicates that the regime of ra-
diation transport prevailing during the emission
process, is closer to the diffusion approximation
than to the streaming out limit [7].
Accordingly we shall restrict here to this later case,
being aware that there are situations in stellar evo-
lution where that approximation fails.

During their evolution, self-gravitating objects may pass
through phases of intense dynamical activity, with time
scales of the order of magnitude of (or even smaller than)
the hydrostatic time scale, and for which the quasistatic
approximation is clearly not reliable, e.g., the collapse of
very massive stars [8], and the quick collapse phase pre-
ceding neutron star formation, see for example [9] and
references therein. In these cases it is mandatory to take
into account terms which describe departure from equilib-
rium, i.e. a full dynamic description has to be used.

Here we are mainly concerned with the quick collapse
phase, which implies that we have to appeal to a hyperbolic
theory of dissipation. The use of a hyperbolic theory of
dissipation is further justified by the necessity of over-
coming the difficulties inherent to parabolic theories (see
Refs. [1,10–23] and references therein). Doing so we shall
be able to give a description of processes occurring before
thermal relaxation.

Many analytical solutions of Einstein’s field equations
with dissipative fluids carrying heat flow have been studied
(see [24] for references up to 1989 and [25,26] for more
recent ones).

In this vein here we present some models of conformally
flat dissipative spherical collapse with shear-free motion.
We match our models to a radiating null field described by
the outgoing Vaidya spacetime.

Although the shear-free and the conformally flat con-
ditions are introduced here in order to simplify calcula-
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tions, it is worth noticing that these conditions generalize
physical assumptions widely used in astrophysics. Indeed,
the shear-free condition in the Newtonian regime describes
the homologous evolution and the role of shear has been
extensively considered in general relativity [27]. On the
other hand it is well known that the conformally flat
condition implies in the perfect fluid case the homogeneity
of the energy density distribution [2].

The paper is organized as follows. In Sec. II the field
equations, conventions and junction conditions are pre-
sented; in Sec. III we present the general solution corre-
sponding to the conformal flatness condition; in Secs. IV
and V, particular analytical solutions are given, and a
specific model is constructed from one of them; finally a
brief conclusion is presented.

II. THE FLUID DISTRIBUTION AND THE
INTERIOR SPACETIME

We assume a sphere of collapsing perfect fluid with heat
flow. Its spherical surface � has center 0 and is filled with
radially moving perfect fluid conducting heat flow, so
having energy momentum tensor

 T�� � ��� p�w�w� � pg�� � q�w� � w�q�; (1)

where � and p are the proper density and pressure of the
fluid, w� its unit four-velocity, q� the heat conduction
satisfying q�w� � 0 and g�� is the metric tensor of
spacetime.

We choose comoving coordinates within � and impose
shear-free fluid motion which allows the metric be written
in the form (see [28] for details)

 ds2 � �A2dt2 � B2�dr2 � r2�d�2 � sin2�d�2��; (2)

where A and B are only functions of r and t. We number the
coordinates x0 � t, x1 � r, x2 � � and x3 � � and then
we have the four-velocity given by

 w� � �A�0
�; (3)

and the heat flows radially,

 q� � q��1 ; (4)

where q is a function of r and t. In these coordinates the
equation of the boundary surface � is given by r � r� �
constant.

The spacetime described by (2) has the following non-
null components of the Weyl tensor C����,

 C2323 �
r4

3
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and
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where the primes stand for differentiation with respect to r
and dot stands for differentiation with respect to t.

A. The field equations

The non-null components of Einstein’s field equations
G�� � 8�T��, where G�� is the Einstein tensor and T��
is given by (1), with metric (2) are
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 G01 � �2
� _B
AB

�
0

A � �8�qAB2: (10)

The mass function m�r; t� of Cahill and McVittie [29] is
obtained from the Riemann tensor component R23

23 and it
is for metric (2)

 m�r; t� �
�rB�3

2
R23

23 �
r3B
2

�� _B
A

�
2
�

�
B0

B

�
2
�
� r2B0:

(11)

For studying the dynamical properties of the field equa-
tions and following Misner and Sharp [30], let us introduce
the velocity U of the collapsing fluid as

 U � rDtB�<0 in the case of collapse�; (12)

where the proper time derivative Dt, is given by

 Dt �
1

A
@
@t
: (13)

B. Junction conditions

If the collapsing fluid lies within a spherical surface � it
must be matched to a suitable exterior. Since heat will be
leaving the fluid across �, the exterior is not vacuum, but
the outgoing Vaidya spacetime which models the radiation
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and has metric
 

ds2 � �

�
1�

2m�v�
	

�
dv2 � 2dvd	

� 	2�d�2 � sin2�d�2�; (14)

where m�v� is the total mass inside � and is a function of
the retarded time v. In (14) 	 is a radial coordinate given in
a noncomoving frame.

The conditions for the matching of these two spacetimes
(2) and (14), are the Darmois conditions [31], which using
the field Eqs. (8)–(10) and the mass function (11) imply
[24]

 p� � �qB��; (15)

 �qB�� �
1

4�

�
L

	2

�
�
; (16)

 �rB�� � 	�; (17)

 

�
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2

B _B2

A2 �
r3

2

B02

B
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 A�dt �
�
1�

2m
	
� 2

d	
dv

�
1=2

�
dv; (19)

where L is defined as the total luminosity of the collapsing
sphere as measured on its surface and is given by

 L � L1

�
1�

2m
	
� 2

d	
dv

�
�1
; (20)

and where

 L1 �
dm
dv

(21)

is the total luminosity measured by an observer at rest at
infinity.

III. CONFORMALLY FLAT SOLUTION

Here we impose conformal flatness to the spacetime
given by (2), i.e. all its Weyl tensor components must be
zero valued. Then it can be shown that metric functions A
and B take the form (see [28] for details)

 A � �C1�t�r2 � 1�B; (22)

where C1 is an arbitrary function of t and

 B �
1

C2�t�r2 � C3�t�
; (23)

where C2 and C3 are arbitrary functions of t.
Substituting solution (22) and (23) into (8), (9), and (11)

we obtain,

 8�� � 3
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�
2
� 12C2C3; (24)
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Finally, from (15), (25), and (26) we have
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Please note that a misprint in (27) appearing in [28] has
been corrected here.

In the following sections we shall obtain some analytical
solutions satisfying (15)–(26).

IV. SOLUTION I

In order to integrate (27) let us assume

 

C2 � �C3

C1 	 Const
� � constant

9>=
>; (28)

then replacing (28) into (27) we get:
 

C3
�C3 �
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����� 2C1�r2
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3 � 0

(29)

which, in terms of the new variable C3�t� � u�2�t�, be-
comes:
 

�u�
2�C1 � ��r�

�r2
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�C1r2
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��r2
� � 1�2
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The equation above allows the following three solutions:
Case I �C1 � ��

2r2
� � �C1r

2
� � 1������ 2C1�r

2
� �

�C1 � 2���> 0
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Case II �C1 � ��2r2
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� � �C1 � 2���< 0
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Case III �C1 � ��2r2
� � �C1r2

� � 1������ 2C1�r2
� � �C1 � 2��� � 0

 C3�t� � ��1 � �2t�
�2e���2�C1���r��=��r2

�
�1��t (33)

This solution reduces to the one found in [26] when � � 0.

Calculation of the temperature

It is worth calculating the temperature distribution,
T�r; t�, for our model, through the Maxwell-Cattaneo
heat transport equation. For simplicity we shall consider
here the so called ‘‘truncated’’ version, for which it reads
[18,21],

 
h��w�q�;� � q� � ��h���T;� � Ta��; (34)

where 
 is the relaxation time, � the thermal conductivity
and h�� � g�� � w�w� the projector orthogonal to w�.
Considering (2)–(4) then (34) becomes

 
�qB�_B� qAB2 � ���TA�0: (35)

In our case the integration of (35) gives
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The integration function f�t�may be easily related to the
central temperature Tc�t�

 f�t� � Tc�t� �
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then we may write for the temperature
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where C3 is given by either (31) and (32) or (33).
In case C1 � � our system becomes a collapsing (non–

dissipative) Friedmann dust sphere, as it can be checked
from (24)–(26). In this latter case the temperature, as
expected, is homogeneous (T�t� � Tc�t�). Thus, models
(31)–(33) provide examples where inhomogeneity is di-
rectly related to dissipation.

V. SOLUTION II

Another solution, with an interesting physical interpre-
tation may be found by introducing the variable v, defined
as

 C2�t�r
2
� � C3�t� � v�2�t� (39)

into Eq. (27), obtaining:
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�

C1r2
�
�1

_v
v�

2 _v
r�v

�
� 2

r�

_C3�C1r
2
� � 1�

�
2v2�C1r2

�
�1�

r2
�

�v�4 � 2v�2C3�2� C1r2
�� � 3C2

3�1� C1r2
��� � 0

9>=
>; (40)

Then, defining

 Z�t� � C1r2
� � 1 (41)

Equation (40) becomes:
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Next, introducing the new variable C�t� through C3�t� �
v�2C�t�, (42) may be written as:

 

�v
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Z
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2
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v C�

Z
r�
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� Z
r2

�
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9=
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We shall integrate this last equation by assuming:

 

Z�t� � 1
C�t� � C 	 const

�
(44)

Observe that with this specific choice, this solution be-
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comes a particular case of solution I with C1 �
Constant � 0 and � � 1�C

Cr2
�

Then (43) becomes

 

�v�
2

r�
�1� C� _v�

1

r2
�

�1� 4C� 3C2�v � 0 (45)

whose general solution is:

 v�t� � �k2
1e
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k1 and k2 are integration constants

9>=
>; (47)

Then for the velocity as defined by (12) we have:
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v�
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which, evaluated at the boundary surface gives
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2
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And for the functions C2 y C3 we obtain:
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For this solution, the physical variables become, using
(24)–(26) and (50):
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v
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�
r
r�

�
2
� C

�
2
�

(53)

which, evaluated at the boundary surface take the form:

 ��r2
� �

3

2�v4

�r2
� _v2

v2 � C�1� C�
�

(54)

 p�r2
� �

�1� C�

�v4

r� _v
v

(55)

 q�r
2
� �

�1� C�

�v6

r� _v
v

(56)

The expression for the temperature for this model may
be obtained easily by putting C1 � Constant � 0 and � �
1�C
Cr2

�

into (38), then one obtains

 

T�t; r� �
�
Tc�t� �


�r2

4�� �
�C3C3 � _C2

3�

�
_C3

4�� ln��r2 � 1����r2 � 1�

9>=
>; (57)

where C3�t� is given by (50). In this case, the system
becomes a collapsing (nondissipative) Friedmann dust
sphere, when � � 0 (C � 1). In this latter case the tem-
perature, as expected, is homogeneous (T�t� � Tc�t�).

The last term on the right hand side of expression (57)
exhibits the influence of dissipation on the temperature,
with respect to the nondissipative case, as calculated from
the noncausal (Landau-Eckart) [32,33] transport equation,
whereas the second term describes the contribution of
relaxational effects. The relevance of such effects have
been brought out in recent works (see [25] and references
therein). In particular it is worth noticing the increasing of
the spatial inhomogeneity of temperature produced by the
relaxational term, an effect which has been established
before [34].

Let us now present a very simple model based on the
solution above. The purpose here is not the modelling of
any specific astrophysical scenario, but rather to show the
feasibility of these solutions as starting point for such
modelling.

Thus, let us consider the following choice of constants
and initial values:

 k2
1 � k

2
2 � 1 (58)

 C � 1� 10�6 (59)

and

 U��0� � �2:5� 10�3 (60)

Then it follows from (47) and (49) that:

 �1 �
10�6

r�
(61)

 �2 �
1:4142� 10�3�1� 10�6�

r�
(62)

 k2
1 � :0577 (63)

 k2
2 � :9423 (64)

With these values, it follows at once from (54)–(56) that
���0�> q��0� � p��0�> 0. Furthermore since � is a
decreasing function of r, these inequalities hold for all
points within the sphere. As time goes on, the velocity of
the boundary surface decreases (in absolute value), even-
tually changing of sign for a finite time value. However
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physical variables remains acceptable (in this model) for
values of the boundary velocity close to zero, but still
negative.

Thus our model describes an initially contracting and
radiating sphere, approaching the equilibrium. For later
times there is a bouncing of the boundary surface, however,
physical variables become unphysical for this values of t,
and the model is restricted to the collapsing regime only.

VI. CONCLUSION

We have presented some exact analytical solutions to the
Einstein equations, describing spherical dissipative shear-
free and conformally flat collapse. The solutions are
matched to the outgoing Vaidya radiating spacetime.
Besides their simplicity, the merit of the models resides
in the fact that they exhibit in a very clear way the influence
of relaxational effects on the temperature, and thereby on
the evolution of the system.

In this respect we would like to stress the modifications
in the temperature profile of the models, produced by the
relaxational efects. This fact cannot be over emphasized.
Indeed, different temperature profiles, are not only associ-
ated with different patterns of evolution, but also, affect the
luminosity profile, which is the most important element of
observational evidence in the study of dissipative collapse.

In the same line of arguments, it is worth noticing that
the resulting temperature profile for each model, will de-
pend on the specific theory of transport employed in its
calculation. Therefore, such models might be used as test-
bed for different relativistic theories of dissipation.

The specific example presented at the end of the pre-
vious section, models a dissipative collapsing configura-
tion approaching equilibrium, with all physical variables
exhibiting appropriate behavior. This support further our
believe that the presented solutions may be suitable for
describing astrophysical scenarios involving dissipative
collapsing objects.

Finally, it is also worth noticing that density inhomoge-
neities are directly related to dissipation, while the space-
time remains conformally flat. In the nondissipative limit
(q � L � 0), all models become homogeneous dust balls
matched to Schwarzschild spacetime.

This reinforces doubts (see for example [35] and refer-
ences therein) on the proposal that the Weyl tensor [36] or
some functions of it [37], could provide a gravitational
arrow of time. The rationale behind this idea being that
tidal forces tend to make the gravitating fluid more inho-
mogeneous as the evolution proceeds, thereby indicating
the sense of time. However, as shown in [2], density
inhomogeneity, besides Weyl tensor (and the anisotropy
of pressure), also depends on dissipation. The solutions
obtained here, clearly bring out that dependence.
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Poicaré A 36, 79 (1982).

[15] W. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151, 466
(1983).

[16] D. Jou, J. Casas-Vázquez, and G. Lebon, Rep. Prog. Phys.
51, 1105 (1988).

[17] D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).
[18] J. Triginer and D. Pavón, Class. Quant. Grav. 12, 689

(1995).
[19] D. Jou, J. Casas-Vazquez, and G. Lebon, Extended

Irreversible Thermodynamics (Springer-Verlag, Berlin,
1996), 2nd ed.

[20] D. Y. Tzou, Macro to Micro Scale Heat Transfer: The
Lagging Behaviour (Taylor & Francis, Washington, 1996).

[21] R. Maartens, astro-ph/9609119.
[22] A. Anile, D. Pavon, and V. Romano, gr-qc/9810014.
[23] L. Herrera and D. Pavón, Physica A (Amsterdam) 307,

121 (2002).
[24] W. B. Bonnor, A. K. G. de Oliveira, and N. O. Santos,

Phys. Rep. 181, 269 (1989).

L. HERRERA, A. DI PRISCO, AND J. OSPINO PHYSICAL REVIEW D 74, 044001 (2006)

044001-6



[25] A. Di Prisco, L. Herrera, and M. Esculpi, Class. Quant.
Grav. 13, 1053 (1996); A. Di Prisco, N. Falcón, L. Herrera,
M. Esculpi, and N. O. Santos, Gen. Relativ. Gravit. 29,
1391 (1997); L. Herrera and J. Martı́nez, Gen. Relativ.
Gravit. 30, 445 (1998); M. Govender, S. Maharaj, and R.
Maartens, Class. Quant. Grav. 15, 323 (1998); M.
Govender, R. Maartens, and S. Maharaj, Mon. Not. R.
Astron. Soc. 310, 557 (1999); D. Schäfer and H. F.
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