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We study a class of ‘‘landscape’’ models in which all vacua have positive energy density, so that
inflation never ends and bubbles of different vacua are endlessly ‘‘recycled.’’ In such models, each
geodesic observer passes through an infinite sequence of bubbles, visiting all possible kinds of vacua. The
bubble abundance pj can then be defined as the frequency at which bubbles of type j are visited along the
worldline of an observer. We compare this definition with the recently proposed general prescription for
pj and show that they give identical results.
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I. INTRODUCTION

Nearly all models of inflation are eternal to the future.
Once inflation has started, it continues forever, producing
an unlimited number of pocket universes [1–3]. If there is a
number of different types of pockets, as in the landscape
picture suggested by string theory [4,5], all the possible
types are produced in the course of eternal inflation. A
natural question is, then, What is the relative abundance pj
of pockets of type j?

This question has proved to be surprisingly difficult to
answer. The total number of pockets is divergent, so one
needs to introduce some sort of a cutoff. If we cut off the
count at a constant-time hypersurface � : t � const, the
resulting abundances are very sensitive to the choice of the
time coordinate t [6]. The reason is that the number of
pockets in an eternally inflating universe is growing ex-
ponentially with time, so at any time a substantial fraction
of pockets have just nucleated. Which of these pockets are
crossed by the surface � depends on how the surface is
drawn; hence the gauge dependence of the result.

A new prescription for the calculation of pj, which does
not suffer from the gauge-dependence problem, has been
recently suggested in [7]. To simplify the discussion, we
shall focus on models where transitions between different
vacua occur through bubble nucleation, so the role of
pocket universes is played by bubbles. To determine the
bubble abundance, one starts with a congruence of geo-
desics emanating from some (finite) initial spacelike hy-
persurface �0. As they extend to the future, the geodesics
will generally cross a number of bubbles before ending up
in one of the terminal bubbles, having negative or zero
vacuum energy density, where inflation comes to an end.
The geodesics provide a mapping of all bubbles encoun-
tered by the congruence back on the initial hypersurface.
The proposal is to count only bubbles greater than a certain
comoving size �, and then take the limit �! 0:

 pj / lim
�!0

Nj���: (1)

Here, Nj��� is the number of bubbles of type j with
comoving size greater than �. The comoving size of a
bubble is defined as the size of its image on �0.

In this prescription, the bubble count is dominated by
bubbles formed at very late times and having very small
comoving sizes. (The asymptotic number of bubbles is
infinite even though the initial hypersurface �0 is assumed
to be finite.) The resulting values of pj are independent of
the choice of the initial hypersurface, because of the uni-
versal asymptotic behavior of eternal inflation [8].

An alternative prescription for pj has been suggested by
Easther, Lim, and Martin [9]. They randomly select a large
number N of worldlines out of a congruence of geodesics
and define pj as being proportional to the number of
bubbles of type j intersected by at least one of these
worldlines in the limit N ! 1. As the number of world-
lines is increased, the average comoving distance � be-
tween them (on �0) gets smaller, so most bubbles of
comoving size larger than � are counted. In the limit of
N ! 1, we have �! 0, and it can be shown [7] that this
definition is equivalent to that of [7] (except in a special
case indicated below). We shall not distinguish between
the two definitions in what follows.

The prescription of [7,9] for pj has some very attractive
features. Unlike the earlier prescriptions, it is applicable in
the most general case and does not depend on any arbitrary
choices, such as the choice of gauge or of a spacelike
hypersurface. It is also independent of the initial conditions
at the onset of inflation. It is not clear, however, how
uniquely the new prescription is selected by these require-
ments. Are there any alternative prescriptions with the
same properties?

In this paper we shall analyze an attractive alternative,
which suggests itself in models including only recyclable
(nonterminal) vacua. In such models each geodesic ob-
server passes through an infinite sequence of bubbles,
visiting all possible kinds of vacua. The bubble abundance
pj can then be defined as the frequency at which j-type
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bubbles are visited along the worldline of a given observer:

 pj / lim
�!1

Nj���; (2)

whereNj��� is the number of times the observer had visited
vacuum j by the time �. This definition is clearly indepen-
dent of gauge or initial conditions. An added attraction
here is that the bubble abundances are defined in terms of
observations accessible to a single observer—a property
that some string theorists find desirable [5,10].

We note that the proposal of Easther, Lim, and Martin
[9] cannot be applied to models with full recycling [11].
The reason is that in this case each geodesic worldline
intersects an infinite number of bubbles. We shall therefore
focus on the prescription of Ref. [7] in what follows.

In the following sections we use the formalism devel-
oped in [7] to compare the bubble abundances measured by
an ‘‘eternal observer’’ with those obtained using the pre-
scription of [7]. We find that the two methods give identical
results.

II. BUBBLE ABUNDANCES ACCORDING TO [7]

In this section we closely follow the analysis given in
[7], specializing it to the case of fully recyclable vacua.

The fraction of comoving volume fj�t� occupied by
vacuum of type j at time t is given by the evolution
equation [12]

 

dfi�t�
dt

�
Xn

j�1

Mijfj; (3)

where

 Mij � �ij � �ij
Xn

r�1

�ri; (4)

and �ij is the probability per unit time for an observer who
is currently in vacuum j to find herself in vacuum i. fi are
assumed to be normalized as

 

Xn

i�1

fi � 1: (5)

The magnitude of �ij depends on the choice of the time
variable t [12]. The most convenient choice for our pur-
poses is to use the logarithm of the scale factor as the time
variable; this is the so-called scale-factor time

 a�t� � et: (6)

With this choice [13]

 �ij � �4�=3�H�4
j �ij; (7)

where

 �ij � Aije�Iij�Sj ; (8)

Iij is the tunneling instanton action,

 Sj �
�

H2
j

(9)

is the Gibbons-Hawking entropy of jth vacuum, and Hj is
the corresponding expansion rate. The instanton action and
the prefactor Aij are symmetric with respect to the inter-
change of i and j [14]. Hence, we can write

 �ij � �ijH
�4
j e�Sj (10)

with

 �ij � �ji: (11)

Assuming that all vacua are recyclable and that the
matrix Mij is irreducible (each vacuum is accessible from
every other one), it can be shown [7,12] that Eq. (3) has a
unique stationary solution with dfj=dt � 0 and

 

Xn

j�1

Mijfj � 0: (12)

In fact, the solution can be found explicitly:

 fj / H4
j e
Sj : (13)

This can be easily verified by substituting (13) in (4) and
(12) and making use of (10) and (11).
fj has the meaning of the fraction of time spent by a

geodesic observer in bubbles of type j. As one might have
expected, Eq. (13) shows that it is proportional to the
statistical weight of the corresponding vacuum, exp�Sj�.

We shall now use the prescription of Ref. [7] to deter-
mine the bubble abundance. The increase in the number of
j-type bubbles due to jumps from other vacuum states in an
infinitesimal time interval dt can be expressed as

 dNj�t� �
Xn

i�1

�jifi
4�
3 Ri�t�

3
dt: (14)

Here, Ri�t� is the comoving radius of the bubbles nucleat-
ing in vacuum i, which is set by the comoving horizon size
at the time t of bubble nucleation,

 Ri�t� � H�1
i a�1�t� � H�1

i e�t; (15)

where a�t� is the scale factor and we have used the defini-
tion of scale-factor time in (6).

Bubbles of comoving size greater than � are created at
t <� ln��Hi�. Integrating Eq. (14) up to this time, we
obtain

 Nj �
��3

4�

Xn

i�1

�jifi: (16)

The prescription of [7] is that pj / Nj, and thus

 pj /
Xn

i�1

�jifi /
Xn

i�1

�ji; (17)

where we have used Eqs. (10) and (13).
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III. ETERNAL OBSERVERS

We consider a large ensemble of eternal observers. They
evolve independently of one another, yet statistically all of
them are equivalent. The worldline of each observer can be
parametrized by discrete jumps to different vacuum states,
so the time variable � takes values in natural numbers, � �
1; 2; 3 . . . , and is incremented by one whenever the ob-
server jumps to a different vacuum state.

Let xj��� be the fraction of observers in vacuum j at
‘‘time’’ �. xj��� is normalized as

 

Xn

j�1

xj � 1 (18)

and satisfies the evolution equation

 xi��� 1� �
Xn

j�1

Tijxj���; (19)

where the transition matrix is given by

 Tij �
�ij
�j

(20)

and

 �j �
Xn

r�1

�rj: (21)

The diagonal elements of the transition matrix are exactly
zero,

 Tii � �ii � 0; (22)

since we require each observer to jump to some other
vacuum at every time step.

In the case of complete recycling that we are considering
here, one expects that the evolution equation (19) has a
stationary solution satisfying

 

Xn

j�1

�Tij � �ij�xj � 0: (23)

And indeed, rewriting Eq. (23) as

 

Xn

j�1

Mij�xj=�j� � 0; (24)

and comparing with Eq. (12), we see that the stationary
solution of (24) is

 xj � �jfj: (25)

Here, fj is the solution of (12), which is given by (13).
Suppose now that we have an ensemble of observers

described by the stationary distribution (25). Since the
sequences of vacua visited by all observers are statistically
equivalent, it is not difficult to see that the distribution of
vacua along the observer’s worldlines is given by pj / xj,
or

 pj /
Xn

i�1

�ijfj: (26)

Using Eq. (12) with Mij from (4), we have

 0 �
Xn

i�1

Mjifi �
Xn

i�1

�jifi �
Xn

i�1

�ijfj; (27)

or

 

Xn

i�1

�jifi �
Xn

i�1

�ijfj: (28)

Therefore, Eq. (26) can be also rewritten as

 pj /
Xn

i�1

�jifi; (29)

which is identical to (17).

IV. DISCUSSION

In this paper we considered a special but relatively wide
class of models in which all vacua have positive energy
density and are therefore inflationary. Transitions between
different vacua occur through bubble nucleation, and each
geodesic worldline encounters an infinite sequence of
bubbles. The bubble abundance can then be defined as
the frequency at which bubbles of a given type are encoun-
tered in this sequence. We have shown that this natural
definition is equivalent (in this class of models) to the
prescription of Ref. [7] (which has greater generality).

We wish to emphasize the difference between the sta-
tionary distribution fj [Eq. (13)] and the bubble abundance
pj, which has been the focus of our attention here. The
difference is very striking in the case when there are only
two vacua. Then Eq. (17) gives

 p1=p2 � �12=�21 � 1; (30)

while Eq. (13) gives

 f1=f2 � �H1=H2�
4eS1�S2 : (31)

The stationary solution fj strongly favors the lower-energy
vacuum, which has a higher entropy Sj, while the distri-
bution pj seems to indicate that the two vacua are equally
abundant. The prescription of [7] was recently criticized in
[10] for failing to give probabilities proportional to the
exponential of the entropy.

We note, however, that the distributions fj and pj have
very different meanings. fj is proportional to the average
time a geodesic observer spends in vacuum j before tran-
siting to another vacuum. If, as a result of quantum fluctu-
ations, the horizon region accessible to the observer scans
all of its quantum states, spending roughly equal time in
each of them, then one expects fj / exp�Sj�. This is indeed
the case, up to a prefactor. On the other hand, pj is the
frequency at which a given vacuum j � 1, 2 appears in the
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vacuum sequence along a geodesic worldline. In the case
of only two vacua, the sequence is 1; 2; 1; 2; 1; . . . , and it is
clear that both vacua occur with the same frequency.

The prescription of [7] for the bubble abundance is just a
proposal. It was not derived from first principles, and its
validity would be put into question by any alternative
proposal satisfying the necessary invariance and common
sense requirements. We therefore find it reassuring that this
prescription turned out to be equivalent to that of [9] and to
the ‘‘eternal observer’’ proposal in their respective ranges
of validity.

The bubble abundance is necessary for the calculation of
probabilities of various measurements in the landscape.
The full expression for the probability includes the volume
expansion factor inside the bubbles and the density of
observers, in addition to pj. For a detailed discussion of
these factors, see [7,15].
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