
Dark fluid: A complex scalar field to unify dark energy and dark matter

Alexandre Arbey*
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In this article, we examine a model which proposes a common explanation for the presence of
additional attractive gravitational effects—generally considered to be due to dark matter—in galaxies
and in clusters, and for the presence of a repulsive effect at cosmological scales—generally taken as an
indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid
based on a complex scalar field with a conserved U�1�-charge and associated to a specific potential, and
show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the
cosmological observations and constraints on dark energy and dark matter.
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I. INTRODUCTION

After many years of considering that the Universe is
filled with a dark matter made of weakly interacting mas-
sive particles (WIMPs) and with a dark energy causing an
acceleration of the expansion of the Universe, we have still
no direct evidence of their existences. Moreover, observa-
tions of supernovæ of type Ia tend to cause trouble to usual
dark energy models [1], and open the way to new kind of
models or analyses to explain the observed repulsing ef-
fects [2,3].

Alternative models exist to explain the cosmological
observations, and, in particular, some of them try to solve
the dark energy and dark matter problems by unifying both
components into a single ‘‘dark fluid’’. We can, for ex-
ample, note that the generalized Chaplygin gas model [4]
follows this idea and is presently under scrutiny. We have
shown in [5] that building such a dark fluid model is very
difficult, as the model has to be in agreement with many
observational constraints, and especially has to explain at
the same time the cosmological repulsive effects and the
local binding gravitational effects in the recent Universe.
As scalar field-based models for dark energy and dark
matter exist in the literature [6–10], it seems interesting
to study unifying dark fluid models based on scalar fields.
This idea has been proposed in [11]. The crucial question
however concerns the form of the potential of the scalar
field.

In this article, we will consider a complex scalar field
and propose an adequate form for its potential. We will
show that this scalar field can potentially explain correctly
the observations of galaxy rotation curves of spiral galaxies
and the presence of strong binding gravitational effects
in clusters. We will also consider the cosmological behav-
ior of the dark fluid and show that it agrees with the
cosmological constraints and observations. We will finally

conclude by suggesting some further directions of inves-
tigation beyond this study.

II. DESCRIPTION OF THE MODEL

We consider here a scenario in which the dark fluid can
be accounted by a complex scalar field associated to a
conserved charge. We focus on the idea that the scalar
field evolves with a quasihomogeneous density in the early
Universe, then produces cluster and galactic halos through
Bose condensation and provides repulsing effects outside
the Bose condensates. The Lagrangian density of the scalar
field reads

 L � g��@��y@��� V���; (1)

and we assume that its potential V is invariant under the
global symmetry

 �! �0 � ei��: (2)

The principal issue to elaborate a dark fluid model is the
choice of a potential. Considering [5], we can conceive that
a model for a dark fluid would be promising if it has a
negligible density at the big-bang nucleosynthesis (BBN)
time, if it provides a matter behavior at the time of recom-
bination and of structure formation, and if today its behav-
ior is cosmologically repulsive, and attractive in clusters
and galaxies. This kind of behavior seems however very
difficult to achieve.

We can nevertheless consider the studies of complex
scalar fields with quadratic and quartic potentials which
were performed in [12–14]. In those articles, we showed
that these potentials lead to a matter behavior from the time
of the recombination until today, and are in agreement with
the constraints of BBN [15]. Hence, we can consider a
potential containing a quadratic term, which will provide a
matter behavior. However, this potential has to be modified
to give a repulsive effect today. Several quintessence po-
tentials, such as a decreasing exponential [16] or an inverse*Email: arbey@obs.univ-lyon1.fr
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square law [17], could provide an adequate behavior. In
particular, the decreasing exponential seems adequate, and
the potential reads in this case

 V��� � m2�y�� � exp���j�j�: (3)

� and � can then be chosen, so that the quadratic term is
dominant until the late time of the structure formation, and
the exponential term becomes non-negligible only later,
once � has become small. In that way, it seems possible to
have a correct cosmological behavior for the fluid. In
galaxies, the densities are quite large, and so is �, con-
sequently the exponential term can again be negligible. In
the interstellar medium, where densities are small, � is
also small and the exponential term can dominate in the
potential and provide a repulsive behavior.

This potential could then seem interesting to study, but
problems could appear when trying to explain the attractive
gravitational effects at the same time in galaxies and in
clusters, due to the different scales involved. Another
question would concern the way to constraint the parame-
ter �, which is, apart from the fact that it has to be small,
quite unclear. Another choice of potential may then be
more appropriate.

Thus, we will rather consider the following potential,
constituted of a quadratic term and a Gaussian term:

 V��� � m2�y�� � exp����y��: (4)

This potential can be motivated in the scope of the non-
perturbative renormalization group [18]. The interesting
feature of this potential is that the second term has the same
kind of behavior than the usual decreasing exponential
potential, but we now have a way to determine �. In fact,
when � is small, for example, outside galaxies, this po-
tential can be approximated by a quartic potential, which is
known to lead to a matter behavior [14]. Therefore, a way
to constraint � would consist in choosing it so that the
approximate quartic term leads to a matter behavior at
cluster scale, whereas the quadratic term leads to a matter
behavior at galaxy scale.

Let us now review the constraints on the three parame-
ters m, �, and �. We will use for this study the results of
[5,12,14].

(i) Galactic scale: determination ofm—First, we want
the mass parameter m to give a matter behavior in
galaxies. The Compton wavelength associated to
the quadratic term is

 lCompton �
@

mc
: (5)

At local scales, we assume that the complex scalar
field has a conserved U�1�-charge (see Sec. III for
more details) and takes the form

 �� ~x; t� �
�� ~x����

2
p exp��i!t�; (6)

where � is the norm of the scalar field, ! is a
constant phase, t is the time and ~x the position.
With a quadratic potential, it was shown in [12] that
the size of the bosonic halo is then given by

 l�

���������������
1

G1=2�0

s
lCompton �

���������������
1

G1=2�0

s
@

mc
; (7)

where �0 is the value of � at the galactic center.
The typical orbital velocity in such a halo is

 

v
c
�

���������������
G1=2�0

q
: (8)

For a typical velocity v of the order of 100 km=s
and a typical halo size l of 10 kpc, we can estimate
the mass to be about m� 10�23 eV, which is in
agreement with the results of [12].

(ii) Cosmological scales: determination of �—We
want that today the exponential term of the poten-
tial dominates, so that a repulsive behavior could
dominate at cosmological scales. From the study of
the dark fluid parameters performed in [5], it is
convenient to choose

 � � �0
dark energy

� 0:71� �c0 � 7� 10�27 k gm�3; (9)

where �c0 is the cosmological critical density, so
that the exponential term plays the role of dark
energy.

(iii) Cluster scale: determination of �—Finally, we
would like that the exponential term also gives a
matter behavior in clusters, i.e. acts as a quartic
potential when the field has a small norm. In this
case, the potential reads, at fourth order in �:

 V��� � m2�y�� �� ���y�� 1
2��

2��y��2

(10)

 � �� �m2 �m02��y�� 	��y��2; (11)

with m02 � �� and 	 � ��2=2. We can assume
here that m>m0. We have shown in [14] that the
scalar field condenses on a distance L, which we
would like to be of the typical size of a cluster (L �
1 Mpc). In this case

 	 �
8
Gm4

effL
2

c2 ; (12)

where m2
eff � m2 �m02. The typical cluster scale

of 1 Mpc then imposes

 	� 10�89 (13)

and
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 � �

������
2	
�

s
� 10�39 eV�2: (14)

We can then calculate m0 to confirm that m>m0,
and show that the effective mass is not very
different from the quadratic mass (meff �
0:999m> 0).

Thus, with these choices of parameters, the potential has a
single nondegenerate minimum for � � 0, which eludes
the question of global cosmic strings.

Considering that the different parameters of the model
have been fixed, we can now analyze the behavior of the
field at galactic, cluster and finally cosmological scales for
these parameters.

III. GALACTIC SCALE

We will first show that this scalar field can play the role
of dark matter at galactic scale. Let us consider that a
galaxy evolves in a space represented by a static and
isotropic metric

 d�2 � e2udt2 � e2v�dr2 � r2d�2 � r2sin2�d�2�; (15)

where u and v only depend on the position. We will assume
a spherical symmetry for the system, as it was already
shown that this approximation leads to correct and signifi-
cant results [14], and study the rotation curves generated by
the model for spiral galaxies.

The scalar field is as usual to be considered to have an
internal rotation, so that we can write, in a spherical
symmetry, �� ~x; t� / ��r; t�e�i��r;t�, where � is the internal
rotation angle. However, a deeper study of the cosmologi-
cal behavior of � (see, in particular, Eq. (42), in which! �
_�) could reveal that when the scalar field behaves like

cosmological matter (i.e. when �2 / a�3, with a the cos-
mological scale factor), the first derivative of � with re-
spect to time (!) is nearly a constant. We thus assume that
�� ~x; t� � ��r; t�e�i!�r�t. As we study a static model, we
should also consider that the modulus of the scalar field is
time-independent. Besides, we will first assume that !�r�
is space-independent (but galaxy-dependant). We will dis-
cuss this approximation at the end of this section.

Thus, following these assumptions, the scalar field has a
uniformly rotating phase !, which corresponds to the
simplest possible realization for a scalar field. One could
refer to [10] for an alternative analysis of the behavior of a
similar scalar field in galaxies. We can write

 �� ~x; t� �
��r����

2
p exp��i!t�: (16)

In the case where the internal rotation period 2
=! is
much smaller than the rotation period of the galaxy, the
Klein-Gordon and Einstein equations read

 

e�2v
�
�00 �

�
u0 � v0 �

2

r

�
�0
�
c2 �!2e�2u�� V0��� � 0;

(17)

 2v00 � v02 �
4v0

r
� �

8
G

c2 e2v
�
�b � e�2u !

2�2

2

� e�2v �
02

2
� V

�
; (18)

and
 

u00 � v00 � u02 �
1

r
�u0 � v0� �

8
G

c2 e2v
�
e�2u !

2�2

2

� e�2v �
02

2
� V

�
; (19)

where

 V��� � 1
2m

2�2 � � exp��1
2��

2�; (20)

 V 0��� � m2�� ��� exp��1
2��

2�: (21)

We can recover the Newtonian limit by posing u � � and
v � ��, where � is the usual gravitational potential. A
careful examination of �0 [14] can reveal that �0 can be
safely neglected in comparison to !�.

In this limit, the scalar field contributes to the mass of
the galaxy by adding an effective density [13]

 �eff � 4 _�y _�� 2V���

� 2!2�2 �m2�2 � 2� exp��1
2��

2� (22)

to the baryon density �b. The effective pressure of the
scalar field reads

 Peff � g00 _�y _�� V���

� 1
2!

2�2 � 1
2m

2�2 � � exp��1
2��

2�: (23)

In the Newtonian limit, � � �, so that Eq. (19) leads to

 !2�2 � m2�2 � 2� exp��1
2��

2�: (24)

Thus, the effective pressure vanishes, and the scalar field
behaves like pressureless matter.

In spiral galaxies, the typical density at large radii is
of the order of 10�21 k gm�3, which corresponds to
�� 10�2 kg1=2 m�3=2 s. Therefore, in this case,
� exp�� 1

2��
2� � 10�3000 kg m�3 is completely negli-

gible, and only the quadratic term remains. Thus, we are
in the same case as the analysis of [12], which considered a
simple quadratic potential. We have then !2 � m2 and
consequently

 �eff � m2�2: (25)

Form � 10�23 GeV, we can calculate the internal rotation
period, and show that it is of the order of 30 years, which
confirms the hypothesis that the internal rotation is much
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faster than the galactic rotation. Concerning the baryons,
should the disk be alone, the rotation curve would be [19]

 v2
b�r� � v2

b�ropt�
1:97�r=ropt�

1:22

f�r=ropt�
2 � 0:782g1:43 ; (26)

leading to a baryonic density

 �b�r� �
1

4
G

v2
d�ropt�

r2
opt

�
4:38�r=ropt�

�0:78

f�r=ropt�
2 � 0:782g1:43

�
5:64�r=ropt�

1:22

f�r=ropt�
2 � 0:782g2:43

�
; (27)

ropt being the optical radius, defined as the radius of the
sphere encompassing 83% of the luminous matter.

When solving the equations of motion, we can obtain the
result that, for each set of parameters, the system can have
a discrete number of possible configurations, correspond-
ing to fundamental and excited state of the Bose conden-
sate [12]. We can derive the rotation curves from the
Newtonian gravitational potential.

Restricting us to the fundamental state, it is possible to
generate approximately flat rotation curves up to large
radii, as shown on Fig. 1. As the potential in galaxies
restricts to the quadratic term, we can refer to [12] for a
more complete study of such a potential at galactic scales.

The size and the density of the halos are fixed by the
value of !. Then, to each galaxy corresponds a specific !.
As the Newtonian approximation leads to !2 � m2, ! can
only slightly vary, which justify the previous approxima-
tion that ! is space-independent inside a galaxy. However,
if we want to study the variation of this ! between gal-
axies, we have to consider an extra equation coming from
the imaginary part of the Klein-Gordon equation:

 !00�r� 2!0�0r� f2� r�u0 � v0�g!0� � 0: (28)

We can nevertheless note that, because of the very small
variations of!, this equation has no effect inside a specific
galaxy, but can however explain the presence of different
effective values of ! inside a galaxy cluster.

To conclude this section, this scalar field may account
for dark matter in galaxies, what is confirmed in [10]. Let
us now consider the behavior of the scalar field at cluster
scale.

IV. CLUSTER SCALE

In clusters, one can expect the same kind of behavior
as in galaxies, an important difference being that the
average densities are smaller. We can consider that the
typical density in clusters is around 10�25 k gm�3. From
Eq. (22), we can show that in the cluster case,
� exp�� 1

2��
2� � �. This term cannot be neglected any-

more, but can be approximated by �� 1
2���

2 �
1
8��

2�4. The potential then reads:

 V��� � �� 1
2�m

2 �m02��2 � 1
4	�

4

� �� 1
2m

2
eff�

2 � 1
4	�

4; (29)

where m02 � ��, m2
eff � m2 �m02, and 	 � ��2=2. In

this case, the Klein-Gordon equation becomes

 	�2 � �1� 2��!2 �m2
eff : (30)

This result is similar to the one derived in [14]. We can
remark that the Klein-Gordon equation does not depend on
�. The effective density of the scalar field rewrites

 �eff � 2!2�2 �m2
eff�

2 � 1
4	�

4 � �: (31)

The scalar field is then in a Bose condensate state, on the
boundaries of which the gravitational potential is

 �0 �
1

2

�
1�

m2

!2

�
: (32)

As the potential �0 is small, we have !2 � m2
eff , and the

effective density becomes

 �eff � �2��
2m4

	
��0 ���H ��0 ���: (33)

The Klein-Gordon and Einstein equations can then be
combined into the following Poisson equation [14]

 �� � 4
G��b � �eff�: (34)

Hence, the scalar field has a matter behavior up to the end
of the Bose condensate. The value of 	 has to be chosen so
that the size of the condensate is approximately the size of
a typical cluster, in the way presented in the introduction.
In the case where the luminous matter density can be
neglected in comparison to the density of the scalar field
- which is a decent hypothesis at cluster scale—and if the
halo can be considered spherical, the Poison equation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5

v/
v o

pt

r/ropt

scalar field + luminous matter
baryons

FIG. 1. Rotation curve of a generic spiral galaxy, in presence
of a complex scalar field with a uniformly rotation phase
accounting for dark matter. The solid line corresponds to an
example of rotation curve provided by the complex scalar field
plus the baryons, whereas the dashed line shows the contribution
of the baryons only.
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reduces to the Lane-Emden equation for a polytrop
n � 1. We can therefore determine analytically the effec-
tive density of the scalar field:

 �� � �2�� �0
�

sinz
z
; (35)

where �0
� is the scalar field density at the center of the

cluster, and z � r=L, L being the typical size of a cluster.
The effective size of the bosonic halo is then

 R � 

�
	

8
G

�
1=2 1

m2
eff

; (36)

and the total mass of the cluster is determined by the value
of � at the center.

Knowing that �0
� � 10�25 kg m�3 and � � 7�

10�27 kg m�3, the exponential term will have only a slight
effect inside the Bose condensate, but far away from the
center of clusters, beyond the end of the Bose condensate,
only this term remains in the effective density:

 �eff � �2�: (37)

Consequently, outside clusters, the behavior of the dark
fluid is repulsive, and so completely similar to that of a
cosmological constant.

In summary, we can interpret our results in this way:
where baryons are gathered in sufficient densities, the
scalar field is excited and condenses into attractive halos,
and therefore has a matter behavior, whereas for a low
baryonic density, the field is not excited anymore and has a
repulsive behavior. We can thus guess that the global
behavior of the field is repulsive, in particular, at cosmo-
logical scale. We will verify this idea in the next section.

V. COSMOLOGICAL BEHAVIOR

Let us now consider the cosmological behavior of the
scalar field, in a flat, homogeneous and isotropic Universe,
filled only with radiation, baryonic matter and the dark
fluid scalar field. The pressure and density of the scalar
fluid can be written

 �� � _�y _�� V��� (38)

and

 P� � _�y _�� V���; (39)

where the scalar field has an internal rotation

 ��t� �
��t����

2
p ei��t�: (40)

The Klein-Gordon and Friedman equations read
 

d2�

dt2
�

3

a
da
dt
d�
dt
�m2�����exp

�
�

1

2
��2

�
�!2�� 0;

(41)

 

d!
dt
��

3

a
da
dt
!�� 2!

d�
dt
� 0; (42)

 

3H2 � 3
�
da
adt

�
2

� 8
G
�
�rad � �b �

1

2

��
d�
dt

�
2
�!2�2 �m2�2

�

� � exp
�
�

1

2
��2

��
; (43)

where �rad is the usual density of relativistic photons and
neutrinos, �b is the usual baryonic density, and! � d�=dt
is time-dependant. The second equation implies the con-
servation of the charge per comoving volumeQ � !�2a3.
Therefore, we can rewrite the first equation as
 

d2�

dt2
�

3

a
da
dt
d�
dt
�m2�����exp

�
�

1

2
��2

�
�

Q2

�3a6
� 0:

(44)

Using the same parameters as defined before, we can solve
the equations and determine the evolution of the cosmo-
logical parameters � � �=�c0 in function of the scale
factor a. The initial value of the field density can be chosen
arbitrarily and leads to an identical global behavior. The
charge Q has been fixed so that the equality scalar field
density/radiation density occurs approximately at the same
time as the equality dark matter/radiation in the standard
model of cosmology. The cosmological evolution of the
density of the scalar field in this context is plotted on Fig. 2.

One can remark that the field follows a four-step evolu-
tion, whose first three steps had already been observed in
[13], and which is directly related to the form of the Klein-
Gordon and Friedman equations:

(i) The first behavior, at very high redshift, occurs
when the kinetic term of the scalar field dominates,
leading to a a�6 decay of the scalar field density. At
this time, the scalar field density is very high, and
the potential has a negligible influence on the evo-
lution of the field. This step is in fact determined by
the high expansion rate of the Universe, so that only
the first two terms of Eq. (41) dominates. As at the
BBN time the field density is negligible in com-
parison to the radiation density, this behavior is in
agreement with the BBN constraints.

(ii) This behavior stops as the expansion rate decreases,
i.e. as the influence of the potential increases. A
transition will occur when the potential will exactly
compensate the kinetic terms in Eq. (41). The
scalar field density will then reach a plateau, lead-
ing to a cosmological constant behavior.

(iii) This cosmological constant behavior will continue
until H �m. At this time, the mass term becomes
important in the potential, and the field oscillates
quickly in time. Its dynamics is then comparable to
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that of an effective real scalar field oscillating
rapidly, and its time-averaged pressure vanishes.
Thus, the field then behaves like pressureless mat-
ter. This transition occurs before matter-radiation
equality.

(iv) Recently, at a late time in structure formation, as
the densities continue to decrease and the exponen-
tial part of the potential becomes non-negligible,
the oscillations have damped sufficiently so that the
field can settle into its nondegenerate vacuum. This
leads to a dark energy behavior at low redshifts.
However, the transition to this dark energy behav-
ior is not completed yet, and in the future, one can
expect the scalar field to achieve its transition and
behave like a cosmological constant.

This scenario is in complete agreement with the constraints
on a unifying dark fluid model which were derived in [5].

VI. CONCLUSION

In this work, we have shown that it is possible to
elaborate a dark fluid model replacing the standard dark
energy/dark matter models, using a complex scalar field.
We have seen that a potential containing a quadratic term
and a Gaussian term is suitable to explain the gravitation

observations at galaxy, cluster and cosmological scales.
Based on [12], we also know that this model can account
for a large variety of rotation curve shapes. Thus, we can
conclude that this model could be an interesting alternative
to the dark matter/dark energy models.

Of course, many studies are still needed to test this
model. In particular, it would be interesting to consider
the formation of large scale structures and to study the
influence of the dark fluid on the anisotropies of the cosmic
microwave background. Another question concerns the
form of the potential. Indeed, this potential has interesting
properties, but is not directly derived from high energy
theories. We can consider it as a toy-potential rather than a
definitive answer. It would then be interesting to perform
the study of different kinds of potentials, and perhaps to
find an adequate potential derived from a high energy
theory. In any case, this simple model looks promising,
and reinforces the suggestion that dark fluid models should
be studied deeply.
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