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We consider the fate of future singularities in the effective dynamics of loop quantum cosmology.
Nonperturbative quantum geometric effects which lead to �2 modification of the Friedmann equation at
high energies result in generic resolution of singularities whenever energy density � diverges at future
singularities of Friedmann dynamics. Such quantum effects lead to the avoidance of a big rip, which is
followed by a recollapsing universe stable against perturbations. Resolution of sudden singularity, the case
when pressure diverges but energy density approaches a finite value depends on the ratio of the latter to a
critical energy density of the order of the Planck value. If the value of this ratio is greater than unity, the
universe escapes the sudden future singularity and becomes oscillatory.
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I. INTRODUCTION

Observations suggest that the current universe is domi-
nated by a matter component which leads to an accelerated
expansion of the universe—called dark energy (see
Refs. [1] for review). This has stimulated a study that our
universe may face a future singularity. Such future singu-
larities typically arise if the universe is dominated by
matter which violates dominant energy condition and
causes a state of superacceleration of the universe before
leading it to a singularity. They can occur due to diver-
gence either of the energy density � and/or the pressure
density p of the matter content. For example if the universe
is filled with a phantom dark energy with a constant
equation of state w less than �1 [2], this leads to a big
rip singularity at which both � and p diverge with a finite
time [3]. Barrow pointed out a possibility to obtain a
sudden future singularity at which � is finite but p diverges
[4]. Depending on the equation of state of dark energy,
future singularities have been categorized in different
classes [5].

The existence of future singularities in Friedmann-
Robertson-Walker (FRW) cosmology reflects the vulnera-
bility of standard Friedmann dynamics whenever � or p
become of the order of Planck values. This indicates that
limit of validity of general relativity has been reached and
inputs from quantum gravity are necessary to probe the
dynamics near the singularity. Resolution of singularities
using Wheeler-DeWitt quantization has been attempted [6]
but has met with little success. One of the primary reasons
for its failure has been a lack of a fundamental theory
which can guide quantization in the Wheeler-DeWitt
framework. The issues of resolution of past [7] and future

singularities [8] have been investigated using perturbative
corrections in string theoretic models. These analysis in-
dicate that generic resolution of singularities may only be
accomplished using nonperturbative corrections. In par-
ticular in the absence of an analysis which uses nonpertur-
bative quantum gravitational modifications to model the
dynamics of dark energy, the fate of future singularities has
remained an open problem.

Loop quantum gravity (LQG) is a leading background
independent nonperturbative quantization of gravity [9]
which has been very well understood in the cosmological
setting in loop quantum cosmology (LQC) [10]. To its
success, LQG has dealt with various singularities in the
cosmological setting [11–15] and techniques have also
been used to resolve singularities in black hole spacetimes
[16]. Recent investigations have revealed that nonpertur-
bative loop quantum effects lead to a �2 modification of the
Friedmann equation with a negative sign [13,17,18]. The
modification becomes important when energy density of
the universe becomes of the same order of a critical density
�c. The resulting dynamics generically leads to a bounce
when our flat expanding universe is evolved backwards
[12–15].

Since important insights have been gained on resolution
of spacelike singularities in LQC, it offers a natural arena
to investigate the fate of future singularities. This is the
goal of the present work. Using the effective Friedmann
dynamics which has emerged from LQC, we would ana-
lyze the way nonperturbative quantum gravitational effects
modify the dynamics near future singularities. The plan of
this paper is as follows. In the next section we would briefly
review the way an effective modified Friedmann dynamics
is obtained from the discrete quantum dynamics in LQC.
Since Wheeler-DeWitt quantization, which like LQC is a
mini-superspace approach, has been unsuccessful in re-
solving spacelike singularities, we would highlight some
differences which emerge with LQC (for details see
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Ref. [13]). In Sec. III we analyze in detail the fate of three
types of future singularities—type I (the big rip): scale
factor a, energy density � and pressure p becoming infinite
in finite time, type II (sudden): p becoming infinite with
finite � in finite time, and type III: � and p diverging with
finite a in finite time. We will show the LQC can success-
fully resolve type I and type III singularities for generic
choice of initial conditions. Resolution of type II singular-
ities though depends on the amplitude of model parame-
ters. We conclude with a summary of our results in Sec. IV.

II. EFFECTIVE DYNAMICS IN LOOP QUANTUM
COSMOLOGY

In LQG the phase space of classical general relativity is
expressed in terms of SU(2) connection Aia and densitized
triads Eai . In loop quantum cosmology (LQC) [10], due to
underlying symmetries of the FRW spacetime the phase
space structure simplifies and can be cast in terms of
canonically conjugate connection c and triad p which
satisfy fc; pg � ��=3, where � � 8�G (G is gravitational
constant) and � is the dimensionless Barbero-Immirzi
parameter (which is set by the black hole thermodynamics
in LQG, as � � 0:2375). On the space of physical solu-
tions of general relativity they are related to scale factor
and its time derivative as: c � � _a and p � a2.

The elementary variables used for quantization in LQC
are the triads and holonomies of connection over edges of
loops: hi��� � cos��c=2� � 2 sin��c=2��i, where �i are
related to Pauli spin matrices as �i � �i�i=2 and � is
related to the length of the edge over which holonomy is
evaluated. The algebra generated by holonomies is that of
almost periodic functions of c with elements of the form:
exp�i�c=2�. On quantization, though holonomies have
well-defined quantum operators, there are no quantum
operators for c in LQC (as in LQG). The kinematical
Hilbert space in LQC is H � L2�RBohr; d�Bohr� where
RBohr is the Bohr compactification of the real line and
�Bohr is the Haar measure on it. Note that the Hilbert space
is different from the one in Wheeler-DeWitt quantization:
HWDW � L2�R; d��. The triad and thus the scale factor
operator in LQC have a discrete eigenvalue spectrum and
quantum constraint, obtained by expressing the classical
constraint in terms of holonomies and positive powers of
triad and then quantized, in LQC leads to a discrete quan-
tum difference equation whose all solutions are nonsingu-
lar—another important distinction from the Wheeler-
DeWitt theory.

Physical predictions can be extracted from LQC by
construction of a physical Hilbert space. By identifying
Dirac observables on this space, information about dynam-
ics can be extracted using ideas of emergent time. On
constructing coherent states we can then find out the ex-
pectation values of Dirac observables and compare the
quantum dynamics with the classical one. It turns out
that when a flat expanding universe is evolved backward

using loop quantum dynamics, instead of ending in big
bang singularity it bounces at Planck scale to a contracting
branch [12–14].

The coherent states used to analyze the details of quan-
tum dynamics also play an important role in obtaining an
effective Hamiltonian description of dynamics governed
by the quantum difference equation. This can be done by
using methods of geometric formulation of quantum me-
chanics [19] where one notes that quantum Hilbert space
can be regarded as a quantum phase space with a bundle
structure. The classical phase space forms the base of this
bundle, whereas fibers consist of states with same expec-
tation values of conjugate variables. Horizontal sections of
the bundle are isomorphic to the classical phase space.
Using coherent states one can then find horizontal sections
which are preserved by quantum evolution which then
leads us to an effective Hamiltonian with loop quantum
modifications [20,21]:

 C eff � �
3

��2 ��2 asin2� ��c� � CM: (1)

Here �� is the kinematical length of the edge of a square
loop which has the area given by the minimum eigenvalue
of the area operator in LQG [18] and CM corresponds to
matter Hamiltonian which in general contains modifica-
tions due to regularization of the inverse scale factor [10].
These modifications are negligible for large universes and
would not be considered in the present work.

The modified Friedmann equation can then be obtained
by using the Hamilton’s equation:

 

_p � fp; Ceffg � �
��
3

@Ceff

@c
(2)

in the effective Hamiltonian constraint Ceff � 0:

 H2 �
�
3
�
�
1�

�
�c

�
; (3)

with �c �
���
3
p
=�16��3G2

@� [18] where @ is the Planck
constant. Along with the conservation law:

 _�� 3H��� p� � 0; (4)

Eq. (3) provides an effective description of Friedmann
dynamics which very well approximates the underlying
discrete quantum dynamics and confirms with the picture
of bounce which occurs when � � �c (of the order of
Planck density) [13–15]. In the classical limit @! 0 one
has �c ! 1, thus classically nonsingular bounce is absent.
Further, for �� �c the modified Friedmann equation
reduces to the standard one. Interestingly, �2 modifications
also appear in string inspired braneworld scenarios and it
turns out that there exist interesting dualities between the
two frameworks [17]. However, such modifications in
braneworlds usually appear with a positive sign and a
bounce is absent (unless one assumes the existence of
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two timelike dimensions [22]). We will now address the
issue of future singularities in the effective dynamics of
LQC. Our treatment of matter which leads to such singu-
larities would be phenomenological and at an effective
level (as in Ref. [23]).

III. AVOIDANCE OF FUTURE SINGULARITIES

For the analysis of the fate of future singularities in
LQC, it is useful to first obtain the rate of change of
Hubble parameter from Eqs. (3) and (4):

 

_H � �
�
2
�1� w��

�
1� 2

�
�c

�
; (5)

where w is the equation of state: w � p=� which in
general may not be a constant.

It is convenient to define two variables

 x �
��

3H2 ; y �
�
�c
: (6)

Then from Eq. (3) we find

 y � 1� 1=x: (7)

Since H2 is positive, the variables y and x are in the ranges
0< y< 1 and x > 1. From Eqs. (4) and (5) we obtain the
differential equation for the variable x:

 

dx
dN
� �3�1� w�x�x� 1�; (8)

where N � ln�a�.
Since H can change the sign, it will be convenient to

solve differential equations in terms of a cosmic time t
rather than N. Defining two dimensionless quantities ~t �
Hct and ~H � H=Hc, where Hc �

��������������
��c=3

p
, we find that

Eqs. (4) and (5) are written as

 

dy
d~t
� �3�1� w� ~Hy; (9)

 

d ~H
d~t
� �

3

2
�1� w�y�1� 2y�; (10)

together with the constraint equation

 

~H 2 � y�1� y�: (11)

Combining Eqs. (9) and (10) gives

 

d2y

d~t2
�

9

2
�1� w�2y2�3� 4y� � 3 ~Hy

dw
d~t
: (12)

We will study several equations of state which, in stan-
dard Einstein gravity, give rise to various types of future
singularities [5]. Our interest is to clarify the role of loop
quantum modifications on the following singularities
which are known to exist in standard Einstein gravity:

(i) Type I (‘‘big rip’’): For t! ts, �! 1, jpj ! 1,
H ! 1 and a! 1

(ii) Type II (‘‘sudden’’): For t! ts �! �s, jpj ! 1,
H ! Hs and a! as

(iii) Type III : For t! ts, �! 1, jpj ! 1, H ! 1
and a! as.

Here ts, �s, Hs and as are constants. The type I singularity
appears for constant w less than �1 [3]. The type II is a
sudden future singularity [4] at which � and a are finite but
p diverges. The type III appears for the model with p �
��� A�� with �> 1 [24]. In what follows we shall
study each case separately.

A. Type I singularity

Let us consider a constant equation of state, w. In this
case Eq. (8) is easily integrated to give

 x �
1

1� Aa�3�1�w�
; y � Aa�3�1�w�; (13)

where A is a positive constant.
When w>�1 the solutions in an expanding universe

approach the fixed point �x; y� � �1; 0�, which corresponds
to the standard Einstein gravity. Meanwhile when w<�1
one has x! 1 and y! 1 with a scale factor satisfying
Aa�3�1�w�

c � 1. In this case � approaches a constant value
�c as a! ac. From Eq. (3) we find that the Hubble
parameter becomes zero at this point. This equation [or
equivalently Eq. (11)] also tells us that the Hubble parame-
ter ~H varies between its maximum and minimum values
given by ~Hmax � 1=2 and ~Hmin � �1=2 respectively.
We also notice from Eq. (10) that d ~H=d~t < 0 at the time
when y becomes y � 1, leading to the decrease of ~H.
Equation (9) tell us that y begins to decrease after it
has reached its maximum value y � 1 corresponding to
~H � 0.

We can now understand the fate of the universe for w<
�1 in LQC. A qualitative description of the evolution can
be obtained by using Eqs. (9)–(11). Let us begin to exam-
ine the evolution with a positive initial value of ~H. From
Eqs. (9) and (10), we find that both y and ~H grow until y
reaches y � 1=2. Such a behavior of � and H is generic to
a phantom dominated universe with constant w in the
standard FRW cosmology which then leads to a big rip.
The LQC correction changes this cosmic evolution in a
crucial manner. The Hubble rate begins to decrease after it
reaches a maximum value at y � 1=2, whereas y continues
to grow until ~H drops below zero [see Eqs. (9) and (10)].
As explained above, the variable y starts to decrease with
d ~H=d~t < 0 after it has reached its maximum value y � 1.
When y becomes smaller than 1=2, d ~H=d~t changes its sign
after which ~H (< 0) increases toward 0. This stage corre-
sponds to a recollapsing universe that asymptotically ap-
proaches the fixed point �x; y� � �1; 0�. From Eq. (12)
together with Eq. (11) we find that the asymptotic behavior
is given by y / t�2 and H / �t�1. Note that for negative
~H the fixed point �x; y� � �1; 0� is stable against perturba-
tions as can be checked by linearly perturbing the system
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(9) and (10). In fact two eigenvalues of a matrix for
perturbations [25] are 0 and �3�1� w� ~H, where the latter
is negative for ~H < 0.

We have numerically solved Eqs. (9) and (10) for w<
�1 with initial conditions ~H > 0. In Fig. 1 we plot an
example for the evolution of ~H and ywhen w � �1:5. Our
numerical results clearly confirm the qualitative behavior
of the evolution presented above.

Thus we have shown the big rip singularity is beautifully
avoided in the framework of LQC. The solutions finally
approach a contracting universe in standard Einstein grav-
ity (H ! 0 and �! 0 as t! 1). We note that when w>
�1 bouncing solutions can be obtained if H < 0 initially
[12–15].

B. Type II singularity

In standard Einstein gravity the type II singularity ap-
pears when the pressure density p diverges as � approaches
some constant value �0. For example, this is realized when
p is given by [5]

 p � ���
B

��0 � ��
� ; (14)

where B, �0, and � are positive constants. This singularity
appears at a finite time as � approaches �0.

Let us consider the cosmological dynamics in the pres-
ence of the loop correction. The equation of state is now
dependent on �, i.e., w � �1� B=���0 � ���. Sub-

stituting this expression for Eq. (8) by using the relation
(7), we get

 

dx
dN
� ~B

x2

�r� 1� 1=x��
; (15)

where ~B � 3B=�1��
c and r � �0=�c. Integrating this

equation gives

 

�
r� 1�

1

x

�
��1
�

�
r� 1�

1

xi

�
��1
� ~B��� 1�N; (16)

where we chose the initial condition x � xi at N � 0. This
shows that x gets larger with the increase of N, in which
case y � �=�c grows from Eq. (7). The solutions approach
x! 1 and y! 1 provided that � does not pass the
singularity at � � �0 before reaching � � �c.

When �0 >�c the system reaches � � �c with a finite
time Nc satisfying ~B��� 1�Nc � �r� 1� 1=xi���1 �
�r� 1���1. The Hubble parameter vanishes at this point,
since H2 � ��=3x from Eq. (6). From Eqs. (9) and (10)
the differential equations for y and H are given by

 

dy
d~t
�

~B
�r� y��

~H;
d ~H
d~t
�

~B�1� 2y�
2�r� y��

: (17)

When y � 1 one has dy=d~t � 0 and d ~H=d~t < 0. Then the
Hubble parameter becomes negative, which is accompa-
nied by the decrease of y. From Eq. (17) we find d ~H=d~t >
0 for y < 1=2, during which ~H increases. In the type I case
y and ~H asymptotically approach zero with time-
dependence y / t�2 and H / �t�1. The type II case is
different because of a time-dependent equation of state. In
fact when ~H � 0 and y � 0 we find dy=d~t � 0 and
d ~H=d~t > 0. This behavior is clearly seen in Fig. 2. Both
~H and y increase after the system passes the point ~H � 0
and y � 0, which is followed by the maximum value of ~H
at y � 1=2. After that the evolution of the universe mimics
the previous one, namely ~H oscillates between �1=2 and
1=2 together with the oscillation of y between 0 and 1.
Hence the universe repeats the cycle of expansion and
contraction without reaching any singularities (see Fig. 2).

When �0 <�c, independently of � > �0 or � < �0, the
solutions reach the sudden future singularity at � � �0 in a
finite time.

C. Type III singularity

The type III singularity appears for the model

 p � ��� C��; � > 1; (18)

where C is a positive constant. Integrating Eq. (4) for the
equation of state (18), we find that the scale factor is given
by

 a � a0 exp
�

�1��

3C�1� ��

�
; (19)

where a0 is a constant. In Einstein gravity one has �! 1

- 0 . 4 0

0 . 0

0 . 4 0

0 . 8 0

1 . 2

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

t~

y

H
~

FIG. 1. Evolution of the Hubble parameter and the variable
y � �=�c for w � �1:5 with initial conditions yi � 0:01 and
~Hi � 	yi�1� yi�
1=2. The big rip singularity is avoided in the
presence of loop quantum modifications to the Friedmann dy-
namics.
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and jpj ! 1 in a finite time, but a is finite when �> 1.
Hence this is different from the big rip singularity at which
scale factor diverges.

In LQC Eq. (8) gives

 

dx
dN
� ~Cx2

�
1�

1

x

�
�
; (20)

where ~C � 3C���1
c . This is integrated as

 

�
1

1� 1=x

�
��1
�

�
1

1� 1=xi

�
��1
� ~C��� 1�N: (21)

Then we get x! 1, y! 1 and H ! 0 as N ! Nc, where
Nc is given by ~C��� 1�Nc � �1=�1� 1=xi��

��1 � 1. The
differential equations (9) and (10) are

 

dy
d~t
� ~C ~H y�;

d ~H
d~t
�

~C
2
y��1� 2y�: (22)

Hence one has dy=d~t � 0 and d ~H=d~t < 0 for y � 1 and
~H � 0, which is followed by the decrease of y and ~H (<
0). The evolution of the system is similar to what we
discussed in the type I case. After the Hubble rate reaches
a minimum at y � 1=2, ~H and y asymptotically approach
~H � y � 0. When y� 1, in fact, we have d2y=d~t2 �
�3 ~C2=2�y2� from Eq. (12), which gives y / t�2=�2��1�

and ~H / �t�1=�2��1�. Hence the final attractor is a con-
tracting universe with �! 0, p! 0 and H ! �0 as
t! 1.

IV. CONCLUSIONS

In this paper we have studied the avoidance of future
singularities using the effective dynamics of loop quantum
cosmology. Nonperturbative quantum effects give rise to a
�2 correction whose effect depends upon the ratio �=�c,
where �c is of order of Planck density. Typically this type
of correction is thought to be important only in early
universe whose energy density is close to �c, but it can
be also important in the future universe if (phantom) dark
energy is present as observations suggest. Note that the
modifications we studied are different from those given
which emerge from the regularization of inverse scale
factor operator in LQC and can be important below a
critical scale factor a� (see for e.g., Ref. [26]). These
corrections are negligible for a� a� and are not consid-
ered in the present work which deals with late time expan-
sion dynamics in LQC.

There are several types of future singularities which
appear in standard Einstein gravity. In the type I case where
�, p, and a diverge in a finite time and in the type III case
where � and p are infinite but a is finite in a finite time, we
find that the loop quantum modifications generically re-
move these singularities. The universe transits from an
expanding branch to a contracting branch after the energy
density approaches critical value �c. After the Hubble
parameter reaches a negative minimum when �=�c �
1=2, it increases toward a stable fixed point H � 0 in an
infinite time (see Fig. 1). The fate of the universe thus
dramatically changes on considering loop quantum mod-
ifications in the standard Friedmann dynamics.

In the type II case where p diverges but � (�0) and a are
finite in a finite time, sudden singularity is not removed
when �0 is smaller than �c. When �0 >�c, however, the
Hubble parameter H exhibits an oscillation around H � 0
(see Fig. 2). This corresponds to an oscillating universe
without any singularities.

We have thus shown that in most cases the future singu-
larities are avoided because of the presence of loop quan-
tum corrections. Our analysis of the resolution of
singularities clearly reflects the important role played by
nonperturbative quantum gravity modifications in order to
fully understand the dynamics of universe around the
Planck energy.
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FIG. 2. Evolution of the Hubble parameter and the variable
y � �=�c for the model (14) with ~B � 1, r � �0=�c � 2 and
� � 2. We choose initial conditions yi � 0:01 and ~Hi � 	yi�1�
yi�


1=2. The Hubble parameter ~H oscillates between �1=2 and
1=2 without reaching the singularity at � � �0.
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