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If general relativity is the correct theory of physics on large scales, then there is a differential equation
that relates the Hubble expansion function, inferred from measurements of angular diameter distance and
luminosity distance, to the growth rate of large scale structure. For a dark energy fluid without couplings
or an unusual sound speed, deviations from this consistency relationship could be the signature of
modified gravity on cosmological scales. We propose a procedure based on this consistency relation in
order to distinguish between some dark energy models and modified gravity models. The procedure uses
different combinations of cosmological observations and is able to find inconsistencies when present. As
an example, we apply the procedure to a universe described by a recently proposed 5-dimensional
modified gravity model. We show that this leads to an inconsistency within the dark energy parameter
space detectable by future experiments.
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I. INTRODUCTION

Several cosmological observations, e.g. [1–8], have
demonstrated that the expansion of the universe has en-
tered a phase of acceleration. The cosmic acceleration and
the questions associated with it constitute one of the most
important and challenging problems for several fields of
physics (astrophysics, gravitation, high energy physics,
and fundamental physics), e.g. [9–14]. A dark energy
component that represents 2=3 of the entire energy content
of the universe has been proposed to explain cosmic ac-
celeration [15–18]. This dark energy component can lead
to repulsive gravity because of its negative equation of
state.

Besides dark energy, several models based on modifica-
tions to the gravity sector have been proposed recently
as alternatives to explain the cosmic acceleration, e.g.
[19–21].

These two families of models, dark energy and modified
gravity, are fundamentally different, and a question of
major importance is to distinguish between the two possi-
bilities using cosmological data. In this paper, we propose
a procedure that uses different pairs of cosmological ob-
servations in order to address this question. The procedure
is able to find inconsistencies in the dark energy parameter
space due to an underlying modified gravity model.

Furthermore, a burning question that comes to mind
after an equation of state of dark energy has been deter-
mined from cosmological observations is as follows: Is this
really a dark energy equation of state or just a results
obtained because one tried to fit a dark energy model on

the top of some modified gravity model? The procedure
proposed also addresses this question.

The outline of the paper is as follows. In Sec. II, we
introduce the basic idea of the consistency test. Next, in
Sec. III, we recall some of the commonly used parametri-
zations of dark energy and also an example of modified
gravity models. In Sec. IV, we discuss constraints on
the expansion history while in Sec. V we discuss con-
straints on the growth rate of large scale structure.
Section VI describes our approach. In Sec. VII, we de-
scribe our implementation of the procedure using cosmo-
logical observations and present our results. We discuss our
results and conclude in the last section.

II. GENERAL RELATIVITY CONSISTENCY
RELATIONSHIP

Einstein’s equations of general relativity relate the cur-
vature of spacetime to the matter and energy content of the
universe, thus describing the cosmological dynamics.
Cosmic acceleration affects both the expansion history of
the universe (given by the Hubble function H�z� � 1

a �
da
dt ja��z�1��1 , where a is the scale factor and z is the
redshift) and the rate at which clusters of galaxies grow
(given by the growth rate of large scale structure, D �
��a�=��ai�, where ��a� � �� ��

�� is the overdensity).
Importantly, the expansion function must be consistent

with the growth rate function via Einstein’s equations. If
the cosmic acceleration is not due to a dark energy com-
ponent in Einstein’s equations then the presence of signifi-
cant deviations from the consistency relation between the
expansion and the growth rate will be a symptom of a
breakdown of general relativity at cosmological scales
and a hint to possible modified gravity models at very
large scales.
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In this paper, the consistency test is implemented using
specific combinations of simulated future cosmological
observations.

III. DARK ENERGY MODELS VERSUS MODIFIED
GRAVITY

A. Dark energy parametrization

We assume that dark energy can be described in terms of
a cosmic fluid, with an equation of state w � P=� that can
vary with redshift. We parametrize the variation of w�z�
using:

(i) w�z� � w0 � w1z if z < 1 and w�z� � w0 � w1

otherwise, e.g. [4,22], and also the Taylor expansion
(ii) w�a� � w0 � wa�1� a� � wb�1� a�2, e.g.

[23,24].
Given w�z�, the dark energy density as a function of
redshift can be described using the dimensionless function

 Q �z� � �de�z�=�de�0� � exp3
Z z

0

1� w�z0��dz0

1� z0
: (1)

We assume a spatially flat universe and do not include
massive neutrinos or isocurvature perturbations. For super-
nova (SN Ia) calculations, we use the parameters

 p� � f��; w0; w1;Mg: (2)

For weak gravitational lensing (WL) calculations, we use:

 p� � f�mh
2;��; w0; w1; ns; �

lin
8 ; zp; �s; �rg: (3)

For CMB, we use:

 p� � f�mh2;�bh2;��; w0; w1; ns; �lin
8 ; �g (4)

where �de � �de�0�=�crit�0� is the dark energy density
fraction, and �crit�0� � 3H2

0=8�G; �mh2 is the physical
matter density; �bh2 is the physical baryon density; � is
the optical depth to the surface of last scattering; �lin

8 is the
amplitude of linear fluctuations; ns is the spectral index of
the primordial power spectrum; zp is the characteristic
redshift of source galaxies for weak lensing [25,26]; �s
and �r are the lensing absolute and relative calibration
parameters as defined in [25].

B. Modified gravity models

In this paper, we are interested in using a good example
of modified gravity model but only in order to illustrate the
procedure proposed. We are not interested here in evaluat-
ing any particular model of modified gravity.

Although several models of modified gravity have been
proposed recently as alternatives to dark energy, we chose
in this analysis to use the Dvali-Gabadadze-Porrati (DGP)
model. The model is inspired by higher dimensional phys-
ics and is consistent with current observations, e.g. [27,28].
As mentioned, our interest is to use the DGP model as an
example of deviation from general relativity in order to test

the proposed procedure. We refer the reader to studied
dedicated to the DGP model phenomenology [27–30]

We provide in this subsection a brief introduction to the
model, but we refer the reader to [19,31] for a full descrip-
tion. The action for the five-dimensional theory is [19,31]

 S�5� �
1

2
M3
�5�

Z
d4xdy

������������
�g�5�
p

R�5�

�
1

2
M2
�4�

Z
d4x

������������
�g�4�
p

R�4� � Smatter; (5)

where the subscripts 4 and 5 denote quantities on the brane
and in the bulk, respectively; M�5� is the five-dimensional
reduced Planck mass; M�4� � 2:4� 1018 GeV is the four
dimensional effective reduced Planck mass; R and g are the
Ricci scalar and the determinant of the metric, respectively.
The first and second terms on the right hand side describe
the bulk and the brane, respectively, while Smatter is the
action for matter confined to the brane. The two different
prefactors M3

�5�=2 andM2
�4�=2 in front of the bulk and brane

actions give rise to a characteristic length, scale [32]

 rc � M2
�4�=2M3

�5�: (6)

If M�5� is much less than M�4�, then the brane terms in the
action above will dominate over the bulk terms on scales
much smaller than rc, and gravity will appear four dimen-
sional. For example, nonrelativistic small-scale gravity
will obey the Newtonian inverse-square force law. On
scales larger than rc, the full five-dimensional physics
will be recovered, and the gravitational force law will
revert to its five-dimensional 1=r3 form. This is usually
discussed in terms of gravity leakage into an extra dimen-
sion. Reference [33] shows that tuning M�5� to about 10–
100 MeV, implying rc �H�1

0 , is consistent with cosmo-
logical data. They have also been discussed in [34]. Low
redshift cosmology in DGP brane worlds was studied in
[31,32]. Defining the effective energy density

 �rc �
3

�32�Gr2
c�
; (7)

Friedmann’s first equation becomes

 H2
DGP �

k

a2 �
8�G

3
�
�����������������
�� �rc

q
�

�������
�rc
p

�2: (8)

For each perfect fluid i on the brane, we may define �i �
�i;0=�crit;0. Following [31], we also define �rc �
1
4 r
�2
c H�2

0 . We focus here on a flat universe containing
only nonrelativistic matter, such as baryons and cold dark
matter, in which �rc � �

1��m
2 �

2. In this model, the gravi-
tational ‘‘leakage’’ into the fifth dimension, on large length
scales, becomes a substitute for dark energy.
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IV. CONSTRAINTS FROM THE EXPANSION
HISTORY USING SUPERNOVAE OF TYPE IA

For a spatially flat universe with dark energy, the Hubble
parameter H�z� can be expressed in terms of its current
value H0 and the function Q�z� as

 HDe�z� � H0

�������������������������������������������������������������
�m�1� z�3 � �1��m�Q�z�

q
: (9)

Since probes such as the SN Ia surveys give information
about the redshift variation of H�z� but not its current
value, we define the dimensionless Hubble parameter for
dark energy models as

 H De�z� � H�z�=H0 �
�������������������������������������������������������������
�m�1� z�3 � �1��m�Q�z�

q
:

(10)

For spatially flat DGP model, the expansion is given by

 H DGP�z� �
1
2�1��m� �

������������������������������������������������������
1
4�1��m�

2 ��m�1� z�3
q

:

(11)

To probe the expansion history, we consider calibrated type
Ia supernovae as standard candles to measure the luminos-
ity distance as a function of the redshift. Recall that the SN
Ia apparent magnitude as a function of redshift is given by

 m�z� � 5log10�DL�z�� �M: (12)

Here, M depends on H0 as well as the absolute magnitude
of type Ia supernovae. We treat M as a nuisance parame-
ter. Meanwhile, the dimensionless luminosity distance is

 DL�z� � �1� z�
Z z

0
dz0=H �z0�: (13)

As is well known,m�z� depends onw0 andw1 only through
a complicated integral relation, which ‘‘smears out’’ dark
energy information [35]. The result is a degeneracy which
allows very different models to have nearly identical m�z�.
Figure 1 shows m�z� for a few dark energy and DGP
cosmologies. The figure shows that some DGP models
are very degenerate with certain dark energy models,
such as �CDM models or SUGRA-inspired models.
Evident in the expression for m�z� is another degeneracy,
between �m and the equation of state parameters. We
break this degeneracy by combining SN Ia data with the
CMB power spectrum, Fig. 3. We assume the availability
of a sample of 2000 supernovae, evenly distributed in
redshift between zmin � 0 and zmax � 1:7, with a magni-
tude
uncertainty per supernova of �m � 0:2. As in [22,36], we
also include a peculiar velocity uncertainty �v �
500 km=s, and a systematic uncertainty �m � 0:02 in
bins of �z � 0:1.

V. CONSTRAINTS FROM THE GROWTH OF
LARGE SCALE STRUCTURE AND

GRAVITATIONAL LENSING TOMOGRAPHY

For dark energy models, the suppression of the growth of
large scale structure is due to an increase in the ratio of
dark energy density to matter density. We calculate the
growth factor for these models by numerical integration of
the differential equation from [37,38],

 G00 �
�

7

2
�

3

2

w�a�
1� X�a�

�
G0

a
�

3

2

1� w�a�
1� X�a�

G

a2 � 0; (14)

where 0 � d=da, G � D=a is the normalized growth fac-
tor,

 X�a� �
�m

�1��m�a3Q�a�
; (15)

and Q�a� is as given earlier.
For DGP models, the suppression of the growth is due to

weakened gravity resulting from leakage into the extra
dimension. Following [34,39], we use

 

��� 2HDGP
_�� 4�G�

�
1�

1

3�

�
� � 0 (16)

where

 � � 1� 2rcHDGP

�
1�

_HDGP

3H2
DGP

�
(17)

Figure 2 shows that, compared to a �CDM model with the
same matter density, a DGP model has a distinct suppres-
sion of the growth factor. Also, Fig. 2 displays how the
degenerate models of Fig. 1 show distinct growth factor
functions. In the next two sections, we will take advantage
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FIG. 1 (color online). Supernova Hubble diagrams for several
dark energy and DGP models. Note that the �CDM model (red
solid line) and the �m � 0:20 DGP model (blue dotted line)
have nearly identical Hubble diagrams, but different growth
factors as shown in Fig. 2. The same is true of the SUGRA
(green dashed line) and �m � 0:27 DGP (black double dotted
line) models.
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of this difference in order to detect possible signatures of
DGP models.

We consider weak gravitational lensing (cosmic shear)
tomography as a probe of the growth factor of large scale
structure. Indeed, cosmic shear observations capture the
effect of the cosmic acceleration on both the expansion and
the growth factor. We follow the formalism and conven-
tions as used in [25,36] and we use the convergence power
spectrum as our statistic [40– 42],

 P	l �
9

4
H4

0�2
m

Z 
H

0

g2�
�

a2�
�
P3D

�
l

sinK�
�
; 

�
d
; (18)

where P3D is the 3D nonlinear power spectrum of the
matter density fluctuation, �; a�
� is the scale factor; and
sinK�
� � K�1=2 sin�K1=2
� is the comoving angular di-
ameter distance to 
 (for the spatially flat universe used in
this analysis, this reduces to 
). The weighting function
g�
� is the source-averaged distance ratio given by

 g�
� �
Z 
H



n�
0�

sinK�

0 � 
�

sinK�

0�

d
0 (19)

where n�
�z�� is the source redshift distribution (we use the
distribution [43] n�z� � z2

2z3
0
e�z=z0 , which peaks at zp �

2z0). We integrate numerically the growth factor function
given by Eqs. (14) or (16) above, and we use the linear-to-
nonlinear mapping procedure HALOFIT [44]. We used the
HALOFIT for the DGP models as well because we are only
interested into using them as an example of deviation from
general relativity in order to test our procedure. Dedicated
studies to DGP phenomenology should consider using a
better approximation for these models. As mentioned
above, the expansion history is contained in the window
function, while the growth factor is contained in the 3D

nonlinear matter power spectrum. Figure 4 shows conver-
gence power spectra corresponding to dark energy models
and modified gravity (DGP) models.

The separation of source galaxies into tomographic bins
improves significantly the constraints on cosmological
parameters, and particularly those of dark energy [45,46].
The constraints obtained from different bins are comple-
mentary, and add up to reduce the final uncertainties on the
parameters. Based on recently proposed surveys (e.g. [47]),
we use a reference survey with a sky coverage of 10%, a
source density �n � 100 gal=arcmin2, a rms intrinsic ellip-
ticity h�2

inti
1=2 	 0:25, and a median redshift zmed � 1:5.

We assume a reasonable photometric redshift uncertainty
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FIG. 4 (color online). Lensing convergence power spectra for
several dark energy and DGP models: �CDM model is in red
solid line; SUGRA model is in green dashed line; �m � 0:27
DGP model is in black double dotted line; �m � 0:20 DGP
model is in blue dotted line;
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FIG. 3 (color online). CMB power spectra for several dark
energy and DGP models: �CDM model is in red solid line;
SUGRA model is in green dashed line; �m � 0:27 DGP model
is in black double dotted line; �m � 0:20 DGP model is in blue
dotted line; Following [27], a modified version of CMBFAST [52]
was used to generate the DGP plots.
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FIG. 2 (color online). Growth factors of linear density pertur-
bations for several dark energy and DGP models. Comparisons
among several dark energy and DGP models growth factors of
linear density perturbations. Note that the growth factor in the
�m � 0:27 DGP model is suppressed with respect to that in the
�CDM model, which has the same �m.
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of ��z� � 0:05, and we split the sources into 10 tomo-
graphic bins over the range 0:0< z< 3:0 with intervals of
�z � 0:3. We have used ‘max � 3000, since the assump-
tion of a Gaussian shear field, underlying the Fisher for-
malism and the HALOFIT approximation, may not be valid
for larger ‘s. For the minimum ‘, we take the fundamental
mode approximation, i.e., we consider only lensing modes
for which at least one wavelength can fit inside the survey
area.

VI. THE FUNDAMENTALS OF THE
CONSISTENCY TEST: CONSTRAINTS FROM THE
EXPANSION VERSUS CONSTRAINTS FROM THE

GROWTH OF LSS

The cosmic acceleration affects cosmology in two ways:
(i) It affects the expansion history of the universe and (ii) It
suppresses the growth rate of large scale structure in the
universe. The idea that we explore is that, for dark energy
models, these two effects must be consistent one with
another because they are related by general relativity.
The presence of significant inconsistencies between the
expansion history and the growth rate would be the signa-
ture of some modified gravity models at cosmological
scales. We propose a procedure that detects such incon-
sistencies when they are present.

The approach we explore is as follows. We assume that
the true cosmology is described by a DGP model, and then
ask what contradictions arise when the data are instead
analyzed based on the assumption of a dark energy model
(as mentioned earlier, we are not particularly interested in
the DGP cosmology here but we want to use it as an
example to illustrate the procedure.)

Because we will generate the data using the DGP model,
the consistency relation from general relativity between the
expansion history and the growth factor of large scale
structure will be broken. The dark energy equation of state
wexp�z� which best fits measurements of the expansion will
not be consistent with the equation of statewgrowth�z�which
best fits measurements the growth.

The methods and steps we use are as follows.
(i) We simulate the data for the expansion and the

growth using a fiducial DGP cosmology (for ex-
ample, supernova and weak lensing data);

(ii) We use a 
2 minimization method in order to find
the best fit dark energy model to measurements of
the expansion (the 
2 minimization method was
discussed in detail in [22] and was shown to give
similar results to those from Monte Carlo Markov
Chain method although the 
2 minimization can
have a better handle on degeneracies [22]);

(iii) we use the 
2 minimization in order to find the best
fit dark energy model to measurements of the
growth of structure,

(iv) Next, we use a standard Fisher matrix approach to
calculate the confidence regions (or 
2 contours)

around the two best fit dark energy models (this
standard procedure is discussed in detail in
Refs. [48]);

(v) We look for significant differences between the two
effective dark energy parameter spaces. These dif-
ferences will signal an inconsistency between the
expansion and the growth factor. The source of the
inconsistency is from point (i) where the data was
generated using a DGP model, i.e. from our hy-
pothesis that the true cosmology is that of a modi-
fied gravity DGP model.

The basic idea explored here was also discussed in
Refs. [34,49] but here we propose to implement the idea
using pairs of cosmological data sets. In the next section,
we will show how a procedure using observations from
supernovae, weak lensing tomography, and the CMB al-
lows one to achieve an observational implementation of the
consistency test.

Note that our approach is totally different from that of
[50,51]. Their work defined 16 new parameters (additional
to the cosmological parameters) describing the distance
and growth factor as functions of redshift. A weak lensing
survey and CMB power spectra were then used to constrain
all 16 parameters simultaneously in order to search for
inconsistencies. Our work requires no new parameters
and we explore inconsistencies between constraints ob-
tained from different pairs of cosmological probes as we
illustrate in the next section.

VII. A PROCEDURE TO DETECT SIGNATURE OF
MODIFIED GRAVITY USING [SN IA�CMB]

VERSUS [WEAK LENSING�CMB]
OBSERVATIONS

We provide here an implementation of the consistency
test using simulated cosmological observations. This ob-
servational test allows one to distinguish between dark
energy models and modified gravity DGP models. We
assume the true cosmology to be a DGP model and we
analyze two combinations of simulated data sets using dark
energy models. We use the methods and steps indicated in
the previous section. The procedure we use is as follows.

(i) We use a fiducial DGP model (with �m � 0:27)
and generate supernova magnitudes, weak lensing
convergence power spectrum, and CMB power
spectrum.

(ii) Then, we determine the dark energy model that is
the best fit to the supernova magnitudes and to the
CMB spectrum generated using the fiducial DGP
model.

(iii) Next, we determine the dark energy model that is
the best fit to the fiducial weak lensing spectrum
and to the CMB spectrum.

(iv) Then, we compare the allowed regions in the
f�de; w0; w1g parameter space between the two
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data combinations in order to look for
inconsistencies.

The supernova combination contains information on the
effect of the acceleration on the expansion history, while
the weak lensing combination contains information on the
growth factor in addition to the expansion. This translates

into a difference between the two allowed regions in the
dark energy parameter space.

Our results in Figs. 5–7 show that the two allowed
regions in the dark energy parameter space are significantly
different. This signals the expected inconsistency between
the expansion history and the growth rate of large scale
structure.

VIII. DISCUSSION

The source of the inconsistency in Figs. 5–7 is that we
generated the data using a fiducial DGP model but then we
used dark energy models to fit the data. The inconsistency
is a consequence of the fact that the fiducial cosmological
model is DGP, and therefore it constitutes an observational
signature of the underlying modified gravity model.
Figure 7 shows that the inconsistency between the two
equations of state persists even when we consider a third
term in the Taylor expansion of the equation of state
(Sec. III A). This indicates that the test is robust to the
functional form used for the equation of state.

However, we stress that we did not consider in this study
dark energy models with couplings or with an unusual
sound speed. The study of the effect of the sound speed
of dark energy on the procedure and also the inclusion of
other models of dark energy and modified gravity will be
considered in subsequent work.

Also, another point worth exploring in future work is the
effect of systematic uncertainties. If such a procedure is
performed using real data and an inconsistency is found,
then one has to develop methods to test whether the incon-
sistency is due to physics or to systematics in either of the
data sets. Further work will be necessary in order to make
this type of test robust and generic.
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data. The significant difference (inconsistency) between the
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of the underlying modified gravity DGP model (assumed here to
generate the data).
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In summary, the comparison of measurements of expan-
sion history and measurements of the growth rate of struc-
ture tests the behavior of gravity on large scales. We
proposed a procedure that uses different pairs of cosmo-
logical data sets in order to explore this comparison and to
distinguish between some models of dark energy and
modified gravity as the cause of the cosmic acceleration.
Being able to distinguish between the two possibilities is
an important step in the quest to understand cosmic
acceleration.
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