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Nonperturbative quantum geometric effects in loop quantum cosmology (LQC) predict a �2 modifi-
cation to the Friedmann equation at high energies. The quadratic term is negative definite and can lead to
generic bounces when the matter energy density becomes equal to a critical value of the order of the
Planck density. The nonsingular bounce is achieved for arbitrary matter without violation of positive
energy conditions. By performing a qualitative analysis we explore the nature of the bounce for
inflationary and cyclic model potentials. For the former we show that inflationary trajectories are attractors
of the dynamics after the bounce implying that inflation can be harmoniously embedded in LQC. For the
latter difficulties associated with singularities in cyclic models can be overcome. We show that non-
singular cyclic models can be constructed with a small variation in the original cyclic model potential by
making it slightly positive in the regime where scalar field is negative.
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I. INTRODUCTION

One of the cornerstone problems in cosmology is that of
the initial conditions of our universe. In standard big bang
cosmology the weight of this problem is shifted to quantum
gravity which is expected to generate ideal conditions for
the genesis of our universe. Generally, it is envisioned that
our universe started in a hot expanding phase from the big
bang and entered a stage of inflation before becoming
radiation and matter dominated. However the idea that
our expanding universe was preceded by a contracting
phase of a classical universe has had many avatars. This
idea, though promising to eliminate some of the funda-
mental problems related with initial conditions in standard
cosmology and providing an alternative to inflation, has
remained unsuccessful due to absence of generic nonsin-
gular evolution from the contracting to the expanding
branch. For a flat k � 0 cosmological model, which is of
interest of the present work, based on classical general
relativity (GR) such an evolution is forbidden by powerful
singularity theorems, unless one assumes an exotic form of
matter which violates positive energy conditions. Though
quantum corrections have been introduced to achieve a
nonsingular evolution between contracting and expanding
phases in special conditions, it has been realized that a
generic nonsingular evolution is difficult to achieve unless
one incorporates nonperturbative effects of quantum grav-
ity. In absence of any nonperturbative quantum gravita-
tional modifications to dynamics, innovative ideas like pre

big bang string cosmology [1] and ekpyrotic/cyclic models
[2,3] have so far had limited viability [4].

Loop quantum gravity (LQG) is a leading nonperturba-
tive background independent approach to quantize gravity
[5]. The underlying geometry in LQG is discrete and the
continuum spacetime is obtained from quantum geometry
in a large eigenvalue limit. The application of LQG tech-
niques to homogeneous spacetimes results in loop quantum
cosmology (LQC) [6] which has led to important insights
on the resolution of singularities in various situations [7–
9]. Using extensive analytical and numerical methods the
analysis of the evolution of semiclassical states for the flat
k � 0 model with a massless scalar field has shown that a
contracting semiclassical universe passes through the
quantum regime bouncing to an expanding semiclassical
universe [10–12]. Thus within the context of the model
considered the idea of the nonsingular bounce is realized in
a natural fashion.

The underlying dynamics in LQC is governed by a
discrete quantum difference equation in quantum geome-
try. However, using semiclassical states we can construct
an effective Hamiltonian description on a continuum
spacetime which has been shown to very well approximate
the quantum dynamics [11–13]. In particular, we can ob-
tain effective equations for the modified Friedmann dy-
namics which can be used to investigate the role of
nonperturbative quantum corrections. An important feature
of the dynamics is that the classical Friedmann equation is
modified to include a �2 term which is relevant in the high
energy regime. The modified term in the Friedmann equa-
tion is negative definite implying a bounce (or more gen-
erally a turnaround) when the energy density reaches a
critical value on the order of the Planck density in accor-
dance with the results from the quantum evolution.
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An important question which gains immediate attention
is the viability of the bounce picture for more general
matter sources and compatibility of inflationary and cyclic
model ideas with LQC. In this regard various questions
arise: Does the bounce occur for various inflationary po-
tentials? Do inflationary solutions form the attractors of the
dynamics after the bounce? Since the modifications which
lead to a nonsingular bounce are obtained from nonpertur-
bative quantum gravity effects is it possible that these can
lead to construction of nonsingular cyclic models using
cyclic/bi-cyclic potentials? What insights are obtained to
alleviate the problems of cyclic models?

This work seeks to answer these questions using the
effective theory in LQC. The plan of this paper is as
follows. In the next section we briefly review the effective
theory of LQC and classify the differences between quan-
tum bounce generated by loop quantum dynamics and the
classical bounce originating from general relativity. In
Sec. IV we perform a qualitative analysis using phase
space diagrams to study the dynamics for inflationary
potentials (�2 and �4) and show that inflationary trajecto-
ries are attractors of the dynamics after the bounce. In
Sec. V we apply the qualitative analysis to negative poten-
tials of the cyclic/bi-cyclic models. We show that the bi-
cyclic potential [14] can successfully lead to nonsingular
cycles, whereas the original cyclic potential can exhibit
cycling of the scale factor but not the scalar field. A truly
cyclic model can be easily constructed if the cyclic poten-
tial becomes slightly positive in the regime where the
scalar field is negative, as the bi-cyclic potential does.
The nonsingular cyclic behavior obtained for negative
potentials is unavoidable and occurs for generic values of
parameters. We conclude the paper with a discussion and
open issues in Sec VI.

II. EFFECTIVE DYNAMICS IN LOOP QUANTUM
COSMOLOGY

LQC is a canonical quantization of homogeneous space-
times based on techniques used in LQG. As in LQG, the
classical phase space for the gravitational sector is denoted
by two conjugate variables the connection and the triad,
which encode curvature and spatial geometry, respectively.
Using symmetries of the homogeneous and isotropic
spacetime the dynamical part of the connection is deter-
mined by a single quantity labeled c and likewise the triad
is determined by a parameter p. For the flat k � 0 model
(which we will only consider in this work) on classical
solutions of general relativity the relations between the
new variables and the usual metric variables is

 c � � _a; p � a2; (1)

where � is the Immirzi parameter whose value � � 0:2375
is typically constrained by black hole entropy considera-
tions [15].

In the Hamiltonian formulation for homogeneous and
isotropic spacetimes the dynamical equations of motion
can be determined completely by the Hamiltonian con-
straint. Under quantization, the Hamiltonian constraint
gets promoted to an operator and the quantum wave func-
tions are annihilated by that operator. It is thus at the level
of the Hamiltonian constraint that modifications due to
LQC will appear and from the modified Hamiltonian con-
straint, the effective Friedmann constraint will be derived.
Classically in terms of the connection-triads variables the
Hamiltonian constraint is given by

 H cl � �
3
����
p
p

��2 c
2 �HM; (2)

with � � 8�G (where G is Newton’s gravitational con-
stant) and HM being the matter Hamiltonian. The com-
plete equations of motion are derived from Hamilton’s
equations _x � fx;H clg for any phase space variable x,
and by enforcing that H cl should vanish. The variables c
and p are canonically conjugate with Poisson bracket
fc; pg � ��=3 the use of which gives us relation c � � _a
from Hamilton’s equation for _p together with p � a2.
Substituting these relations into the Hamiltonian constraint
(2) and enforcing that the constraint vanishes then gives the
classical Friedmann equation.

The elementary variables used for quantization in LQC
are the triads and holonomies of the connection: hi��� �
exp��c�i� � cos��c=2� � 2 sin��c=2��i. Here �i is re-
lated to Pauli spin matrices as �i � �i�i=2 and � is the
eigenvalue of the triad operator p̂. The gravitational con-
straint is expressed in terms of these elementary variables
and quantized. On quantization the Hamiltonian constraint
leads to a discrete quantum difference equation whose
solutions are nonsingular [7,8].

The analysis of the quantum Hamiltonian using semi-
classical states belonging to the physical Hilbert space
reveals that on backward evolution of our expanding phase
of the universe, the universe bounces at a critical density
into a contracting branch. By finding expectation values of
the Dirac observables we can investigate the differences
between quantum and classical dynamics. It turns out that
quantum geometric effects become dominant only when
the energy density (�) of the universe becomes of the order
of the critical density �crit [12,16] and classical general
relativity is a good approximation to the quantum dynam-
ics when �� �crit.

The quantum dynamics of LQC can be well approxi-
mated by an effective description. Several proposals have
been made to derive this effective theory [13,17–19] and
the result is that the dynamics can be described in terms of
an effective Hamiltonian constraint which to leading order
is [20]

 H eff � �
3

��2 ��2 asin2� ��c� �HM; (3)
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where �� �
���������������������
3
���
3
p
=2j�j

q
[12] and� is the eigenvalue of the

triad operator p̂ in the quantum theory [8]

 p̂j�i �
8��l2pl

6
�j�i: (4)

Here lpl �
�������
@G
p

denotes the Planck length (in units of
speed of light equal to unity). In this work we will be
mainly interested in the matter Hamiltonians correspond-
ing to a massive scalar field � with momentum �� and
potential V���

 H M �
1

2

�2
�

p3=2
� p3=2V���: (5)

The energy density and pressure for the scalar field are
given by the same expressions as those classically, i.e.

 � � �� �
1
2

_�2 � V���; p� �
1
2

_�2 � V���; (6)

where we have used Hamilton’s equations to get _� �
��=p3=2. It is then straightforward to find the Klein-
Gordon equation using Hamilton’s equations for _� and
_��, which turns out to be of the same form as the classical

equation and therefore the scalar field satisfies the stress-
energy conservation law:

 _�� � 3
_a
a
��� � p�� � 0: (7)

The modified Friedmann equation can be found by using
Hamilton’s equations for _p

 _p � fp;H effg � �
��
3

@
@c

H eff

�
2a
� ��

sin� ��c� cos� ��c�; (8)

which on using Eq. (1) implies that the rate of change of the
scale factor is given by

 _a �
1

� ��
sin� ��c� cos� ��c�: (9)

Furthermore, the vanishing of the Hamiltonian constraint
implies

 sin 2� ��c� �
��2 ��2

3a
HM: (10)

Squaring Eq. (9) and plugging in (10) yields the effective
Friedmann equation for the Hubble rate H � _a=a

 H2 �
�
3
�
�
1�

�
�crit

�
; (11)

with the critical density given by

 �crit �

���
3
p

16�2�3 �pl; (12)

where �pl � 1=�@G2� is the Planck density. The nonper-
turbative quantum geometric effects are manifested in the
form of a �2 modification of the Friedmann equation. Since
the modified term is negative definite, when � � �crit the
Hubble parameter vanishes and the universe experiences a
turnaround in the scale factor. For �� �crit, the modifi-
cations to Friedmann dynamics become negligible, and we
recover standard Friedmann dynamics. Note that origin of
�crit is purely quantum, since as �pl / 1=@, �crit ! 1 in the
classical limit @! 0.

Interestingly, similar �2 modifications have also been
obtained in Randall-Sundrum brane-world scenarios based
on string theory but those come with a positive sign in the
Friedmann equation and a bounce is not possible. If one
assumes the existence of a timelike extra dimension then
the sign can become negative as in LQC [21] (for an
analysis of dynamics of the brane-world model with two
timelike dimensions see Refs. [22,23]). A detailed com-
parison of the effective dynamics of LQC and brane-world
scenarios shows interesting features which include a dual
relationship between their scaling solutions [24].

III. QUANTUM AND CLASSICAL BOUNCES

Having established the equations for the effective
Friedmann dynamics we now wish to classify the condi-
tions under which effective dynamics given by the modi-
fied Friedmann Eq. (11) implies a turnaround, namely,
either a bounce or recollapse. As discussed above when
the energy density of the universe reaches the critical value
�crit, the Hubble parameter becomes zero and a bounce/
recollapse is expected. Since we will also consider the
possibility of the scalar field potential being negative we
also discuss the case where the matter energy density
vanishes which also leads to a turnaround.

More precisely from Eq. (9) we can determine the con-
ditions under which such a turnaround can occur; i.e., when
_a � 0. It is clear from that equation that there are two

possibilities, namely, when ��c � �n� 1
2�� and ��c � m�

for any integers n, m. The energy density can be computed
for both cases and is equal to �crit for the former and zero
for the latter. We thus label turnarounds occurring due
quantum geometric effects when ��c � �n� 1

2�� as quan-
tum turnarounds and those which occur when energy den-
sity vanishes for ��c � m� as classical turnarounds.

To determine whether or not a bounce or recollapse
occurs we need to go further and calculate the second
time derivative of the triad (which is proportional to �a at
the turnaround), where a negative value indicates a recol-
lapse and a positive value a bounce. Taking the time
derivative of Eq. (8) and evaluating when _p equals zero
gives

 �pj _p�0 �
2
����
p
p

�
cos�2 ��c� _c: (13)
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To determine the sign of �p we therefore need to know the
time derivative of c which is determined from Hamilton’s
equations _c � fc;H effg leading to

 _c �
c

�3=2
�������������
2�

���
3
pp
lpl

sin� ��c� cos� ��c�

�
3
����
p
p

4�
���
3
p
�2l2pl

sin2� ��c� �
��
3

@HM

@p

� �
3
����
p
p

4�
���
3
p
�2l2pl

sin2� ��c� �
1

3
��

@HM

@p
; (14)

where the first term vanishes for both quantum and classi-
cal turnarounds. We now need to consider separately the
quantum and classical turnarounds and to specify the form
of matter. We first consider the quantum turnarounds.

A. Quantum turnarounds

The quantum turnarounds as stated above are a direct
consequence of the discrete quantum geometry effects of
LQC. From the fact that ��c � �n� 1

2�� we have
sin� ��c� � 1 and cos� ��c� � 0 which implies the matter
energy density satisfies � � �crit. Under these conditions
the Eq. (14) for the triad acceleration becomes

 �pj _p�0 � �p
�
�crit �

2

3

1����
p
p

@HM

@p

�
: (15)

Let us first consider the simplest case of matter with
constant equation of state w with energy density � /
a�3�1�w� � p�3=2�1�w� which implies HM / p

�3w=2. It is
then straightforward to calculate �p giving

 �pj _p�0 � �p�crit�1� w�; (16)

and thus we can make the identification that for w<�1 a
recollapse can occur and for w>�1 a bounce can occur.
This can be understood in a simple fashion. Matter with
equation of statew<�1 violates the null energy condition
and hence has increasing energy density as the universe
expands. Thus when the energy density hits the quantum
critical value a recollapse occurs and the universe begins
contracting. In the classical universe the energy density of
such matter can grow to infinite values and even lead to a
singularity (for example a big rip singularity encountered
for phantom field which has a negative kinetic energy
[25]). In the context of LQC the implication is that such
a singularity does not occur as the energy density remains
bounded and the big rip is avoided [26]. On the other hand
matter with w>�1 has increasing energy density as the
universe contracts and therefore a quantum bounce will
occur when the critical density is reached.

Let us now turn to the case of a massive scalar field. Here
we consider general forms of the potential which can be
negative valued and phantom models where the kinetic
term is negative definite. The general form of the matter

Hamiltonian is

 H M � �
1

2
p�3=2�2

� � p
3=2V��� (17)

where the� indicates normal and phantom matter, respec-
tively. With this form we can calculate @HM

@p which gives

 

@HM

@p
�

3

2p

�
	

1

2
p�3=2�2

� � p
3=2V���

�
; (18)

and we can simplify this by noting that when � � �crit we
have � 1

2p
�3=2�2

� � p3=2��V � �crit� whence �p simpli-
fies to

 �pj _p�0 � 2�p��crit � V�: (19)

The implication of this is that if the scalar field potential is
less that the critical density at the turnaround then a bounce
occurs, otherwise if the potential is larger a recollapse
occurs. In this form we can analyze the turnaround behav-
ior for the different types of scalar field and potential.

We start with a normal scalar field where the kinetic
term of the matter energy density is positive definite.
Because of this when the total energy density is equal to
the critical value at the turnaround the potential must be
less than �crit. Thus for a normal scalar field, only a bounce
can occur in a quantum turnaround. This can be understood
intuitively from the previous paragraph given that an ordi-
nary scalar field can not have w<�1. Since we have not
made any assumptions on the form of the potential even
negative potentials will not lead to a quantum recollapse
(though as we shall see a negative potential can lead to a
classical recollapse).

Considering now phantom models with a negative defi-
nite kinetic term we find the opposite situation. First a
positive potential is required in general from the effective
Friedmann equation to get classical behavior of the scale
factor. Furthermore since the kinetic term is negative defi-
nite when the matter density equals the critical density, the
potential is larger than the critical density. Hence �p < 0
and the phantom field behaves like a matter with w<�1
and a quantum recollapse can occur. This implies generi-
cally that a phantom field can not have a quantum bounce
in LQC.

B. Classical turnarounds

The classical turnaround, characterized by ��c � m�
and � � 0, is not a feature limited to LQC but would occur
even in the classical theory. For standard perfect fluids with
fixed equation of state this does not occur as the energy
density is always nonzero. However, if the scalar field
potential is negative or a phantom field is present this
condition can be met. At this turnaround cos� ��c� � 1,
sin� ��c� � 0 which gives us
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 �pj _p�0 �
2

3
�p1=2 @HM

@p

� �p�1=2

�
	

1

2
p�3=2�2

� � p
3=2V

�
; (20)

and we can again use � � 0 to relate 	 1
2p
�3=2�2

� �

p3=2V giving

 

�pj _p�0 � 2�pV: (21)

In the case of a normal scalar field the potential must be
negative in order for the energy density to become zero
hence �p < 0 at turnaround and a recollapse is possible. In
the case of a phantom model we require the potential must
be positive and hence a classical bounce can occur.
Furthermore, in the course of dynamics it is possible that
both a quantum and classical turnaround can occur. This is
precisely what can happen when we consider negative
potentials as the universe cycles between classical recol-
lapses and quantum bounces.

IV. QUALITATIVE ANALYSIS OF BOUNCE WITH
INFLATIONARY POTENTIALS

The analysis of the previous section has established
analytically the turnaround behavior if the conditions for
a quantum or classical turnaround are met. However the
analysis does not indicate whether the turnaround is a
feature of the dynamics given generic initial conditions.
To go further we will use phase portraits to analyze the
space of solutions to the dynamics. To illustrate the tech-
niques and as a simple nontrivial model we first consider an
ordinary scalar field with �2 and �4 potentials conven-
tionally used for chaotic inflationary scenarios. In the
previous section we showed that only a quantum bounce
is possible. We are particularly interested in the question if
inflation in the post bounce expanding universe is an
attractor in the space of solutions.

It is useful to first obtain _H equation using Friedmann
Eq. (11) and the conservation law (7):

 

_H � �
�
2
��� p��

�
1�

2�
�crit

�
; (22)

where � � �� (6).
Already from (7) and (11) it is evident that both energy

density and Hubble parameter are bounded

 �Hmax 
 H 
 Hmax �

������������
��crit

12

r
; (23)

 0 
 � 
 �crit; (24)

 ��H � �Hmax� �
1

2
�crit; (25)

 H�� � �crit� � H�� � 0� � 0: (26)

For the scalar field with non-negative potentials, the only
nontrivial case is a quantum turnaround,H��crit� � 0 and it
always represents a bounce, since �� p� � _�2 � 0 and
_H > 0 in (22). Therefore, given any positive definite po-

tentials all solutions of the cosmological Eqs. (7) and (11)
are nonsingular. As an example, let us discuss the simplest
case of a massless scalar field. The solution of (7) can be
written as

 

_� �
�����������
2�crit

p �
ac
a

�
3
: (27)

Substituting this solution in Eq. (11) gives the analytic
solution for Hubble parameter

 H � �
�����������
2�crit

p a3
c

a6

������������������������
�
6
�a6 � a6

c�

r
: (28)

Clearly this solution is devoid of any singularity as soon
before and after the bounce the Hubble parameter reaches
its maximum value.

When the effective potential of the scalar field does not
vanish analytical solutions are difficult to find. To under-
stand the qualitative behavior of solutions it is useful to
build phase portraits. The dynamical phase space is four
dimensional (consisting of c�t�, p�t�, ��t�, _��t�) however
the vanishing of the constraint can be used to fix one of
them given the other three. Therefore a complete phase
portrait would be three-dimensional, however for simplic-
ity we will display two dimensional portraits consisting of
� and _�. Since the Hubble parameter only changes sign at
a classical or quantum turnaround each phase portrait
drawn will consist of either an expanding or contracting
phase. The quantum and classical turnarounds will be
represented as boundaries in the phase portrait (which we
will represent as solid lines in the figures) and any trajec-
tory that reaches the boundary will continue into the cor-
responding phase portrait with opposite sign of the Hubble
rate thus indicating the turnaround. In this sense the ex-
panding and contracting phase portraits are to be glued
together at the boundaries.

In order to obtain equations for corresponding dynami-
cal system we can express the Hubble parameter in terms
of � and _� using the effective Friedmann equation and
plug into the conservation law Eq. (7) to get

 

�� � � @V
@�	 3 _�

�
�
3

�
_�2

2 � V
��

1� 1
�crit

�
_�2

2 � V
���

1=2
;

(29)

where the sign ‘‘�’’ corresponds to expansion while the
sign ‘‘�’’ gives contraction. Using this equation we can
obtain the phase space portraits [27] for the massive scalar
field V��� � m2�2=2 with m � 0:2 and self-interacting
nonlinear scalar field with V��� � 	�4=4 with 	 � 10�2.
As we have discussed in the previous section, in this case
only quantum bounce is possible which occurs when � �
�crit, that is
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1
2

_�2 � V��� � �crit: (30)

Regions close to the outer boundary correspond to high
energy density with quantum effects dominant whereas the
low energy limit occurs near the origin in the �, _� plane.

The results for the two potentials in the expanding phase
are shown in Fig. 1 and 2 respectively. The phase space
trajectories obtained via LQC dynamics are compared with
those of GR obtained in Ref. [28] which are given as the
dotted lines in the figures. All phase trajectories are di-

rected towards the origin which is the only particular point
in the finite region of phase space having the character of a
stable node. The scalar field experiences numerous damped
oscillation around the origin in agreement with classical
GR. The agreement between the two theories is indicative
of the fact that �� �crit near the origin. In the region near
the outer boundary the LQC trajectories deviate radically
from the GR case and the existence of the boundary is a
fundamental difference between LQC and GR [29] (see
analogous discussion for gauge theories of gravity case in
[30,31]).

A key feature of these phase portraits is the inflationary
separatrix (see details for e.g. in Refs. [14,28,31]) which
appears in the figures as the curve in the second and fourth
quadrants to which the trajectories are attracted before
undergoing oscillatory behavior. It is here that inflationary
behavior occurs and it was shown in Ref. [28] that most
solutions for �2 and �4 potentials within GR tend to this
separatrix in the expansion stage. This led the authors of
Ref. [28] to the conclusion that inflation is generic within
these models. This separatrix is also present in the LQC
case and is qualitatively the same although its position
slightly changes with respect to the case of GR especially
in the vicinity of the boundary.

However, in LQC the trajectories do not begin at the
outer boundary but are preceded by a contracting phase
before the bounce. The phase portraits can be obtained for
the contracting phase by reflecting the expanding portraits
with respect to the vertical axis and inverting the direction
of the trajectories. Now all cosmological solutions start in
the unstable node at the origin where the universe is con-
tracting and the scalar field is behaving as a driven oscil-
lator (antifrictionlike behavior), reach the outer boundary
giving a bounce, return to the inflationary separatrix in the
expanding phase and finally approach the stable node at the
origin where the scalar field experiences damped oscilla-
tions. We show the complete phase portrait of massive
scalar field within LQC in Fig. 3 by superimposing the
contracting and expanding phases. The dashed curves cor-
respond to the contracting phase and full curves describe
the expanding phase. The thick curve gives a concrete
example of the closed phase trajectory which starts at the
origin, comes to the boundary, experiences a nonsingular
bounce and comes back to the origin.

Because of the fact that inflationary separatrix is also
present in the case of LQC we come to the conclusion that
inflation is as common feature of cosmological solutions
within LQC as it is within GR. If one defines a measure of
solutions on the boundary (at the bounce) it turns out that
only a small fraction of solutions does not contain infla-
tionary phase. Since all solutions are nonsingular, they
continue in the past to the contracting phase. The corre-
sponding separatrix has a repulsive nature in contracting
phase (i.e. solutions tend to deviate more and more from it
in course of cosmological contraction), and the probability

FIG. 1 (color online). Phase portrait for massive scalar field �2

potential. Dashed curves represent GR case and solid curves
shown LQC case. Dots correspond to points where initial con-
ditions for numerical solutions were given. The direction of
phase trajectories is from the boundary to the origin. Here m �
0:2.

FIG. 2 (color online). Phase portrait for the self-interacting
scalar field �4 potential. Trajectories for LQC are shown by
solid curves where as dashed curves show GR case. Here 	 �
10�2.
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for solutions to follow this seperatix, given equal measure
of initial conditions at the bounce, is small [32]. In fact this
separatrix was shown to be exponentially unstable within
GR, meaning that solution which is initially close to it
deviates exponentially from it in course of time [33].
Therefore, if all initial conditions have equal probability
at the boundary, the probability to get noninflating solution
is exponentially suppressed. An example of the phase
trajectory in Fig. 3 shows that solution can not follow
repulsive separatrix on contracting stage but nevertheless
has inflationary stage during expansion.

V. QUALITATIVE ANALYSIS OF BOUNCE WITH
NEGATIVE POTENTIALS

Negative potentials have been used in cyclic models to
construct alternatives to inflationary scenarios. It is envi-
sioned that seeds for the generation of cosmic structure
originated in the contracting phase of the universe which
preceded the current expanding phase. A basic difficulty in
these scenarios is the singular nature of transition between
two phases which has been extensively studied in Ref. [14].
As we noted in Sec. II, a classical bounce is not possible
with negative potentials for a normal scalar field, whereas a
bounce mediated by loop quantum corrections is possible.
We now analyze the nature of this bounce for different
negative potentials.

A. Massive scalar field

For simplicity we start with massive scalar field with a
constant negative potential of form

 V �
m2�2

2
� V0; (31)

where V0 > 0. Without loss of generality for the numerical
simulations we use V0 � 0:1 and m � 0:2 in this subsec-
tion. For this potential there exists an inner and an outer
boundary in phase portraits. The inner boundary arises due
to classical recollapse, a feature shared with classical GR
[14]. The outer boundary represents the quantum bounce
and is absent classically. The presence of the two bounda-
ries in LQC opens a novel possibility to construct cyclic
models where the universe undergoes a series of expansion
and contraction phases.

Numerical solutions for the time evolution given a set of
initial conditions are shown in Fig. 4 and the phase portrait
is shown in Fig. 5. Both the Hubble parameter and energy
density are bounded subject to the constraints given in (23)
and (24). As can be seen from Fig. 4, the scalar field starts
from positive values and rolls down the potential giving
rise to a period of inflation with the Hubble parameter
positive and almost constant. This continues until the
scalar field enters the region of negative potential and the
energy density reaches zero at which point the classical
recollapse occurs and H � 0. In classical GR the field
would continue its motion towards negative � with ever
increasing _� (because of the antifriction term in the Klein-
Gordon equation) and finally ending in a big crunch sin-
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FIG. 4 (color online). Behavior of�, _� and H is shown for the
massive scalar field potential (31) in LQC. The field starts rolling
down the negative potential from positive value of � and turns
around due to loop quantum effects reaching the value where it
started from. The scale factor also bounces as is evident from the
turnaround in the sign of Hubble parameter. Initial conditions are
_� � 0:640, � � 5:422; parameters are V0 � 0:1, m � 0:2.

FIG. 3 (color online). Complete phase portrait for massive
scalar field within LQC showing both contracting (dashed curve)
and expanding phases (full curve). Thick curve shows a concrete
example of the phase trajectory.
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gularity. However, in LQC when _� reaches a value such
that the energy density of the field becomes comparable to
�crit, the trajectory deviates from the classical one and the
magnitude of the Hubble parameter starts decreasing and
quickly becomes zero at � � �crit. The universe bounces
and immediately afterward enters a phase of superinflation,
where _H > 0 (which has been shown to be a generic
feature in LQC for � > �crit=2 [24]). Since the universe
expands quickly after the bounce, _� decreases and �
becomes smaller than �crit=2. The phase of superinflation
ends and Hubble rate starts decreasing. The field is now
negative valued and climbs up the potential only to turn-
around, undergo slow-roll inflation and repeat the process
in the opposite direction. The cycling continues indefi-
nitely which is evident from the phase portrait in Fig. 5.

As can be seen from Fig. 4, the oscillations of the
dynamical variables are asymmetric. This is due to the
fact that during expansion the inflationary separatrix
(which is still present, like in the cases discussed in
Sec. IV) has an attractive nature, while during contraction
it is repulsive one. Therefore the expanding universe
spends more time in the inflationary phase as opposed to
the time spent in the contracting phase and the universe
experiences overall net growth in the scale factor. The
oscillations of the scalar field together with a monotonic
Hubble parameter, which are typical for usual chaotic
inflationary potentials, occur only if the inner boundary
is close enough to the origin (corresponding to a small
value of V0) allowing for the scalar field to oscillate before
being reflected by the inner boundary.

As is evident from the phase portrait in Fig. 5 given the
parameters chosen these oscillations do not occur. The

presence of the two boundaries leads to the only one global
direction of phase trajectories, the clockwise direction seen
from Fig. 5.

B. Cyclic potential

Let us now consider the cyclic potential in the form [3]

 V � V0�1� e���� exp��e�!��: (32)

In the cyclic model, the value V0 is chosen so as to give the
correct magnitude of the current cosmic acceleration and
the other parameters are typically constrained to give the
correct amplitude for density perturbations. For the pur-
poses of qualitative analysis and without any loss of gen-
erality, we choose the following parameters: � � 0:3

�������
8�
p

,
! � 0:09

�������
8�
p

, and V0 � 0:1. The minimum of the poten-
tial is displaced from the origin and the inner boundary is
situated to the left of the origin. The phase diagrams for
expansion and contraction stages with this potential are
represented in Fig. 6.

Here, as in the previous case, both a classical recollapse
and quantum bounce can occur. Again, there is a separatrix
in the phase space located to the right from the inner
boundary. As in the previous cases during contraction
phase trajectory is directed towards the outer boundary
and during expansion it is directed towards the inner
boundary.

The evolution of the Hubble parameter in LQC with the
cyclic model potential can be understood from Fig. 7. As in
the previous case we investigate the dynamics when the
field starts from positive � where the potential is positive.
The field rolls down towards negative values of� and upon
entering the region of negative potential its kinetic energy
cancels the potential energy leading to H � 0 and the
classical recollapse. The universe starts contracting, head-
ing towards a big crunch but experiences a quantum
bounce when � � �crit. After the bounce, the universe
briefly enters the phase of superinflation before the
Hubble parameter starts decreasing. However, unlike the
previous case the potential is still negative valued and the
field can not turn around and continues to � � �1.
Another round of collapse and bounce occurs, but this
behavior terminates and the universe approaches the state
H ! 0 with _�! 0 and V ! 0 at t! 1. Thus in the case
of cyclic model potential though the scale factor bounces
and universe escapes the big crunch singularity, the dy-
namics does not lead to cycles. For such cycles to exist the
scalar field must turn around and return to the region of
positive �. To achieve this the potential must become
positive at some point for negative � as was the case for
the quadratic potential with negative constant. Since the
cyclic model potential is negative for all values of �< 0
and approaches zero asymptotically, the possibility of such
a turnaround in � does not exist.

FIG. 5 (color online). Phase trajectory of the solution shown in
Fig. 4. The inner boundary corresponds to classical bounce (� �
0) and the outer boundary to quantum bounce (� � �crit). The
trajectory formally corresponds to infinite asymmetric oscilla-
tions, although is shown for a finite time interval.
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The structure of the phase space shown at Fig. 6 suggests
that all solutions begin with � � �1 and _�> 0 and end
at � � �1 with _�< 0. The boundaries define the overall
direction for the phase space flow which is clockwise, like
in the case of massive negative potential, but the outer
boundary is not closed, so the scalar field escapes to
negative infinity. This is illustrated at Fig. 8 with a particu-
lar solution. We have set initial conditions in a way to have
positive � at the beginning with the purpose to illustrate
the dynamics with cyclic potential within LQC. However
the evolution can be traced continuously to the past with
the field having large negative values.

The problem of nonsingular bounces for cyclic potential
in LQC has been investigated earlier [34], but by consid-

ering modifications to only matter part of the Hamiltonian.
The analysis of Ref. [34] was able to show the existence of
nonsingular bounce in scale factor for cyclic model for
some choices of parameters but not in general. A limitation

550 600 650
t

0.2
0.1

0.1
0.2

H

550 600 650
t

0.4

0.8

1.2

550 600 650
t

4

8

12

φ
.

φ

FIG. 7 (color online). Behavior of �, _� and H with the cyclic
model potential (32). Initial conditions for this solution are: _� �
16=3, � � 1:066. Parameters are: � � 0:3

�������
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, ! � 0:09
�������
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p

,
and V0 � 0:1.

FIG. 8 (color online). Phase portrait of solution shown at
Fig. 7, for wider time interval. Here again we draw only finite
time evolution of the solution. Inner boundary corresponds to
� � 0 and outer to � � �crit.

FIG. 6 (color online). Phase diagrams for contraction (above)
and expansion (below) stages with the cyclic potential (32).
Repulsive (attractive) inflationary separatrix is to the right
from the inner boundary. Here � � 0:3

�������
8�
p

, ! � 0:09
�������
8�
p

,
and V0 � 0:1. Outer boundary corresponds to � � �crit and
inner boundary to � � 0.
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of that analysis was the problem of energy density becom-
ing super-Planckian as the field rolls down the cyclic
potential [35]. As we understand from the present analysis,
incorporation of modifications to the gravitational part in
the effective Hamiltonian automatically solve this prob-
lem, as the energy density is bounded above by a critical
value.

C. Bi-cyclic potential

The bi-cyclic potential was discussed in Refs. [14,36] as
a better choice over the cyclic potential in the attempt to
construct cosmologically viable cyclic models. In fact
there exists the crucial difference between the cyclic and
inflationary models. The principle difficulty of the former
is the cosmic singularity, but in a much more drastic way
than appears in standard inflation. In contrast to inflation,
within cyclic models perturbations are created at the con-
traction stage and cannot be traced through singularity.
Instead, in our case, given regular background dynamics
perturbations can in principle be evolved through the regu-
lar bounce once these are incorporated in LQC. At present
we are interested in comparing its phase portraits with the
cyclic potential.

The form of the bi-cyclic potential we will discuss is

 V � V0�1� Acosh�1���; (33)

where A > 0 and V0 > 0. For qualitative analysis we
choose A � 10 and V0 � 0:03. The phase diagram for
the expansion stage is represented in Fig. 9. As in the
previous cases there exist inner and outer boundaries cor-
responding to classical recollapses and quantum bounces.

As can be seen from the phase portrait the outer boundary
becomes a horizontal line far from the origin given by the
condition _�b � �

�����������
2�crit

p
since for large values of �

the potential is small. The inner boundary is a closed
curve surrounding the origin crossing the � axis at points
where the potential (33) vanishes, namely, when � �
�arccosh�A�.

The phase portraits for the contracting branch can be
obtained by reflecting the phase diagram in Fig. 9 with
respect to the vertical axis and inverting the directions of
phase trajectories. Example of phase trajectory for bi-
cyclic potential is represented at Fig. 10.

A difference between the bi-cyclic model and the pre-
vious models is that there is a closed inner boundary but an
open outer boundary. However as in the case of massive
scalar field with negative constant there is a preferred
clockwise direction for phase trajectories. In contrast to
the cyclic model, the behavior cycles both in terms of the
Hubble expansion and the scalar field. Given initial con-
ditions between the boundaries, the solution is attracted to
the inflationary separatrix until reaching the inner bound-
ary. After recollapsing the separatrix is repulsive and the
solution is driven to the outer boundary leading to a quan-
tum bounce and the process starts anew. Thus, with the bi-
cyclic potential there is an infinite number of inflationary
stages within a given solution. The time variation of �, _�
and H is qualitatively similar to that for the massive scalar
field shown in Fig. 4 with a bounce in both the scalar field
and the scale factor. The bi-cyclic model thus leads to a
nonsingular cyclic model in LQC. Again the crucial dis-
tinction between the cyclic and bi-cyclic potential is the
fact that the potential is positive for both large negative and
positive values of �. This cycling in the bi-cyclic model is
responsible for the better viability of the latter.

FIG. 9 (color online). Phase diagram for expansion stage with
the bi-cyclic potential (33). Inner boundary refers to � � 0 and
outer to � � �crit. Here A � 10 and V0 � 0:03.

φ

φ
.

FIG. 10 (color online). Phase portrait with the bi-cyclic poten-
tial (33) for a finite time interval. Outer boundary corresponds to
� � �crit and inner boundary refers to � � 0.
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VI. DISCUSSION AND CONCLUSIONS

The nonperturbative quantum geometric effects lead to a
�2 modification with a negative sign in the Friedmann
equation in LQC. Since the correction term is negative
definite it can lead to a quantum bounce in the high energy
regime when loop quantum modifications are dominant.
We have investigated the qualitative details of this bounce
for inflationary and negative potentials. The existence of
the outer boundary given by (30) in the phase portraits
guarantees nonsingular behavior of all the solutions with a
scalar field in LQC with any kind of potential. For negative
potentials the inner boundary also appears corresponding
to the classical recollapse. The presence of the two bounda-
ries for negative potentials leads to the possibility of solu-
tions having cyclic behavior. We have also briefly reported
on the nature of quantum turnarounds for a phantom field.

The massless scalar field gives a good example of one
feature of cosmological solutions within LQC, namely, the
nonsingular bounce. In effect, at least solutions with �2

and �4 potentials can be well approximated near the
bounce by the corresponding exact solutions for a massless
scalar field, because most of them approach the outer
boundary of phase space with kinetic energy much larger
than the potential energy, thus the potential can be ne-
glected. For these potentials we showed that inflationary
trajectories are attractors of dynamics after the bounce. In
the same way a massive scalar field with negative potential
represents a good example of cycling between expansion
and contraction accompanied with inflation, exhibiting the
main features of the more complicated potentials. Our
analysis shows that there is little qualitative difference
between the massive scalar field with negative constant

and bi-cyclic potentials, although their functional form is
very different. In both cases cyclic solutions can be found
with an infinite number of inflationary stages.

Though the problem of the big crunch can be overcome
with potential of the cyclic model, a limitation remains in
the lack of a turnaround of � from the negative side of the
potential. In the cyclic model this instant is envisioned as
the collision of two branes. If the effective potential
between branes can become positive prior to collision
(arising from higher order perturbative string effects/or
nonperturbative corrections), then a turnaround of the field
can occur and a viable cyclic model can be constructed. On
the other hand, the bi-cyclic potential provides the possi-
bility for the field to turn around and may be used for
further development of cyclic models.

The qualitative analysis reported in this work has shown
that both inflationary paradigm and the cyclic/bi-cyclic
scenarios may be incorporated in LQC. Our analysis has
not touched on the aspects which can quantify the viable
parameter space of these models with respect to observa-
tional data. Further, we have not explored the way LQC
may shed insights on the problem of evolution of pertur-
bations through the bounce. Work on including perturba-
tions in the quantum theory and deriving effective
equations is in progress, which will eventually address
the viability of these ideas with respect to observations.
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