PHYSICAL REVIEW D 74, 043507 (2006)

Ultraviolet regularization in de Sitter space
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The ultraviolet regularization of Yukawa theory in de Sitter space is considered. We rederive the one-
loop effective Candelas-Raine potentials, such that they agree with the corresponding Coleman-Weinberg
potentials in flat space. Within supersymmetry, this provides a mechanism for the lifting of flat directions
during inflation. For the purpose of calculating loop integrals, we employ the dimensional regularization
procedure by Onemli and Woodard and show explicitly that the resulting self-energies are also invariant.
This implies the absence of anomalous de Sitter breaking terms, which are reported in the literature.
Furthermore, transplanckian effects do not necessarily leave an imprint on the spectrum of cosmic

perturbations generated during inflation.
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I. INTRODUCTION

Quantum theory in de Sitter space predicts a scale-
invariant primordial spectrum of density fluctuations gen-
erated during inflation [1-5]. This effect is in compelling
accordance with observation (see e.g. [6]) and it can be
calculated by solving the field equations of motion in a
de Sitter background at tree level. There is now strong
evidence for a small deviation from scale-invariance [6],
this can, however, be explained by the fact that in all
realistic inflationary models the background is not exactly
de Sitter space, leaving the methods for computing density
perturbations still valid.

As an example for a loop calculation, one can compute
the Coleman-Weinberg [7] effective potential in curved
space-times using methods devised by DeWitt [8]. In the
setting of a de Sitter background, these effective potentials
have been calculated for fermion and scalar loops by
Candelas and Raine [9]. Their results recently have been
rederived for the case of Yukawa theory [10] and have lead
to the proposal of a new relaxation mechanism for the
cosmological constant [11]. In Sec. II, we rederive the
Candelas-Raine potentials and confirm the original results
[9]. As a consistency check, we confirm that the results
presented here have the advantage of reducing to the flat-
space limit [7] when taking the expansion rate to zero. We
point out that the Hubble induced mass terms arising from
the effective potential can be of relevance for supersym-
metric models of inflation.

Loops in de Sitter space have also been computed to
obtain self-energies [12—19], which induce corrections to
the field equations of motion. For this type of calculation, a
powerful ultraviolet regularization procedure has been in-
troduced by Onemli and Woodard [20]. Employing this
technique, it is reported that local de Sitter breaking terms
occur, which have been interpreted as anomalous so far
[12-14,16,19]. An ultraviolet induced breaking of the
de Sitter symmetry also plays a role in context of the
transplanckian problem [21-23], where time translation
and boost invariance is assumed to be explicitly broken,
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such that one may suspect these effects to be related. The
answer is that the boundary conditions imposed to effec-
tively take account of transplanckian effects decouple from
renormalizations in four dimensional de Sitter space
[24,25]. Nonetheless, it is an interesting question whether
one can explicitly construct an invariant regularization
procedure in field theory or whether ultraviolet effects
necessarily lead to the breakdown of de Sitter invariance.
In Sec. III, it is shown that the procedure by Onemli and
Woodard in fact preserves invariance, and as an example,
this method is applied to Yukawa theory. The de Sitter
breaking terms are shown to be not anomalous but cancel
with contributions which have been neglected so far.

II. PROPAGATORS AND EFFECTIVE
POTENTIALS

We discuss Yukawa theory as described by the
Lagrangian

L = T80, 0)0,0) ~ 5o + T

— mipip — M(D/”fww}, (1)

where u is a constant of mass dimension, which is intro-
duced to ensure that the Yukawa-coupling f is dimension-
less for any space-time dimension D, and Y denotes the
covariant derivative acting on spinors. We choose confor-
mal coordinates for de Sitter space expanding at the
Hubble rate H, such that

Cuv = a* Ny )

where a = —1/(Hn) is the scale factor, n €] — o0, [ is
the conformal time and

M, = diag(—1,1,...,1) 3)

D—1 times

is the D-dimensional Minkowski metric. When expressed
in these coordinates, the Lagrangian (1) takes the form [12]
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L = —3aP2n#"(0,$)0,¢) — 3a°m}, ¢*
+ (a(D"’/zt//)iﬂ(a(D’”/ztﬂ) — aPmipp
—aPu> PR f ey, “)

Here, we assume (¢) = 0 and regard the effective poten-
tials as functions of m and m, respectively. The reason is
purely notational, since alternatively, we could set m = 0
and take w2~ /2 f(p) with (¢p) # 0 as the mass term.
Likewise, the scalar mass m, could be substituted by
introducing a self-interaction for ¢ and redefining the
vacuum expectation value such that {¢) # 0.

The separation between two coordinate points is (1 =

x9

D
Ax*(x;x') = —(Ip — n'| —ie)® + Z [xf = X2, (5)
i=1
where the i€ term is introduced according to the Feynman-
pole prescription (see e.g. [17]). This is, however, not the
same as the physical geodesic distance €(x;x’) between
two points. The function €(x; x') is de Sitter invariant and
most conveniently expressed in terms of the also de Sitter
invariant function y(x; x’) as

1
y = 4sin2<§ H€) = ga' H*Ax?, (6)

where here and in the following we abbreviate a = a(mn)
and a’ = a(n’).

The concept of point-splitting regularization [26-28] is
to expand two-point functions in a series

1
~+a_1ﬁ+c+aolog€+al€2+"', (7)

where the a; and c are constants. Each term is manifestly
covariant, in particular, one can subtract the terms which
are ultraviolet divergent when ¢ — 0, without breaking
general coordinate invariance. Namely, these divergent
contributions are the negative powers of € and the log¢
term. When noting that

y = (HE)? + O([H{T), ®)

we can replace y — (H{)? in these expansions, as long as
the expansion does only range over the coefficients a_,
ay, and ¢ and as long as € < H~! is of subhorizon scale.
This is the regularization procedure we follow in this
section.

Let us first construct the one-loop effective potential for
fermions in de Sitter background [9]. The Feynman func-
tion is given by
|

iS(x, x') = (aa’)~G=#/2

1
472 (e/2) ( )1‘3@ 2)1=(6/2)
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and it satisfies
J—g({Y — m)iS(x, x') = 18P (x — x'). (10)

This equation may be solved in de Sitter background using
the ansatz [10,11]

iSO x) = alaP+1/2igqP=1/2) 4 )

li'yo
X (aa) 2T is.—L,  (aD

such that we find, when substituting the above into
Eq. (10),

[(y2 —4y)aa—y22— D(2 —y)i+§<§_ 1)

- E + ?}Z&(

The solution to the latter equation is a hypergeometric
function [9-11],

HD 2 F(D_1+1zn)1"(D+ m

iS. =

T @mPR r'®)
D _.m D _.m D y
X F.l——1 —,—*i—;—:;1 == 13
21(2 T R TR 4) (13)

Note that for the purpose of point-splitting regulariza-
tion, we could set D = 4 from the outset. In the following
expansion, however, we keep the leading terms in general
space-time dimension, as they are needed for the dimen-
sional regularizations taken out in Sec. IIl. For the sub-
leading (logarithmic and constant) terms, we readily take
D =4 (e = 0). Having said this, we expand two-point
function S- in y and find, when and writing D = 4 — ¢,

. H>® € 1
15+ = 472 (e/2) F<1 B 5) Y@

FiHm + m? y m m
o |logm + (1 Fi— ) +y(2+i=
167 [°g4 ‘”( +1H> ‘/’< 1H>

— 1+ 2yE:|. (14)

Next, we insert this into the fermion propagator (13) and
consistently keep only terms which are ~y~!, ~logy, and
constant in D = 4, such that we obtain

Ne/2 m _E 1
+(ad’) 47T2,(8/2)F<1 2>(Ax2)17(8/2)

(m® — 2y Hm? + H2m)< 1+ 2yg + log(aa' H2Ax2) — 2log2 + ¢(1 - %) + ¢<1 + %)) (15)
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The one-loop effective potential now can be calculated
easily using [8,9]
I Vet
om

Noting that in the limit m >> H, the Euler functions have
the asymptotic property

¢<1 - 1%) + ¢<1 + 1%) ~ log%,

= —try/=giS(x, x). (16)

2
17)

we obtain [9,10,29]

m? 1

vo_
Ve = WP

W {—m4 log(szz)

3 1
— 2H?’m? log(0*m?) + <§ —2vg + 3 10g2>m4
+ (4 —4yp + logZ)Hzmz}. (18)

Out of the terms in curly brackets, important are only the
logarithmic ones, since the analytic contributions are regu-
larization scheme dependent and can always be canceled
by adding counterterms to the Lagrangian. In addition, we
have introduced a constant physical cutoff scale @ with the
dimension of a length, which is used to regulate expres-
sions which are divergent as aa’Ax? goes to zero. An
important consistency check is to note that in the limit
H — 0, the above expression reduces to the celebrated
Coleman-Weinberg potential [7]. The same result has
been derived by Miao and Woodard [10], who suggest to
use 0 = H™! as a regulator. This is motivated by imposing
the renormalization condition that the scalar field remains
free and massive in the large H limit. In turn, the scalar
mass and couplings then diverge logarithmically when
H — 0. Such a behavior may lead to a solution to the
cosmological constant problem [11]. The numerical factors
in the terms presented here and in [10,29] differ from the
earlier results [9]. Note, however, that the latter effective
potentials for the fermion and for the scalar loop do not
reduce to the Coleman-Weinberg form as H — 0, albeit
being well defined in that limit. In particular, all contribu-
tions ~m*logm and fvmiS logm,, cancel, in disagreement
with the flat-space result." Our regularization procedure
differs, but we point out that this is not the origin of the
disagreement, which should be attributed to a calculational
mishap or a typo in Ref. [9]. A result very similar to
Eq. (18) is reported by Elizalde and Odintsov [30]. The
difference lies within renormalization-scheme-dependent
terms, but moreover an overall factor of minus one occurs
when comparing the coefficients of the logarithms.

'"When comparing Eq. (18) of this article with the correspond-
ing Eq. (30) of Ref. [9] (Eq. (23) here is to be compared with
Eqn. (21) of Ref. [9] for the scalar case), one should be aware
that the integrals over the Euler-¢ functions in Ref. [9] comprise
logarithms at leading order in H/m.
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Since the scalar case is more familiar, we go into less
details. The Green function for the scalar field is of the
following de Sitter invariant form [17,19,20,31]:

e + I - v)

iA(x, x') = D=2
(4m)P T (®)
XFD_1+ D—]_ Dl_y
2]( 2 v, 2 V)Z) 4>)
(19)
where
D — 1\2 m%ﬁ-i-fR 1/2
)T e

R = D(D — 1)H? denotes the Ricci scalar curvature of
de Sitter space, and ¢ is the coupling constant of the scalar
field to curvature [¢ = (D — 2)/(4D — 4) corresponds to
conformal coupling, £ = 0 to minimal coupling].

The expanded version of the scalar propagator corre-
sponding to the fermionic case (15) is found to be [17,19]

HZ—E D 1 H2 m2
. ) — _ - _ — ¢ —
iA(x;x) 1,072 F(z 1>y(D/2)—1 + 16772<H2 2)

X [log§+ ¢<§ + V) + lp(%— V) -1+ 2yE}.
2

From this, we now derive the scalar potential using [8,9]

Ve 1 .
Gm(zb = 51/—g1A(x, X), (22)

such that we obtain for my > H [29]

2

m 1
Vi = g o (47" 08(€) — Homy og(@*n)
3011 \
1
+ (2 — 2y + 3 10g2>H2m§5}. (23)

Taking H — 0, agreement with the Coleman-Weinberg
[7] result is found also for the scalar loop. Just as for the
fermionic case, in the final expression reported by
Candelas and Raine [9], all logarithmic terms cancel in
the flat-space limit H — 0, in disagreement with Coleman
and Weinberg [7]. Again, this should not be attributed to
the approach or regularization used in [9], but to a minor
calculational mistake.

Our results (18) and (23) imply, in particular, for m =
m¢ that
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3
4V$f + Vewff == WHZ’WZ log(e?m?)
1
1672

and that in Minkowski space (H = 0) fermionic and scalar
contributions cancel, as they should when assuming the
same number of degrees of freedom and the same mass
spectrum. De Sitter space with H # 0 exhibits, however,
supersymmetry breaking due to the different curvature
coupling of fermions and scalars.

This finding may be of importance for inflationary mod-
els when replacing m and m, by «(S), where S denotes the
slowly rolling inflaton field and « its superpotential cou-
pling to other chiral multiplets. In F-term inflation, similar
terms are expected from supergravity corrections [32—-35]
and have consequences for predictions of the spectrum of
primordial density fluctuations [36,37]. For a minimal
Kidhler potential within F-term inflation and generally
within D-term inflation, these kind of corrections originat-
ing from supergravity are expected to be absent [38],
whereas the de Sitter background induced corrections pre-
sented here are still there and should be taken into account.
Note that when assuming the renormalization scale to be
larger than the mass terms, p~' > m, and the derived mass-
square corrections are always positive.

As a next step, it will be important to derive the one-loop
potential for gauge bosons and gauginos in the loop. Using
the above results for the scalar and fermion case for a
conjecture and taking into account the dimension of the
standard model gauge group as well as typical values for
the gauge coupling constants suggested by gauge coupling
unification, mass corrections which are of order of the
Hubble rate might arise also during the postinflationary
eras [39]. This intriguing possibility for a universal mecha-
nism of lifting flat directions of the mimimal supersym-
metric standard model is subject of ongoing studies.

_I_

(12 — 12yg + 3log2)H?m?, (24)

I11. SELF-ENERGIES

The above expressions for the effective potentials are
constructed from the coincidence limits of the fermionic
and scalar Green functions, and the occurring ultraviolet
divergences are renormalized by subtracting terms which
become infinite as we take the short-distance regulator Q to
zero. This procedure apparently bears some similarity with
a cutoff regularization in momentum space. One should be

aware, however, of the fact that a large momentum cutoff
|

—i2(x; x')
+ i(aa' >~ E/Pems* = (x — x')
_ fPuf(aay? T2 -9

-9,
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of a two-point function in momentum space does not result
in a short-distance cutoff of its Fourier transform in posi-
tion space. Therefore, the simple point-splitting method
employed in the previous section is not applicable to the
case where finite distance effects are of importance.

This can be seen when studying self-energy functions.
Examples are the vacuum polarization for scalar electro-
dynamics [13—18] and the fermion self-energy [12,19] in
de Sitter background. The self-energies, which are two-
point functions, give rise to corrections to the free field
equations, which are in general nonlocal. Momentum
space experience is telling us that we obtain from ultravio-
let divergent integrals logarithms of functions involving the
external momentum ¢ as well as the mass of the particles
running in the loop. These contributions are of utmost
importance for the predictions of a theory, and therefore
a position space technique to separate these terms from the
divergent parts is needed. A powerful method to achieve
this within dimensional regularization has been suggested
by Onemli and Woodard [20].

Some results obtained using this technique seem to
introduce as a common feature local operators [12—19],
which violate de Sitter invariance, since they are propor-
tional to loga(n) or equivalently 7, which is the comoving
time related to the scale factor as a(n) = e’’. This obser-
vation has been interpreted as a perturbation theory anom-
aly so far [12-14,16,19]. However, we point out here that
these terms are completely canceled by an ostensibly neg-
ligible nonlocal contribution. Therefore, with the choice of
a de Sitter invariant counterterm, the procedure of ultra-
violet regularization does not break de Sitter invariance.
We emphasize that for the case of a minimally coupled
massless scalar field or gravity, the treatment of ultraviolet
divergences suggested here yet leaves behind de Sitter
breaking terms originating from the noninvariant
propagators.

Let us introduce local counterterms by adding

8L = 8Z,(a®"V2y)ig(alP~ V) — aP Smipp
— 3aP728Z3m*"(9,,$)(0,¢) — JaPdm% $? (25)

to the Lagrangian (4). Note that we do not discuss vertex
renormalization here. These counterterms are de Sitter
invariant, provided 6Z,, dm, Z, and dm, are constant.
From L + 8L, we can straightforwardly derive Feynman
rules [12,19] leading to the following self-energy function:

(—if w&2a*8)iS (x; ') (—if w*2a*#)iA(x; x') + 16Z,(aa’)C~/Dig6* ¢ (x — x)

1 ffuf(ad) m

3274° 1-z

+16Z,(aa")C~e/Pig8* = (x — x') — i(aa) >~V éms*~=(x — x').

1

’Z (Ax2)2—s

€
r1-=
(Ax?)>e 1674¢ ( 2)

(26)
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In this expression, we have only kept terms which lead to
ultraviolet divergences and those which are used to renor-
malize them. One may interpret it as the self-energy for a
fermion of mass m coupled to a conformally coupled scalar
(mg = 0and ¢ = ). Important finite contributions arising
for the minimally coupled case, £ = 0, are therefore not
included here, but they are extensively discussed in
Refs. [12,19], where a new mechanism for fermion mass
generation is suggested. As these contributions due to
minimal coupling are also in the focus of [13-18], the
main conclusions drawn in these previous articles remain
unaltered when applying the modifications we suggest in
the following.

We now need to regulate terms which go as 1/Ax* when

e — 0, since they lead to logarithmic divergences when
|

1 92
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integrated. Following Onemli and Woodard [20], we make
use of the D-dimensional representation of the Dirac
function

1
Ax?y
where
2702
Qp = (28)
r'®

is the area of the D-dimensional unit sphere. We then
manipulate the logarithmic divergences as

e L ey 1
(Ax2> 28(1 — &) Ax*2e 28(1—8)[Ax228 szs} ¢ 2¢(1 —e)  Ax?e

4AXE 1; 2

In the second step, we have added and subtracted the same
contribution. For dimensional reasons, similar to the point-
splitting approach, we have to introduce a regulator ,
which has the dimension of a length and may be a function
of the space-time points x, and x),. The notation ] "
implies that this is a derivative which does not act on the

implicit dependence of @ on x,,,
d o0 x) =0, (30)

and has been introduced to keep notation compact.

Since @ corresponds to a comoving length, we propose to
employ a de Sitter invariant constant physical-length regu-
lator, which is given by

1

olx;x') = [——, (31)
aa'u

where u is a constant regularization scale. The choice
|

S(x;x) =

. IOgAQ_“f | | e 0° 272 (e/2)
e - %)

2(0a")¥/? - loghs 20 N2 log2% 240"V 20 11+ 2
_f((lll) 552 0? +1f (aa) 52 0’ _f(aa) Mmoo 1

847 ¢(Ax). (29)

{
made in Ref. [20] is

e=n, (32)

which corresponds to a physical length shrinking with the
scale factor. Of course, there is nothing wrong with this
choice, because the manipulation (29) just amounts to
adding and subtracting the same contribution. Indeed,
tracing the calculation by Onemli and Woodard further
[20], both terms of the last expression in (29) are fully
taken into account. However, in Refs. [12—19], the first
term is eventually neglected. This contribution however,
with the choice of the regulator (32), is not de Sitter
invariant. Therefore, a de Sitter breaking remainder in
form of a local term occurs, which is misinterpreted as
anomalous [12-14,16,19].

Applying the above procedure to the self-energy (26),
we find

2774 Ax? 264 M TAR

_ faapet 1145
23722/

=1 _¢£
812

— (ad €D sms*==(x — x').

2

2F<1 - %)iﬂ(?“*s(x —x')

W26 g 1-¢

F(l — E>m34_"’(x —x') — 8Zy(aa") P #Pif s+ = (x — x')

(33)

As a consistency check, we may convince ourselves that also for the momentum space result in flat space, the infinite

contributions ~1/¢ to the self-energy satisfy
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03 1 43
88_4 =585 + O(e). (34)

In order to render X (x; x') finite, we choose the counter-
terms

1 11+ e
m 11+£ < 8) (35)

T3/ g ] —

om

With the regulator (31), we obtain

E(x; x/) - _ f2(aa/)3/2 352 log(aa’AxQ)

2774 Ax?
f*(aa')? -, log(aa'Ax?)
+ .
i 264 mo AL (36)

3(x; x') is de Sitter invariant if it scales as (aa’)*, as can be
seen explicitly when employing it to modify the confor-
mally rescaled Dirac equation [12,19]. Noting that Ax?
scales as (aa’)”! (y = aa’ Ax? is de Sitter invariant) and
that furthermore the arguments of the logarithms are scale-
invariant, this property can indeed be verified for each of
the two above contributions to the self-energy 2. (x; x’).
In contrast, when choosing the regulator (32), we find

_ fHaa)? - logAx?
27t Ax?

ifz(cw/)2 . logAx? B f2(aa')??

S(gx) =

* 2074 " Ax? 2372
. 2(@@’)2
X log(aa)ig6*(x — x') — 62
X log(aa)ymé*(x — x'). (37

None of the individual contributions are de Sitter invariant
here, although the sum is equal to the manifestly invariant
expression (36). In the work on Yukawa theory [12,19], the
first two terms of (37) are not discussed further and it is
incorrectly claimed that the third and fourth term break
de Sitter invariance anomalously. The same applies to the
corresponding terms being identified as anomalous in the
work on scalar quantum electrodynamics [13,14,16]. We
emphasize, however, that the putatively anomalous terms
are not in the main focus of the papers [12-14,16,19] but
are rather treated as a side effect. What we point out here is
that the ultraviolet regularization can be taken out without
introducing additional de Sitter breaking contributions.

It would of course be desirable to obtain a manifestly
covariant expression for 2 (x;x’) in general backgrounds,
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as may be constructed employing DeWitt’s technique for
expanding two-point functions in terms of the geodesic
distance [8]. Future work will show whether this leads to a
fairly simple and manageable result.

An immediate consequence of the correct application of
the ultraviolet regularization procedure is of course the
vanishing of de Sitter breaking terms of ultraviolet origin
found for Yukawa theory in Refs. [12,19], which have been
misinterpreted as anomalous.’ However, Onemli’s and
Woodard’s regularization procedure is directly applicable
to all calculations involving logarithmic divergences. For
example, in the original work [20], Onemli and Woodard
study ¢* theory. Note, however, that they use a de Sitter
breaking scalar propagator, as necessary for a massless
scalar field [40], which reads in D = 4 space-time dimen-
sions [20]

2
A x) = i{#
(o x')

1 1
— 1 - + _ 1 ! .
pa 3 loy(x:') + 5 log(aa')|

(38)

The last term obviously breaks de Sitter invariance, but is
of an utterly different, namely, infrared, origin. In loop
calculations for renormalizable theories such as Yukawa or
¢*, it does not lead to ultraviolet divergences, but yet gives
rise to important finite de Sitter breaking effects. Note,
however, that the focus of the present paper is not on the
discussion of the peculiarities of the massless minimally
coupled scalar field but on the regularization of logarithmic
ultraviolet divergences resulting from the leading term
o« 1/y of the scalar propagator, which is universal for scalar
fields of different mass and curvature couplings.

A detailed and excellent discussion of these different—
ultraviolet and infrared—de Sitter breaking contributions
for the example of scalar electrodynamics can be found in
Ref. [14], where, however, the conformal anomaly of
gauge theory is inappropriately made responsible for the
ultraviolet induced breakdown of de Sitter invariance. We
point out that employing the invariant regularization as the
procedure proposed here, ultraviolet induced de Sitter
breaking also can be casted off from scalar electrodynam-
ics [13—18].

Let us finally treat the wave function renormalization of
the scalar field, since this is the case which is important for
the generation of density perturbations during inflation. In
order to do so, it turns out that we need to keep track of the
dependence of iS-. (x; x’) on & # 0 up to logarithmic order
[cf. Eq. (14)],

2Explicitly, the second term in Eq. (14) of Ref. [19] can be
combined with the first term in a de Sitter invariant way. The
same statement applies for the second term of Eq. (24) of
Ref. [12], where Yukawa interactions of a minimally coupled
massless scalar field are investigated. Note that in the latter case,
the additional de Sitter breaking contribution originating from
the scalar propagator persists even when taking account of the
absence of an anomaly.
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H*S
16772 (/2) F<1

. . 2—¢ e 1
iS.(x;x') = mr<1 - §>y1—(s/2) +

+ ¢<2 - %) 1+ 2yE]'.
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2
- f)(:iHm + mz){— (v — 1) — 2log2 + ¢(1 = iﬂ>
2 € H

(39)

Then, the divergent contributions to the scalar self-energy ill (x; x’) can be regularized as [cf. the fermionic case, Eq. (33)]

Ax? Ax?
fPad’ 108 f2(ad)? 1085 flaa'pes 1144 &\ .2 cae
c ) — 4 252 _ 2 2 _8\254-s(, _ 4/
I (x; x') 57 7 d o P A P s _%I‘<1 2)8 82 (x — x')
flaa)pre 1143 < e) )
— . ———2I(1 -2 |m?8* *(x — x/) (40)
2D g 1-¢ 2
+ 8Z5(aa’) 2929264 ¢ (x — x/) + ((1(1’)(4_““)/25m315 84 8(x — X), 41)
{
which is renormalized by the counterterms oll 1 oIl
— + 0(e) (43)

1 11+2 €
8%y = S 5 1o %F<1 = 5)
mé 11+¢ e (42)
dmy = L - 2r(1—2)
2272-(e/2) g 1 -5 2

Again, a de Sitter invariant expression is obtained when
using the regulator (31) and consistency with the flat-space

result derived in momentum space
J

1

1
2 a*
BE

8(14

— 1 1 4
B E(Wm

Hence, we have recovered a divergence ~m>H?>. Note,
however, that a full reconstruction of the effective potential
at leading order will also involve tadpole diagrams.
Furthermore, we completely miss the terms o« logm. We
suspect that the solution to this problem lies in the treat-
ment of the terms in the first line of Eq. (40) and equiv-
alently of Eq. (33), which correspond to expressions
o« log(F(m, q)), which are familiar from momentum space
and where F(m, g) is some function.

v =

872

167

IV. CONCLUSIONS

In this paper, we rederive the Candelas-Raine effective
potentials [9] for fermions and for scalars. The expressions
we find are benign as H — 0 and moreover they reduce to
the Coleman-Weinberg form in that limit. The different
curvature coupling of fermions and scalars gives rise to
curvature-induced supersymmetry breaking, evident from
the potential sum (24). This may be of relevance for infla-
tionary model building.

1
d4x’{— m*(aa’)*6*(x — x') +

1
+— m2H2> + 0().

¢ ag> 4 ®om?
is found.

Of course, we would like to reproduce now the contri-
bution to Ve’/}f from IT(x; x’). At first glance, it is disturbing
that there appears to be no divergences in Il(x; x") which
are proportional to m?>H?, while these terms occur in Vewff,
Eq. (18). However, when calculating the potential from
I1(x; x') and keeping only the divergences ~1/¢, we ob-
serve when setting m = f¢

f &3 F () x)fb(x) + O(0)

1
7 m?aa’9?6*(x — x’)} + 0(e%)
T

(44)

{
We also point out that the ultraviolet regularization

procedure by Onemli and Woodard [20] does not lead to
an anomalous breakdown of de Sitter invariance. Yet, we
have to resolve the question how the remaining nonanalytic
terms =« logAx? have to be evaluated. Techniques to ap-
proach this problem have been developed and successfully
applied to compute the effect of self-energy corrections on
the equations of motion of various quantum fields [12—19].
We emphasize that position space techniques are not only
useful for computations of effects within curved space-
times, but for any kind of backgrounds, for example,
inhomogeneous electric fields [41,42].

The possibility of an invariant renormalization implies
that within field theory, a transplanckian problem does
not necessarily exist, because all processes can be
imposed to be fully de Sitter invariant by the choice of
an invariant renormalization scheme. This is a conse-
quence of the manifest coordinate invariance of the under-
lying Lagrangian (1) and that this invariance does not
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appear to be broken by perturbation theory anomalies.
Since there is no observational evidence for a breaking of
Lorentz symmetry in flat space, where one therefore rou-
tinely uses covariant regularization procedures, one may
consider also in curved space-times covariant regulariza-
tion as a natural choice. Note, however, that within string
theory, albeit also being formulated in a manifestly cova-
riant way, a breakdown of de Sitter invariance leading to
signatures
in the primordial perturbation spectrum is expected
[23,43,44]. A discussion of the renormalization of these
boundary effects and some aspects of renormalization of
self-interacting scalar theories, which may be compared to
the results presented here, is provided in Refs. [24,25].
We emphasize that the ultraviolet regularization in
de Sitter space is not directly related to the breakdown of
de Sitter symmetry for massless minimally coupled scalar
fields [40,45]. It is a tree level effect and is due to the fact
that it is not possible to construct a de Sitter invariant Green

PHYSICAL REVIEW D 74, 043507 (2006)

function which takes the Hadamard form in this case. It
corresponds to an infrared divergence, which becomes
manifest when taking m, — 0 and ¢ — 0 in Egs. (19)
and (20). Because of its infrared origin, this type of
de Sitter breaking for massless minimally coupled fields
is not related to the transplanckian problem.

Concerning the prospects of the work presented here, a
goal of future efforts should be to obtain a dictionary
translating from position space expressions to their famil-
iar momentum space counterparts, such that new effects in
curved space-time may reliably be identified. Furthermore,
a covariant generalization of the de Sitter space results to
more general backgrounds is desirable. While being inter-
esting on their own behalf, quantum loop effects in curved
space-time may give relevant input to inflationary model
building or even directly lead to observational consequen-
ces, such that routine techniques for their calculation are of
great importance.
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