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Recent type Ia supernova measurements and other astronomical observations suggest that our Universe
is, at the present epoch, in an accelerating phase of evolution. While a dark energy of unknown form and
origin is usually proposed as the most feasible mechanism for the acceleration, there appeared some
generalizations of Einstein equations which could mimic dark energy. In this work we investigate
observational constraints on a modified Friedmann equation obtained from the generalized Lagrangian
L / Rn minimally coupled with matter via the Palatini first-order formalism. We mainly concentrate on
such restrictions of model parameters which can be derived from distant supernovae and baryon
oscillation tests. We obtain confidence levels for two parameters (n, �m;0) and find, from combined
analysis, that the preferred value of �m;0 equals 0.3. For deeper statistical analysis and for comparison of
our model with predictions of the �CDM concordance model, one applies Akaike and Bayesian
information criteria of model selection. Finally, we conclude that the Friedmann-Robertson-Walker
model merged with a first-order nonlinear gravity survives SNIa and baryon oscillation tests.
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I. INTRODUCTION

The recent observations of type Ia distant supernovae
indicate that our Universe is currently accelerating [1,2].
There are different proposals for explaining this phenome-
non. Some of them are based on assumptions of standard
cosmological models, which utilize the Friedmann-
Robertson-Walker (FRW) metric. Thus possible explana-
tions include the cosmological constant � [3,4], a decaying
vacuum energy density [5], an evolving scalar field or
quintessence models [6], a phantom energy (expressed in
terms of the barotropic equation of state violating the weak
energy condition) [7,8], dark energy in the form of
Chaplygin gas [9], etc. All these conceptions propose
some kind of new matter of unknown origin which violates
the strong energy condition. The Universe is currently
accelerating due to the presence of these dark energy
components.

On the other hand, there are alternative explanations, in
which instead of dark energy some modifications of
Friedmann’s equation are proposed at the very beginning.
In these approaches some effects arising from new physics
like brane cosmologies, quantum effects, anisotropy ef-
fects, etc. can mimic dark energy by a modification of
Friedmann’s equation. Freese and Lewis [10] have shown
that contributions of type �n to Friedmann’s equation
3H2 � �eff , where � is the energy density and n a constant,
may describe such situations phenomenologically. These
models (by their authors called the Cardassian models)

give rise to acceleration, although the Universe is flat and
contains the usual matter and radiation without any dark
energy components. In the authors’ opinion [10], what is
still lacking is a fundamental theory (like general relativ-
ity) from which these models can be derived after postulat-
ing Robertson Walker (R-W) symmetry. We argue that a
possible candidate for such a fundamental theory can be
provided by nonlinear gravity theories (for a recent review
see e.g. [11] and references therein) and, particularly, the
so-called f�R� theories [12]. It is worth pointing out that if
one imposes the energy-momentum conservation condi-
tion then matter density is parametrized by the scale factor
(in the case of R-W symmetry), and the Cardassian term �n

in the Friedmann equation will be reproduced.
There are different theoretical attempts to modify grav-

ity in order to achieve an accelerating cosmic expansion at
the present epoch. Already in the paper by Carroll et al.
[13], one can find interesting modifications of the Einstein-
Hilbert action with Lagrangian density L / R�
f�R;P;Q�. Those authors have shown that in the generic
case cosmological models admit, at late time, a de Sitter
solution, which is unfortunately unstable. Moreover,
Carroll et al. have demonstrated the existence of an inter-
esting set of attractors, which seem to be important in the
context of the dark energy problem.

The main goal of the present paper is to set up observa-
tional constraints on parameters of cosmological models
inspired by nonlinear gravity. The possibility of explaining
cosmic acceleration in terms of nonlinear generalization of
the Einstein equation has been previously addressed in
[14,15]. However, these authors have not confronted their
models with observational data. This problem has been
tackled in [16], where nonlinear power law Lagrangians
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were compared with SNIa data and an x-ray gas mass
fraction as well (see also [17] for a more general class of
Lagrangians). Here, we use samples of supernovae Ia
[18,19] together with the baryon oscillation test [20] for
stringent and deeper constraints on model parameters. We
check to what extent the predictions of our model are
consistent with the current observational data.

Severe constraints on the particular modifications of
gravity considered in this paper have already been pro-
posed [12,16,17,21]. On the other hand, in the article by
Clifton and Barrow [22], strong constraints coming from
nucleosynthesis of light elements have been found within a
higher-order gravity. Therefore, it is possible that our
model (although first order), which fits SNIa data well,
can be ruled out by nucleosynthesis arguments.

Assuming FRW dynamics in which dark energy is
present, the basic equation determining a cosmic evolution
has the form of a generalized Friedmann equation

 H2 �
�eff

3
�
k

a2 ; (1)

where �eff�a� stands for the effective energy density of
several ‘‘fluids,’’ parametrized by the scale factor a, while
k � �1, 0 denotes the spatial curvature index. One can
reformulate (1) in terms of density parameters �i as

 

H2

H2
0

� �eff�z� ��k;0�1� z�
2; (2)

where a
a0
� 1

1�z , �eff�z� � �m;0�1� z�3 ��X;0f�z�, and
�m;0 is the density parameter for the (baryonic and dark)
matter, scaling like a�3, while f�z� describes the dark
energy X. For a � a0 (the present value of the scale factor
which we from here on normalize to unity), one obtains the
constraint �eff;0 ��k;0 � 1.

We can certainly assume that the energy density (i �
m;X) satisfies the conservation condition

 _� i � �3H��i � pi� (3)

for each component of the fluid, so that �eff � ��i. Then
from (2) one gets the constraint relation �i�i;0 ��k;0 � 1
for the present values (z � 0) of the density parameters.

All approaches mentioned above lead toward a descrip-
tion of dark energy in the framework of standard FRW
cosmology. It will be demonstrated, in the next section,
that all cosmological models of the first-order nonlinear
gravity which satisfy R-W symmetry can also be reduced
to the familiar form (2). Therefore, the effects of nonlinear
gravity can mimic dynamical effects of dark energy.

II. FRW COSMOLOGY AND FIRST-ORDER
NONLINEAR GRAVITY

For the cosmological applications, one chooses the
Friedmann-Robertson-Walker metric, which (in spherical
coordinates) takes the standard form

 g � �dt2 � a2�t�
�

1

1� kr2 dr
2 � r2�d�2 � sin2���d’2�

�
:

(4)

As before, a�t� denotes the scale factor and k the spatial
curvature (k � 0; 1;�1). Another main ingredient of all
cosmological models is a perfect fluid stress-energy tensor,
expressed by

 T�� �

� 0 0 0

0 pa2�t�
1�kr2 0 0

0 0 pa2�t�r2 0
0 0 0 pa2�t�r2sin2���

0
BBB@

1
CCCA: (5)

One requires the standard relations between the pressure p,
the matter density �, the equation of state parameter w, and
the expansion factor a�t�, namely

 p � w�; � � �a�3�1�w�; � � const: (6)

Let us consider the action functional

 A � Agrav � Amat �
Z
�
���������
detg

p
f�R� � 2�Lmat����d4x

(7)

within the first-order Palatini formalism [15]. In fact, from
now on we shall assume the simplest power law gravita-
tional Lagrangian of the form

 f�R�
���
g
p
�

�
2� n

Rn
���
g
p

�� � 0; n 2 R; n � 0; 2�;

where one fixes the constant � to be positive (it has the
same dimension as R1�n). We want to point out that our
model is singular for n � 2. As shown in [15], such models
are exactly solvable for the matter stress-energy tensor
representing a single perfect fluid of the kind w [cf. (6)].
Their confrontation with experimental data has been per-
formed, for a dust filled universe, in [16]. Here we attempt
to continue the analysis with newly available Astier SNIa
samples and new baryon oscillation tests. These allow us to
strengthen the admissible constraints on model parameters.
Moreover, we extend our research to a matter stress-energy
tensor containing two components, both with p � w�: a
perfect fluid w � const � 1

3 and a radiation w � 1
3 . It turns

out that the presence of the radiation term crucially
changes the dynamics of our model at the early stage of
its evolution. In addition, as will be demonstrated in
Sec. III, although one cannot obtain better constraints
from SNIa data, the combined analysis of SNIa and baryon
oscillations offers a new possibility for a deeper determi-
nation of model parameters.

Following a method developed in [15], the Hubble pa-
rameter for our model can be calculated as
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H2 �
2n

3�3w� 1��3w�n� 1� � �n� 3��

�
��1� 3w��w

�

�
1=n

	 a��3�1�w�=n� �
4n�2� n���rad

3��3w�n� 1� � �n� 3��2

	

�
��1� 3w��w

�

�
�1�n�=n

a��n�3�3w�1�n��=n

�
k

a2

�
2n

3w�n� 1� � �n� 3�

�
2
: (8)

(Since radiation is already included in (8), one has to
assume w � 1

3 .)
It is worth pointing out that the deceleration parameter,

in the case k � �rad � 0, equals (see [15])

 q�n; w� �
3�1� w� � 2n

2n
� �1�

3�1� w�
2n

: (9)

Thus, the effective equation of state parameter weff is

 weff � �1�
1� w
n

: (10)

Let us observe that, in the case �rad � 0, w< 1
3 , the same

values of q�n; w� and weff can also be achieved as asymp-
totic values a � 1. In the early universe, when the scale
factor goes to the initial singularity, the radiation term [in
(8) scaling like a��1��3=n��] will dominate over the dust
term (scaling like a��3=n�). More precisely, if n < 0 or n >
2, then the negative radiation term cannot dominate over
the matter, so that instead of the initial singularity we
obtain a bounce. On the other hand, if a goes to infinity,
the radiation becomes negligible compared to the matter.

In our further analysis we restrict ourselves to the case
w � k � 0 i.e., more precisely, to the spatially flat uni-
verse filled with dust and radiation. Thus (8) (remarking
once more that all �’s are positive constants) becomes
 

H2 �
2n

3�3� n�

�
�dust�
�

�
1=n
a��3=n�

�
4n�2� n���rad

3��n� 3�2

�
�dust�
�

�
�1�n�=n

a���n�3�=n�

�
4kn2

�n� 3�2
a�2: (11)

One should immediately note that this expression, repre-
senting the squared Hubble parameter, reproduces in the
case n � � � 1—as expected—the standard Friedmann
equation. We would like to emphasize also that (11) be-
comes singular at n � 3.

It is convenient to rewrite relation (11) in such a way that
all coefficients are dimensionless (density parameters).
Then, the effects of the matter scaling like a�3�1�w�, and
the radiation scaling like a�4, can be separated from the
effects of the nonlinear generalization of Einstein gravity
(n � 1):

 �
H
H0

�
2
� �m;0�1� z�3

2n
�3� n�

�nonl;0�1� z��3�1�n�=n�

��r;0�1� z�4
4n�2� n�

�n� 3�2
�nonl;0�1� z��3�1�n�=n�:

(12)

Here, �m;0 � �dust�=3H2
0 , �r;0 � �rad�=3H2

0 , �nonl;0 �

��dust�=����1�n�=n�, whileH0 denotes the present-day value
of the Hubble function. Let us observe that �nonl;0 can also
be determined from the constraint H�z � 0� � H0, which
easily reduces to

 �nonl;0 �

�
2n

�3� n�
�m;0 �

4n�2� n�

�n� 3�2
�r;0

�
�1
:

The relation (12) has the form of Friedmann’s first
integral. Therefore, the dynamics of the model can be
naturally rewritten in terms of a 2D dynamical system of
Newtonian type. Its Hamiltonian is

 H 
 1
2 _a2 � V�a� � 0; (13)

while the corresponding equations of motion are

 _a � y; _y � �
@V
@a

: (14)

The overdot differentiates now with respect to the rescaled
time variable �, so that dt � jH0jd�, while V�a� is a
potential function for the scale factor a expressed in units
of its present value a0 � 1. IfH2 � f�a�, then the potential
function is given by the general formula

 V�a� � �1
2f�a�a

2: (15)

For example, the potential function for our model is
written as (a0 � 1)

 V�a� � �
1

2

�
2n

3� n
�m;0a

�1

�
4n�2� n�

�n� 3�2
�r;0a�2

�
�nonl;0a�3=n��1�n�: (16)

Recently, in Carloni et al. [23], the cosmological dy-
namics of Rn gravity has been treated in a different phase
space with the use of qualitative methods for dynamical
systems.

The phase portraits for the �CDM model versus our
model with fitted values of n, �m;0 parameters (see the next
section) are illustrated in Figs. 1 and 2. Both models are
topologically inequivalent: the phase portrait of �CDM
has a structurally stable saddle critical point, while with
nonlinear gravity one obtains a center. As is well known,
the critical point of a center type is structurally unstable
and all trajectories around this point represent the models,
which oscillate without initial and final singularities.

It is interesting that (12) after a time reparametrization
following the rule d� � �1� z��3�1�n�=2�d� is equivalent to
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the standard cosmological model with matter and radia-
tion, with rescaled values of the corresponding density
parameters �m;0 and �r;0.

The geometry of the potential function offers the possi-
bility to investigate the remaining models. On can simply
establish some general relation between the geometry of
the potential function and critical points of the Newtonian
systems. In any case, the critical points lie on the a axis, i.e.
they represent the static solution y0 � 0, a � a0 so that
�@V@a�a0

� 0. If �a0; 0� is a strict local maximum of V�a�, it is
of the saddle type. If �a0; 0� is a strict local minimum of the
analytical function V�a�, it is a center. If �a0; 0� is a
horizontal inflection point of the V�a�, it is a cusp.

From the fitting procedure, we obtain n > 2, so the
second term in the potential function is negative (in con-
trast to the first term which is positive). Because the
negative radiation term in (16) cannot dominate the first
one (V � 0), there is the characteristic bounce behavior
rather than the initial singularity in the �CDM model.
Moreover, during the bouncing phase the universe is accel-
erating, while for late times it becomes matter dominated
and decelerates.

III. DISTANT SUPERNOVAE AS A
COSMOLOGICAL TEST

Type Ia distant supernova surveys suggest that the
present Universe is accelerating [1,2]. Every year new
SNIa enlarge the available data by more distant objects
and lower systematics errors. Riess et al. [18] have com-
piled samples which become the standard data sets of
SNIa. One of them, the restricted ‘‘Gold’’ sample of 157
SNIa, is used in our analysis. Recently, Astier et al. [19]
have compiled a new sample of supernovae, based on 71
high redshifted SNIa discovered during the first year of the
Supernovae Legacy Survey. This latest sample of 115
supernovae is used as our basic sample.

For distant SNIa one can directly observe their apparent
magnitude m and redshift z. Because the absolute magni-
tude M is related to the absolute luminosity L, the relation
between luminosity distance dL, the observed magnitude
m, and the absolute magnitude M has the following form:

 m�M � 5log10dL � 25: (17)

It is convenient to use the dimensionless parameter DL,

 DL � H0dL; (18)

instead of dL. Then (17) can be replaced by

 � 
 m�M � 5log10DL �M; (19)

where

 M � �5log10H0 � 25: (20)

We know the absolute magnitude of SNIa from its light
curve. The luminosity distance of supernovae is a given
function of the redshift:

FIG. 2 (color online). The phase portrait for nonlinear gravity
with L / Rn, n � 2:6 (from estimation). There is a single
critical point on the a axis—a center; a � acrit �

8n�n�2�
�n�3�2

	

��r;0=�m;0�. The trajectories of the system lie in the physical
region fa: a > acrit=2g and represent bouncing evolution. In this
scenario, instead of the big-bang singularity of the �CDM
model, one has a bounce a � amin, �a > 0. It lies in the neighbor-
hood of the minimum of the potential function. During the
bounce phase, the universe is still accelerating. Note that, if
radiation effects vanish, there is no static critical point on the a
axis (formally acrit � 0 is allowed for n > 3).

FIG. 1 (color online). The phase portrait for the �CDM model.
There is a single critical saddle point on the a axis. It represents
the static Einstein universe. The trajectory of the flat k � 0
model divides all remaining ones into closed (inside) and open
(outside) models.
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 dL�z� � �1� z�
c
H0

1������������
j�k;0j

q F

�
H0

������������
j�k;0j

q Z z

0

dz0

H�z0�

�
;

(21)

where �k;0 � �
k
H2

0
and

 F �x� � sinh�x� for k < 0; F �x� � x for k � 0;

F �x� � sin�x� for k > 0:

Substituting (21) back into Eqs. (17) and (19) provides
us with an effective tool (the Hubble diagram) to test cos-
mological models and to constrain their parameters. As-
suming that supernovae measurements come with uncorre-
lated Gaussian errors, one can determine the likelihood
function L from the chi-square statistic L / exp��	2=2�,
where

 	2 �
X
i

��theor
i ��obs

i �
2


2
i

: (23)

The probability density function (PDF) of cosmological
parameters [1] can be derived from Bayes’ theorem.
Therefore, one can estimate model parameters by using a
minimization procedure. It is based on the likelihood func-
tion as well as on the best-fit method minimizing 	2.

For statistical analysis we have restricted the parameter
�m;0 to the interval �0; 1� and n to ��10:0; 10:0� (except
n � 0 and additionally n � 3 for w � 0). Moreover, be-
cause of the singularity at n � 3, w � 0 [see Eq. (12)] we
have separated the cases n > 3 and n < 3 for w � 0 in our
analysis. Please note that �nonl;0 is obtained from the
constraint H�z � 0� � H0.

In Fig. 3 we present residual plots of redshift-magnitude
relations (the Hubble diagram) between the Einstein–de-
Sitter model (represented by the zero line) and our best-
fitted model (upper curve) and �CDM model (middle
curve). One can observe systematic deviations between

these models at higher redshifts. The nonlinear gravity
model predicts that high redshifted supernovae should be
fainter than those predicted by the �CDM model.

The results of two fitting procedures performed on Riess
and Astier samples with different prior assumptions for n
are presented in Tables I and II. In Table I the values of
model parameters obtained from the minimum of 	2 are
given, whereas in Table II the results from marginalized

FIG. 3. Residuals (in mag) between the Einstein–de-Sitter model (zero line), the flat �CDM model (middle curve), and the
nonlinear gravity model (upper curve). Results are obtained with the Astier (left panel) and the Riess (right panel) samples.

TABLE II. The flat nonlinear gravity cosmological model
(w � 0). The values of the parameters obtained from marginal
PDFs calculated on the Astier versus the Gold Riess samples are
shown. Because of the singularity at n � 3, we separately
analyze the cases n > 3 and n < 3.

Sample �m;0 �nonl;0 n M

Gold 0.01 0.26 2.11 15:955�0:03
�0:03

n < 3 1.00 0.26 2.11 15:955�0:03
�0:03

n > 3 0.01 �0:01 3.001 15:955�0:03
�0:03

Astier 0.01 0.09 2.56 15:785�0:03
�0:03

n < 3 1.00 0.09 2.56 15:785�0:03
�0:03

n > 3 0.01 �0:01 3.01 15:785�0:03
�0:03

TABLE I. The flat nonlinear gravity model with w � 0.
Results of statistical analysis performed on the Astier versus
the Gold Riess samples of SNIa obtained from 	2 best fit are
shown. We separately analyzed the cases n > 3 and n < 3.

Sample �m;0 �nonl;0 n M 	2

Gold 0.35 <0:01 3.001 15.975 180.7
n < 3 0.89 0.23 2.13 15.975 181.5
n > 3 0.35 <0:01 3.001 15.975 180.7

Astier 0.01 �1:47 3.11 15.785 108.7
n < 3 0.98 0.08 2.59 15.785 108.9
n > 3 0.01 �1:47 3.11 15.785 108.7
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probability density functions are displayed. Please note
that we obtained different values of M from the Riess
versus Astier samples. It is because Astier et al. assume the
absolute magnitude M � �19:31� 0:03� 5log10h70

[19]. For comparison we present (Table III) results of
statistical analysis for the �CDM concordance model.

The best fit (minimum 	2) gives n ’ 2:6 with the Astier
et al. sample versus n ’ 2:1 with the Gold sample. In Fig. 4
we present the PDF obtained with the Astier sample for the
parameters �m;0 and n for the nonlinear gravity model (the
case n < 3 marginalized over the rest of the parameters).
Please note that from Fig. 4 we obtain a very weak depen-
dence of the PDF on the matter density parameter if only
�m;0 � 0:05.

In Fig. 5, confidence levels on the plane ��m;0; n�, for the
nonlinear gravity model, for the case n < 3 marginalized
over M are presented.

Recently, Eisenstein et al. have analyzed baryon oscil-
lation peaks detected in the Sloan Digital Sky Survey
(SDSS) Luminosity Red Galaxies [20]. They found

 A 
�

����������
�m;0

p
E�z1�

1=3

�
1

z1

������������
j�k;0j

q F

� ������������
j�k;0j

q Z z1

0

dz
E�z�

��
2=3
;

(24)

so that E�z� 
 H�z�=H0 and z1 � 0:35 yield A � 0:469�
0:017. The quoted uncertainty corresponds to 1 standard
deviation, where a Gaussian probability distribution has
been assumed. These constraints could also be used for
fitting cosmological parameters [19,24]. We obtain from
this test the values of the model parameters �m;0 � 0:28,
�nonl;0 � 0:33, and n � 2:53 for a best fit. In Fig. 6 we
show the region allowed by the baryon oscillation test on
the plane ��m;0; n� for the nonlinear gravity model (for the
case n < 3). In Fig. 7 we present combined confidence
levels, obtained from the analysis [24] of both data sets. We
find that the model favors �m;0 ’ 0:3 and n ’ 2:6.

In modern observational cosmology, one encounters the
so-called degeneracy problem: many models with dramati-
cally different scenarios (big bang or bounce, big rip or de
Sitter phase) agree with the present-day observational data.
Information criteria for model selection [25] can be used,
in some subclass of dark energy models, in order to over-
come this degeneracy [26,27]. Among these, Akaike [28]
and Bayesian information criteria (AIC and BIC)[29] are
the most popular. From these criteria one can determine
several essential model parameters, providing the preferred
fit to the data [25].

The AIC [28] is defined by

 AIC � �2 lnL� 2d; (25)

where L is the maximum likelihood and d the number of
model parameters. The best model, with a parameter set
providing the preferred fit to the data, is that which mini-
mizes the AIC.

The BIC introduced by Schwarz [29] is defined as

 BIC � �2 lnL� d lnN; (26)

TABLE III. Results of statistical analysis of the �CDM flat
model performed on the Astier versus the Gold Riess samples of
SNIa as a minimum 	2 best fit.

Sample �m;0 ��;0 M 	2

Gold 0.31 0.69 15.955 175.9
Astier 0.26 0.74 15.775 107.8

FIG. 4. PDFs obtained with the Astier sample for the parameters �m;0 and n, marginalized over the rest of the parameters. The
nonlinear gravity model �w � 0; n < 3�.
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where N is the number of data points used in the fit. While
AIC tends to favor models with a large number of parame-
ters, the BIC penalizes them more strongly, so the latter
provides a useful approximation to the full evidence in the
case of no prior on the set of model parameters [30].

The effectiveness of using these criteria in the current
cosmological applications has recently been demonstrated
by Liddle [25]. Analyzing Wilkinson Microwave
Anisotropy Probe cosmic microwave background radiation

(WMAP CMBR) satellite data [31], he found the number
of essential cosmological parameters to be five. Moreover,
he came to an important conclusion that spatially flat
models are statistically preferred to closed models, as it
was indicated by the WMAP CMBR analysis (the models’
best-fit value is �tot;0 
 �i�i;0 � 1:02� 0:02 at 1

level).

In the paper by Parkinson et al. [30], the usefulness of
Bayesian model selection criteria in the context of testing
for double inflation with WMAP was also demonstrated.
These criteria were also used recently by us to show that
models with the big-bang scenario are rather preferred over
the models with the bouncing scenario [32].

Please note that both information criteria have no abso-
lute sense and only the relative values between different
models are physically interesting. For the BIC a difference
of 2 is treated as positive evidence (6 as strong evidence)
against the model with a larger value of BIC [33,34].
Therefore one can order all models, which belong to the
ensemble of dark energy models, following the AIC and
BIC values. If we do not find any positive evidence from
information criteria, the models are treated as identical,

FIG. 7. The flat nonlinear gravity model �w � 0; n < 3�.
Common confidence levels on the plane ��m;0; n� are obtained
from the SNIa Astier sample and baryon oscillations.

TABLE IV. Results of AIC and BIC performed on the Astier
versus the Gold Riess samples of SNIa.

Sample AIC BIC

�CDM Gold 179.9 186.0
�CDM Astier 111.8 117.3
Nonlinear grav. Gold 186.6 195.8
Nonlinear grav. Astier 114.7 122.9

FIG. 6. The flat nonlinear gravity model �w � 0; n < 3�.
Confidence levels on the ��m;0; n� plane are obtained from
baryon oscillation peaks.

FIG. 5. The flat nonlinear gravity model �w � 0; n < 3�.
Confidence levels on the ��m;0; n� plane, marginalized over
M, are obtained from the SNIa Astier sample.
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while eventually additional parameters are treated as in-
significant. Therefore, the information criteria offer a pos-
sibility to introduce a relation of weak ordering among
considered models.

For comparing the �CDM and the nonlinear gravity
models the results of AIC and BIC are presented in
Tables IV. Note that for both samples we obtain with
AIC and BIC, for the �CDM model, smaller values than
for nonlinear gravity. We use a Bayesian framework to
compare the cosmological models, because it automati-
cally penalizes models with more parameters to fit the
data. Based on these simple information criteria, we find
that the SNIa data still favor the �CDM model, because
under a similar quality of the fit for both models, the
�CDM contains fewer parameters.

It is interesting that both models give different predic-
tions for the brightness of the distant supernovae (see
Fig. 3). The model of modified nonlinear gravity predicts
that very high redshift supernovae should be fainter than
predicted by �CDM. So, we can expect future SNIa data to
allow us to finally discriminate between these two models.

IV. CONCLUSION

The main subject of our paper has been to confront the
simplest class of nonlinear gravity models versus the ob-
servation of distant type Ia supernovae and the recent
detection of the baryon acoustic peak in the Sloan Digital
Sky Survey data. We find strong constraints on two inde-
pendent model parameters (�m;0; n). If we assume n � 1,
then we obtain the standard Einstein–de-Sitter model filled
by both matter and radiation. We estimate model parame-
ters using a standard minimization procedure based on the
likelihood function as well as the best-fit method. For
deeper statistical analysis, we have used AIC and BIC of
model comparison and selection. Our general conclusion is
that nonlinear gravity fits well (both SNIa and baryon
oscillation data). In particular, we make the following
conclusions:

(1) Analysis of SNIa Astier data shows that values of
the 	2 statistic are comparable for both �CDM and
the best-fitted nonlinear gravity model.

(2) The nonlinear gravity models with n < 2 can be
excluded by combined analysis of both SNIa data
and the baryon oscillation peak detected in the
SDSS Luminous Red Galaxy Survey of Eisenstein
et al. [20] at the 2
 confidence level.

(3) From SNIa data we obtain a weak dependence of the
quality of fits on the value of the density parameter
for matter (�m;0). However, the combined analysis
allowed only the value of �m;0 well tuned to its
canonical value �m;0 � 0:3. This value, of course,
is in good agreement with present extragalactic data
[35].

(4) We use the Akaike and Bayesian information crite-
ria for comparison and discrimination between the
analyzed models. We find that these criteria still
favor the �CDM model over the nonlinear gravity
model, because (with similar quality of the fit for
both models) the �CDM model contains one less
parameter.

(5) The Hubble diagram implies that very high red-
shifted supernovae (z � 1:5) should be fainter in
the nonlinear gravity model than those predicted
by �CDM. So, future SNIa data can allow us to
finally discriminate between these two models.

(6) The standard general relativity models with n � 1
(without a cosmological constant) can be excluded
by SNIa data at the 17
 level (as the Einstein–de-
Sitter model).

(7) The nonlinear cosmology can therefore be treated as
a serious alternative to cosmology with dark energy
of unknown nature.
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