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We calculate the thermal conductivity of electrons produced by electron-electron Coulomb scattering in
a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The
Landau damping strongly reduces this conductivity in the domain of ultrarelativistic electrons at
temperatures below the electron plasma temperature. In the inner crust of a neutron star at temperatures
T & 107 K this thermal conductivity completely dominates over the electron conductivity due to electron-
ion (electron-phonon) scattering and becomes competitive with the the electron conductivity due to
scattering of electrons by impurity ions.
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I. INTRODUCTION

The electron thermal conductivity is an important ki-
netic property of plasmas in experimental devices, in met-
als and semiconductors and in astrophysical objects. It has
been studied for a long time and described in textbooks
(see, e.g., Ziman [1], Lifshitz and Pitaevski�� [2]). We will
show that some aspects of this problem have to be revised.

Specifically, we will consider the thermal conductivity
of degenerate electrons. It is important in metals, semi-
conductors as well as in degenerate cores of evolved stars
(giants, supergiants and, most importantly, white dwarfs),
and in envelopes of neutron stars. It is needed to study
cooling of white dwarfs (e.g., Prada Moroni and Straniero
[3]) and nuclear explosions of massive white dwarfs as
type Ia supernovae (e.g., Baraffe, Heger and Woosley [4]).
In neutron star envelopes it is required for many reasons—
for simulating cooling of isolated neutron stars (see, e.g.,
Lattimer et al. [5], Gnedin, Yakovlev and Potekhin [6],
Page, Geppert and Weber [7]); for studying heat propaga-
tion and thermal relaxation in a neutron star envelope in
response to the various processes of crustal energy release.
In particular, these processes include pulsar glitches (e.g.,
Larson and Link [8], and references therein), deep crustal
heating of accreting neutron stars in soft X-ray transients
(e.g., Ushomirsky and Rutledge [9]), superbursts as power-
ful nuclear explosions at the base of the outer crust of an
accreting neutron star (e.g., Strohmayer and Bildsten [10];
Page and Cumming [11]).

It is well known that the electrons give the main con-
tribution into the thermal conductivity of strongly degen-
erate matter. Their thermal conductivity can be written as

 �e �
�2Tk2

Bne
3m�e�e

; �e � �ei � �ee: (1)

Here, T is the temperature, kB is the Boltzmann constant,
ne is the number density of electrons, m�e � �=c2,� is the
electron chemical potential (including the rest-mass term),
and �e is the total effective electron collision frequency.

The latter frequency is the sum of the partial collision
frequencies �ei and �ee. In �ei we include all collisions
of electrons mediated by their interactions with ions (direct
Coulomb scattering of electrons by ions in an ion gas or
liquid; electron-phonon scattering in an ion crystal and
electron scattering by impurity ions at low temperatures).
Evidently, Eq. (1) can be rewritten as

 

1

�e
�

1

�ei
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�ee
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�2Tk2
Bne

3m�e�ei
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�ee �
�2Tk2

Bne
3m�e�ee
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(2)

where the partial conductivities �ei and �ee are determined,
respectively, by the ei and ee collisions.

It is widely believed that the dominant contribution into
�e comes from the ei collisions. The associated partial
conductivity �ei has been studied in a number of papers
(e.g., Potekhin et al. [12], Gnedin et al. [6] and references
therein). The partial thermal conductivity �ee owing to the
ee collisions was calculated by Lampe [13], Flowers and
Itoh [14], Urpin and Yakovlev [15], and Timmes [16].
These calculations were summarized by Potekhin et al.
[12]. The main result was that the ee collisions are mainly
negligible, except for a hot low-density plasma of light
elements (from hydrogen to carbon) with the temperature a
few times lower than the electron degeneracy temperature
(in that case the ee collisions did affect �e but never
dominated as long as the electrons were degenerate; see
Lampe [13]; Urpin and Yakovlev [15]).

However, all these calculations have neglected an im-
portant effect of the Landau damping of the ee interaction
owing to the exchange of transverse plasmons. In the
context of transport properties of dense matter this effect
was studied by Heiselberg and Pethick [17] for degenerate
quark plasmas. Similar effects have recently been analyzed
by Jaikumar, Gale and Page [18] for neutrino bremsstrah-
lung radiation in the ee collisions. Here we reconsider �ee
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including the effects of the Landau damping and show that
�ee is actually much more important than thought before.

II. FORMALISM

We analyze the thermal conductivity �ee of strongly
degenerate electrons under the conditions that the electrons
constitute an almost ideal and uniform Fermi gas and
collide between themselves and with plasma ions.
Although the results will be more important for ultrarela-
tivistic electrons, our consideration will be general and
valid for both, relativistic and nonrelativistic, cases. We
will use the same standard variational approach with the
simplest trial nonequilibrium electron distribution function
as Flowers and Itoh [14]. The calculations are similar to
those performed by Heiselberg and Pethick [17] for the
thermal conductivity of quarks; thus we omit the details.

Following Heiselberg and Pethick [17] we have
 

�ee �
3@3

8vep2
e�kBT�3

Z dp1dp2dp 01dp 02
�2�@�12

�W�12j1020�f1f2�1� f
0
1��1� f

0
2�

� �v1�"1 ��� � v2�"2 ��� � v01�"
0
1 ���

� v02�"
0
2 ���	

2; (3)

where pe � @�3�2ne�1=3 and ve � pe=m�e are, respec-
tively, the electron Fermi momentum and Fermi velocity;
the integration is over all allowable ee collisions p1p2 !
p 01p

0
2; p is an electron momentum, v its velocity, " its

energy; primes refer to electrons after a collision event; f is
the electron Fermi-Dirac distribution, andW�12j1020� is the
differential transition probability
 

W�12j1020� � 4�2�@�6��"01 � "
0
2 � "1 � "2�

� ��p 01 � p
0
2 � p1 � p2�jMfij

2; (4)

jMfij
2 being the squared matrix element summed over

electron spin states. The symmetry factors required to
avoid double counting of the same initial and final electron
states are also included into jMfij

2.
The multidimensional integral (3) is simplified further

using the standard angular-energy decomposition (separat-
ing integrations over particle energies and orientations of
their momenta; e.g., Shapiro and Teukolsky [19]). Because
the electrons are strongly degenerate, they can participate
in thermal conduction only if their energies are close to the
Fermi level. Accordingly, their momenta can be placed at
the Fermi surface in angular integrals whenever possible.
Characteristic energy transfers @! 
 "01 � "1 in collisions
of strongly degenerate particles are small, @! & kBT.
Momentum transfers @q 
 p 01 � p1 are also small, @q�
pe, owing to a long-range nature of the Coulomb interac-
tion. We will use this small-momentum-transfer approxi-
mation throughout the paper. Typical values of @q are

determined by plasma screening of the Coulomb
interaction.

The plasma screening was thoroughly analyzed by
Heiselberg and Pethick [17]. These authors studied
quark-quark interaction through one-gluon exchange in
the weak-coupling limit which is very similar to the
Coulomb interaction in an ordinary plasma. The matrix
element for an ee scattering event is Mfi � M�1�fi �M

�2�
fi ,

where M�1�fi and M�2�fi correspond to the channels 1! 10;
2! 20 and 1! 20; 2! 10, respectively. For instance,

 M�1�fi /
J�0�101J

�0�
202

q2 ��l
�

Jt101 � Jt202
q2 �!2=c2 ��t

; (5)

where J���e0e � �J
�0�
e0e;Je0e� � c� �ue0��ue� is the transition 4-

current (� � 0, 1, 2, 3), Jte0e is the component of Je0e
transverse to q, �� is a Dirac matrix, ue is a normalized
electron bispinor ( �ueue � 2mec2), and �ue is a Dirac con-
jugate (see, e.g., Berestetski��, Lifshitz and Pitaevskii [20]).
The longitudinal component of Je0e (parallel to q) is related
to the timelike (charge density) component J�0�e0e via current
continuity equation; it is excluded from Eq. (5), see
Ref. [17].

The polarization functions �l and �t in Eq. (5) depend
on ! and q and describe the plasma screening of the ee
interaction through the exchange of longitudinal and trans-
verse plasmons, respectively. In the classical limit (@q�
pe and @!� vepe), taking into account the polarization
produced by degenerate electrons in the first-order
random phase approximation, one has (e.g., Alexandrov,
Bogdankevich and Rukhadze [21])

 �l � q2
0�l�x�; �t � �q0ve=c�2�t�x�; (6)

where x � !=�qve�,

 �l � 1�
x
2

log
�
x� 1

x� 1

�
;

�t �
x2

2
�
x�1� x2�

4
log

�
x� 1

x� 1

�
;

(7)

with

 @
2q2

0 � 4e2p2
e=��@ve�; (8)

q0 being the ordinary Thomas-Fermi electron screening
wavenumber. Particularly, in the limit of !! 0 and
!=q� ve we have

 �l � 1; �t � i�!=�4qve�: (9)

According to Eqs. (5) and (6), the plasma screening of
the ee current interaction via the exchange of transverse
plasmons (the second term in Eq. (5)) is different from the
screening of the charge interaction via the exchange of
longitudinal plasmons (the first term). The difference re-
sults from the difference of the polarization functions �t
and �l and has been neglected in all previous calculations
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of the electron thermal conductivity (where one has com-
monly set �t � �l � q2

0, and q2 � �!=c�2 ��t � q2 �
q2

0). Naturally, this difference is expected to be small for
nonrelativistic electrons (ve � c), where the transverse
current interaction term is small in the matrix element.
We will see that the difference becomes important for
relativistic electrons (ve 
 c).

Let us recall that the functions �l and �t have real parts
which describe plasmon refraction, and imaginary parts
which describe plasmon absorption. In the ee scattering we
deal with low-energy virtual plasmons, @! & kBT. As seen
from Eq. (9), longitudinal plasmons undergo refraction
which results in the Debye-type (Thomas-Fermi) screening
of the Coulomb interaction, with the screening momentum
(inverse screening length) q0. As for transverse plasmons,
they mainly undergo collisionless absorption (that is the
Landau damping) by degenerate electrons. Their effect is
drastically different from the effect of longitudinal
plasmons.

The calculations similar to those in Ref. [17] lead to the
following expressions for the ee collision frequency and
thermal conductivity,

 �ee �
36ne�

2
@

2cI�u; 	�
�m�ekBT

; �ee �
�3k3

BT
2

108�2
@

2cI�u; 	�
:

(10)

Here, � � e2=@c is the fine structure constant, and
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dw
wew
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�
�1� cos
�

�������� 1

1� �x	=w�2�l�x�
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u2�1� x2� cos


1� u2x2 � u2�x	=w�2�t�x�

��������
2

(11)

is a dimensionless function of two variables,

 u 
 ve=c; 	 � @veq0=�kBT� �
���
3
p
Tpe=T; (12)

Tpe � @!pe=kB being the electron plasma temperature

determined by the electron plasma frequency !pe �������������������������
4�e2ne=m

�
e

p
. Both components of the matrix element,

M�1�fi and M�2�fi , give equal contributions into Eq. (11), and
the interference term is negligibly small because of the
small-momentum-transfer approximation. Furthermore,
w � @!=kBT; 
 is the angle between p1t and p2t, the
components of p1 and p2 transverse to q; and the integra-
tion over
 is trivial. Eqs. (10) and (11) are natural general-
izations of Eqs. (58) and (59) of Heiselberg and Pethick
[17] to the case of a degenerate gas of particles of arbitrary
degree of relativity (in our case v=cmay be arbitrary while
in Ref. [17] v � c). The difference of numerical factors in
the expressions for � in our Eq. (10) and in Eq. (58) of
Ref. [17] (108 versus 24) stems from the difference of
physical systems under consideration (an electron gas

versus a gas of light quarks interacting through gluon
exchange).

III. FOUR REGIMES OF ELECTRON-ELECTRON
COLLISIONS

Thus the collision frequency and the thermal conductiv-
ity (10) are solely determined by the electron number
density and the temperature. Their calculation reduces to
the calculation of the function I�u; 	� from Eq. (11).
Clearly, the function can be written as

 I � Il � It � Ilt; (13)

where Il is the contribution from the ee interaction via the
exchange of longitudinal plasmons (the first term in the
squared modulus); It comes from the interaction via the
exchange of transverse plasmons (the second term); and Ilt
is the mixed term.

The analysis reveals four regimes (I–IV) of ee collisions
in a strongly degenerate electron gas. These regimes are
summarized in Table I. The regimes I and II are realized for
nonrelativistic electrons, while in the regimes III and IV
electrons are ultrarelativistic. The regimes I and III take
place for sufficiently high temperatures T * Tpe, at which
the Pauli principle does not restrict energy transfers be-
tween colliding electrons (@!< kBT; see, e.g., Lampe
[13], especially his Fig. 1). The regimes II and IV refer
to a colder electron gas, where energy transfers are essen-
tially limited by the Pauli blocking (e.g., Lampe [13] and
Flowers and Itoh [14]).

The analysis of Eq. (11) gives the following asymptotic
values of I in the different regimes.

In the regime I (where u & 1 and 	 & 1)

 Il �
1

u

�
2

15
log

1

	
� 0:1657

�
;

It � u3

�
8

315
log

1

	u
� 0:05067

�
;

Ilt � u
�

8

105
log

1

	
� 0:1236

�
:

(14)

The logarithmic terms in brackets represent Coulomb log-
arithms, while the second terms are the corrections calcu-
lated using the standard technique [13]. The leading
contribution comes from Il. It was calculated by Lampe

TABLE I. Four regimes of thermal conduction of degenerate
electrons owing to ee collisions.

Regime
Electron
velocity Temperature

Main
contribution

T-dependence
of �ee

I ve � c T * Tpe Il T2= log�T=Tpe�
II ve � c T � Tpe Il 1=T
III ve 
 c T * Tpe Il � It � Ilt T2= log�T=Tpe�
IV ve 
 c T � Tpe It const
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[13], with a slightly less accurate correction term (1:30�
2=15 
 0:173 from his Eqs. (5.22) and (5.23), instead of
our 0.1657). Retaining this term in the regime I, one has
I � Il and

 �ee �
5�3k3

BT
2ve

72�2
@

2c2�log�1=	� � 1:242	
: (15)

Note that for It the regime I extends to lower temperatures
T � uTpe, than for Il and Ilt, but this circumstance does not
affect noticeably the thermal conductivity �ee because It is
relatively insignificant in the given regime.

In the regime III (where u 
 1 and 	 & 1),

 Il � 2It �
2

15
log

1

	
� 0:1657;

Ilt �
2

15
log

1

	
� 0:1399; I �

1

3
log

1

	
� 0:3884:

(16)

Again, the logarithmic terms are Coulomb logarithms and
the second terms are corrections. In this case, all terms (Il,
It, and Ilt) give comparable contributions into I. The
asymptote of I in this regime was obtained by Heiselberg
and Pethick [17] (their Eq. (60), with a slightly less accu-
rate correction factor 0.30 instead of our 0.3884) in their
studies of quark plasma. For an electron plasma, the con-
ductivity �ee in the regime III was calculated by Urpin and
Yakovlev [15]. Their result is equivalent to Eq. (16) for I
but with less accurate correction ( log�2�=3 
 0:231 in-
stead of 0.3884) because they erroneously used the ap-
proximation of static longitudinal electron screening of
the Coulomb interaction in all terms (with �l � �t �
q2

0 in Eq. (6)). Employing I from Eq. (16) in the regime
III we obtain

 �ee �
�3k3

BT
2

36�2
@

2c�log�1=	� � 1:165	
: (17)

In the regimes II and IV (where 	 * 1 and u � 1 is
arbitrary) we have
 

Il �
�5

15u	3 ; It � 2��3�
u

	2 ;

Ilt �
�

	8=3
u1=3; � �

�2��2=3

3
�
�
14

3

�
�
�

11

3

�

 18:52;

(18)

where ��z� is the Riemann zeta function (with ��3� �
1:202) and ��z� is the gamma function. The expression
for It (with u � 1) was obtained by Heiselberg and Pethick
[17] for an ultrarelativistic quark plasma.

The asymptotic expressions (18) are derived from
Eq. (11) with the screening functions �l and �t given by
Eq. (9). In this approximation the screening of the ee
interaction via the exchange of longitudinal plasmons
(the first part of the matrix element in Eq. (5)) is described
by q2 ��l 
 q2 � q2

0, which is equivalent to the static
Debye-type screening with the screening wavenumber
qscr;l � q0. The screening via the exchange of transverse

plasmons (the second part of the matrix element) is more
complicated. It is described by the denominator term q2 �
!2=c2 ��t 
 q2 � iq2

0�!ve=�4qc
2� that represents the

dynamical screening via the Landau damping of transverse
plasmons, with @!� kBT � ve@q (i.e., with low phase
velocities !=q� ve). In this case the effective screening
wavenumber qscr;t is evidently given by q3

scr;t �
q2

0!ve=c
2 � q2

0kBTve=�@c2�.
Using Eqs. (10) and (13) we can decompose the collision

frequency �ee into the same parts as I, �ee � ��l�ee � �
�t�
ee �

��lt�ee . One can easily see, that in the regimes II and IV the
partial frequency ��l�ee can be estimated as ��l�ee �

ne�2�kBT�2=�@q3
scr;l��. The collision frequency ��t�ee can

be estimated as ��t�ee � u4��l�ee by replacing qscr;l ! qscr;t.
The factor u4 takes into account the reduction of the ee
interaction via transverse plasmons in the nonrelativistic
electron gas. The quantity ��lt�ee can be estimated as ��lt�ee �
u2��l�ee with q3

scr;l ! q2
scr;lqscr;t.

In the regime II, where 	 * 1 and u� 1, the exchange
of longitudinal plasmons dominates, and we have I 
 Il,

 �ee �
5@q3

0v
4
e

36�2T�2c2 : (19)

This leading part of �ee in the regime II was calculated by
Lampe [13]. Note that the asymptotic expression (18) for It
at u� 1 is actually valid not at T & Tpe, as the expres-
sions for Il and Ilt, but at lower T & uTpe. However, this
circumstance is relatively unimportant because it is Il
which dominates in the regime II.

In the regime IV, where 	 * 1 and u 
 1, the exchange
of transverse plasmons dominates, with I 
 It, and

 �ee �
�3kBcq

2
0

216��3��2 : (20)

It is remarkable that in this regime �ee becomes tempera-
ture independent. This regime has been discussed in detail
by Heiselberg and Pethick [17] for quark plasma. For the
electron plasma, it was considered by Flowers and Itoh
[14] and also by Urpin and Yakovlev [15] but both groups
erroneously used the approximation of static longitudinal
screening in all channels (�l � �t � 1) which strongly
underestimates the efficiency of the plasma screening of
the ee interaction in the ultrarelativistic electron gas. If that
approximation were true, one would obtain ��l�ee � ��lt�ee �
2��t�ee and �ee � 2:5��l�ee, whereas in fact ��l�ee � ��lt�ee � ��t�ee
in the regime IV, and �ee is significantly lower than pre-
dicted by the previous calculations [14,15].

Let us note that the temperature behavior of �ee (Table I)
corresponds to an ordinary Fermi-liquid (where � / 1=T;
e.g., Baym and Pethick [22]) only in the regime II. In the
regimes I and III the plasma is too warm (although degen-
erate) to reach the Fermi-liquid limit, where energy trans-
fers between colliding particles are strongly restricted by
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the Pauli principle. In the regime IV the plasma is cold but
the matrix element of the ee interaction essentially de-
pends on energy transfers @! owing to the Landau damp-
ing of transverse plasmons which violates the Fermi-liquid
behavior [17].

To facilitate applications, we have calculated the func-
tions Il, It and Ilt from Eq. (11) for a dense grid of u and 	
and fitted the numerical data by analytic functions. We
obtain
 

Il �
1

u

�
0:1587�

0:02538

1� 0:0435	

�

� log
�
1�

128:56

37:1	� 10:83	2 � 	3

�
: (21)

Therefore, Il is inversely proportional to u, with the
proportionality coefficient dependent solely on 	.
Furthermore,

 It � u3

�
2:404

C
�
C2 � 2:404=C

1� 0:1	u

�
log

�
1�

C

A	u� 	2u2

�
;

(22)

where A � 20� 450u3, C � A exp�C1=C2�, C1 �
0:05067� 0:03216u2, and C2 � 0:0254� 0:04127u4.
Finally,
 

Ilt � u
�
18:52u2

C
�
C2 � 18:52u2=C

1� 0:1558	B

�

� log
�
1�

C

A	� 10:83	2u2 � �	u�8=3

�
; (23)

where A � 12:2� 25:2u3, B � 1� 0:75u, C �
A exp�C1=C2�, C1 � 0:123 636� 0:016 234u2, and C2 �
0:0762� 0:057 14u4. These fit expressions reproduce also
all asymptotic limits mentioned above. The maximum fit
errors of Il, It, and Ilt are, respectively, 0.2% (at u � 0:61
and 	 � 3:8), 6.3% (at u � 0:878 and 	� 0:175, where
the electrons become nondegenerate) and 8.4% (at u �
0:19 and 	 � 19). The maximum fit error of the total
function I in Eq. (13) is 2.5% (at u � 0:924 and 	 �
0:232).

IV. DISCUSSION

Let us discuss the efficiency of ee collisions for thermal
conduction in a degenerate electron gas. Figure 1 shows the
temperature-density diagram for a dense matter. For cer-
tainty, we have adopted the model of cold-catalyzed
(ground-state) matter. It is composed of electrons and
ions (atomic nuclei) at densities smaller than the neutron
drip density 
nd 
 4� 1011 g cm�3 (the right vertical dot-
ted line), with an addition of free neutrons at higher den-
sities 
. The composition of the cold-catalyzed matter is
taken from Haensel and Pichon [23] at 
 < 
nd and from
Negele and Vautherin [24] at higher 
. Weak first-order
phase transitions which accompany changes of ground-
state nuclides with the growth of 
 are smoothed out as

described by Kaminker et al. [25]. At 
 & 108 g cm�3 the
ground-state matter is composed of iron (56Fe). The den-
sities 
 & 109 g cm�3 are appropriate for degenerate stel-
lar cores of white dwarfs and evolved stars; the densities

 & 1014 are appropriate for envelopes (crusts) of neutron
stars.

In Fig. 1 we plot the electron degeneracy temperature
TF � ���mec2�=kB, the electron plasma temperature
Tpe, the melting temperature of the ion crystal Tm 


Z2
i e

2=�175akB�, and the ion plasma temperature Tpi �

@!pi=kB (where !pi �
����������������������������
4�Z2

i e
2ni=mi

q
is the ion plasma

frequency, Zie is the ion charge,mi is its mass, ni is the ion
number density, and a � �4�ni=3��1=3 is the ion-sphere
radius). The left vertical dotted line separates the regions of
nonrelativistic degenerate electrons (ve � c, 
�
106 g cm�3) and ultrarelativistic electrons (ve ! c, 
�
106 g cm�3). The shaded regions I–IV show the
temperature-density domains with the different regimes
of ee collisions in a degenerate electron gas (see Sec. III,
Table I).

In order to explore the importance of the ee collisions
for thermal conduction let us compare �ee with the thermal
conductivity �ei owing to ei collisions (Sec. I). The con-
ductivity �ei is calculated using the formalism of Potekhin
et al. [12] and Gnedin et al. [6].

FIG. 1 (color online). Temperature-density diagram for cold-
catalyzed matter. We show the electron degeneracy temperature
TF, the electron plasma temperature Tpe, the melting temperature
Tm of the ion crystal, and the ion plasma temperature Tpi. The
left dotted line separates the regions of a low-density nonrela-
tivistic electron gas and a denser gas of ultrarelativistic electrons.
The right dotted line indicates the neutron drip point. Shaded
regions I–IV show the T � 
 domains of the different ee
collision regimes (Table I).

ELECTRON THERMAL CONDUCTIVITY OWING TO . . . PHYSICAL REVIEW D 74, 043004 (2006)

043004-5



In Fig. 2 we plot the temperature dependence of the
electron thermal conductivity of helium (4He) or carbon
(12C) plasmas at 
 � 105 g cm�3 (left) or 106 g cm�3

(right). At 
 � 105 g cm�3 the electrons are nonrelativis-
tic while at 
 � 106 g cm�3 they are mildly relativistic.
According to Eq. (2), the total electron thermal conductiv-
ity �e is determined by the partial contributions �ee and
�ei, a minimum partial contribution being most important.
The total conductivities are shown by the solid lines; �ei by
the dot-and-dashed lines; �ee is plotted by the dashed lines
(the same for the helium and carbon plasmas); the dotted
lines give �ee neglecting the contribution of transverse
plasmons (i.e., by setting I � Il).

For the densities and temperatures displayed in Fig. 2,
the ei collisions are mainly more efficient than the ee ones,
although the contribution of the ee collisions into the total
thermal conductivity is noticeable. One can see that the ei
collisions are more important for heavier elements (be-
cause the Coulomb ei scattering cross section is much
higher than the ee scattering cross section for high-Z
elements; see Lampe [13]). The ee collisions would be
negligible for the iron plasma if the data for this plasma
were displayed in Fig. 2. The ee collisions are more
efficient in the helium plasma than in the carbon plasma
because the helium ions have lower charges. For a given
chemical composition, �ee gives highest contribution into
�e at temperatures T a few times lower than Tpe (we have
log10Tpe�K	 
 7:86 and 8.32 at 
 � 105 and 106 g cm�3,
respectively). These temperatures separate the high-
temperature and low-temperature ee collision regimes
(e.g., the regimes I and II in the nonrelativistic electron
gas, see Table I). For 
 � 105 g cm�3, the electron gas is
only slightly relativistic. Accordingly, the contribution of
the Landau damping (transverse plasmons) into �ee is
relatively small, and the results of Lampe [13] are suffi-
ciently accurate. For higher 
 � 106 g cm�3, the contribu-

tion of the Landau damping becomes more important
which invalidates the previous results of Refs. [14,15]. In
this case the Landau damping strongly reduces �ee which
makes the ee collisions much more important for thermal
conduction than it was thought before. For still higher 
 the
contribution of �ee into �e in a plasma of light elements at
T � Tpe would be even more significant. However, the
temperature Tpe would become so high that light elements
would start burning in thermonuclear reactions. Therefore,
ee collisions can noticeably decrease the electron thermal
conductivity at densities and temperatures important for
nuclear burning of light elements (for instance, in the
vicinity of the carbon ignition curve). This should be taken
into account in simulations of nuclear evolution of stars
(e.g., carbon ignition in white dwarfs [4]).

Figure 3 shows the density dependence of the electron
thermal conductivity in the density range from �2:5�
109 g cm�3 to 1014 g cm�3 for the three values of the
temperature T � 107, 108, and 109 K. We employ the

FIG. 2 (color online). Temperature dependence of the electron
thermal conductivity at 
 � 105g cm�3 (left) and 106 g cm�3

(right). The dashed line ee shows �ee; the dotted line ee� l is
the same but retaining the contribution of longitudinal plasmons
alone. The dot-and-dashed lines show �ei and the solid lines
show the total (tot, ee� ei) conductivity �e for helium and
carbon plasmas.

FIG. 3 (color online). Density dependence of the electron
thermal conductivity at different T (marked by the values of
log10T near the curves) in a neutron star crust composed of
ground-state matter; the vertical dotted line is the neutron drip
point. Dot-and-dashed lines (ei) show the conductivity �ei owing
to ei collisions at T � 107, 108, and 109 K in a crystal of atomic
nuclei for pure ground-state matter. In addition, the lower dot-
and-dashed line at T � 107 K shows �ei which includes the
contribution of electron scattering by impurity nuclei at T �
107 K (for nimp=ni � 0:05 and jZimp � Zij � 2). The dashed
line is �ee; it is almost independent of T. The dotted line is
the partial conductivity ��l�ee mediated by longitudinal plasmons
alone at T � 108 K; it scales as T�1. The solid lines show the
total electron conductivity �e at T � 107 K for the matter
without and with impurities. If T * 108 K the effect of impuri-
ties is weak and �e 
 �ei.
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same model of ground-state matter as in Fig. 1. The dis-
played density range is appropriate to a crust of a neutron
star. The vertical dotted line is the neutron drip point which
separates the crust into the outer and inner parts. The
adopted values of T and 
 refer to the regime IV of the
ee collisions, where the electron gas is ultrarelativistic,
T � Tpe, and the Landau damping dominates. The con-
ductivity �ee (the dashed line) is well approximated by the
temperature independent conductivity (20) governed by
the Landau damping; �ee slightly deviates from Eq. (20)
only at lowest 
 for T � 109 in Fig. 3, where T is still
insufficiently lower than Tpe (see Fig. 1). Retaining the
longitudinal contribution into �ee (I � Il) and setting T �
108 K, we would get the dotted curve in Fig. 3. It goes
much higher than the dashed curve indicating that this
longitudinal contribution is really insignificant.

For comparison, the dot-and-dashed lines in Fig. 3 give
the thermal conductivity �ei (mostly from Figure 4 of
Ref. [6]) for the same values of T, and the solid lines
give the total conductivity �e. For T � 108 and 109, the
effects of possible impurities in dense matter (atomic
nuclei with charge numbers Zimp different from charge
numbers Zi of ground-state nuclei) are expected to be small
(e.g., Gnedin et al. [6]). At T � 107 K, the effects of
impurities can be substantial. For this T in Fig. 3 we
present �ei and �e for pure ground-state matter and also
for the matter which contains impurities with jZimp �

Zij � 2 and with the fractional number of impurity nuclei
of nimp=ni � 0:05. The impurities increase the ei collision
rate and decrease the conductivities �ei and �e.

As seen from Fig. 3, �ei is more important than �ee at all
displayed densities for T � 108 and 109 K. In these cases
�e 
 �ei and we do not show �e to simplify the figure.
However, �ee dominates in the pure ground-state matter for
T � 107 K at 
 * 1012 g cm�3 (in the inner crust of a
neutron star). This dominance is fully produced by the
Landau damping of transverse plasmons in the
ee-collisions. For 
 * 1013 g cm�3 in this case we have
�e 
 �ee. For an impure cold-catalyzed matter �ei remains
important for all densities at T � 107 K, but �ee is com-
parable to �ei in the inner neutron star crust. Note that the
values of �ei in Fig. 3 take into account, in an approximate
manner, the freezing of umklapp processes in electron-
phonon scattering at low temperatures (see, e.g.,
Ref. [6]). For T * 108 K the freezing is unimportant, but
at T � 107 K it enhances �ei. A more rigorous treatment of
this freezing can partly remove this enhancement (A. I.
Chugunov, private communication), which can somewhat
decrease �ei and reduce the importance of �ee.

Therefore, a correct treatment of ee collisions can con-
siderably reduce the electron thermal conductivity in a cold
neutron star crust, with T � 107 K. This can increase the
time of heat diffusion from the inner crust to the surface
[9]. In particular, the effect can be important for the propa-
gation of thermal waves produced by pulsar glitches and

for the emergence of these waves on the pulsar surface. The
emergence can be, in principle, observed and give valuable
information on the nature of pulsar glitches [8].

While calculating �ee we have taken into account only
the electron contribution into the polarization functions �l
and �t in Eq. (6) and neglected the ion contribution. As
shown by Lampe [13] this is a good approximation at high
temperatures T * Z2e2=�akB� at which the ions are weakly
coupled and constitute a Boltzmann gas. The calculation of
the ion polarization functions at lower T (in the regime of
strong ion coupling, in an ion liquid or solid) is a compli-
cated problem whose detailed solution is still absent. We
have also neglected the effects of strong magnetic fields
which can greatly modify electron heat transport in
strongly magnetized neutron star envelopes. These effects
are numerous (e.g., Yakovlev and Kaminker [26]) and are
subdivided into classical (owing to rapid electron Larmor
rotation) and quantum ones (owing to the Landau quanti-
zation of electron motion in a magnetic field). In principle,
a proper treatment of ee collisions in a strong magnetic
field can be performed in the same framework of the
dynamical plasma screening as used above. However, the
problem becomes much more complicated because the
electron polarization tensor in a magnetic field is aniso-
tropic (depends on the relative orientations of the wave-
vector k and the magnetic field) and cannot be generally
decomposed into purely longitudinal and transverse parts
[21]. The effects of ion polarization and strong magnetic
fields are outside the scope of the present paper.

V. CONCLUSIONS

We have reconsidered the electron thermal conductivity
�ee of degenerate electrons produced owing to the ee
collisions taking into account the Landau damping due to
the exchange of transverse plasmons (following the calcu-
lations of kinetic properties of quark plasma by Heiselberg
and Pethick [17]). The Landau damping has been neglected
in all previous calculations of �ee. We have analyzed the
four regimes of the ee collisions in the degenerate electron
gas (Sec. III, Table I) and obtained analytic expressions for
�ee which accurately approximate the results of numerical
calculations of �ee in wide ranges of the temperature and
density of the matter. These results can be applied to study
thermal conduction of degenerate electrons in metals,
semiconductors, in degenerate cores of evolved stars and
white dwarfs, and in envelopes of neutron stars.

Our main conclusions are the following.
(1) The Landau damping strongly modifies �ee in a

relativistic degenerate electron gas, at densities 
 *

106 g cm�3, but it is also quite noticeable at lower 

(for instance, at 
 � 105 g cm�3, see Fig. 2). The
Landau damping increases the ee collision rate and
decreases �ee, increasing the contribution of the ee
collisions into the total electron thermal conductiv-
ity �e.
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(2) The most dramatic effect of the Landau damping on
�ee takes place at 
� 106 g cm�3 for temperatures
T much below the electron plasma temperature Tpe
(the regime IV, Table I). In this case �ee shows a
non-Fermi-liquid behavior; it becomes temperature
independent and is described by the asymptotic
expression (20).

(3) The conductivity �ee becomes comparable to the
electron thermal conductivity �ei provided by the
electron-ion collisions (and gives thus a noticeable
contribution into the total conductivity �e) in a
warm plasma of light (low-Z) ions at temperatures
T a few times lower than Tpe (Fig. 2). These con-
ditions are typical for degenerate cores of white
dwarfs and giant stars where thermonuclear burning
of light elements can occur (particularly, in the
vicinity of the carbon ignition curve).

(4) The conductivity �ee dominates over �ei and deter-
mines the total electron thermal conductivity �e of
the dense pure cold-catalyzed matter at T � 107 K
and 
 * 1012 g cm�3 (in the inner crust of a cold
neutron star, Fig. 3). At these T and 
 the conduc-

tivity �ee is important even for impure cold-
catalyzed matter. It can affect the propagation of
thermal waves, excited in the inner neutron star
crust during pulsar glitches, to the pulsar surface.

The electron conductivity �e operates also in neutron
star cores, at 
 * 1:5� 1014 g cm�3. This conductivity
should also be reconsidered taking into account the
Landau damping. Our present results cannot be directly
applied to this case because in the cores the electrons
collide efficiently at least with degenerate electrons,
muons, and protons, and these collisions deserve a special
study. We intend to analyze them in a subsequent
publication.
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