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We construct quasiequilibrium sequences of black-hole–neutron-star binaries for arbitrary mass ratios
by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition.
We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics
and account for the black hole by imposing equilibrium boundary conditions on the surface of an excised
sphere (the apparent horizon). In this paper we focus on irrotational configurations, meaning that both the
neutron star and the black hole are approximately nonspinning in an inertial frame. We present results for
a binary with polytropic index n � 1, mass ratio MBH

irr =M
NS
B � 5, and neutron star compaction

MNS
ADM;0=R0 � 0:0879, where MBH

irr is the irreducible mass of the black hole, MNS
B the neutron star baryon

rest mass, and MNS
ADM;0 and R0 the neutron star Arnowitt-Deser-Misner mass and areal radius in isolation,

respectively. Our models represent valid solutions to Einstein’s constraint equations and may therefore be
employed as initial data for dynamical simulations of black-hole–neutron-star binaries.

DOI: 10.1103/PhysRevD.74.041502 PACS numbers: 04.30.Db, 04.25.Dm, 04.40.Dg

Coalescing black-hole–neutron-star (hereafter BHNS)
binaries are among the most promising sources of gravita-
tional waves for laser interferometers [1–4]. BHNS merg-
ers may reveal a wealth of astrophysical information (see
e.g. [5]), and, along with mergers of binary neutron stars,
are also considered primary candidates for central engines
of short-duration gamma ray bursts (SGRBs) [6–8].
Recent observations of several SGRBs localized by the
Swift and HETE-2 satellites in regions with low star for-
mation strongly suggest that a compact binary merger
scenario for SGRBs is favored over models involving the
collapse of massive stars (see, e.g., [9] and references cited
therein).

Significant effort has gone into the study of binary
neutron stars and binary black holes, which are also prom-
ising sources of gravitational radiation. Fully relativistic
simulations of BHNS binaries have received far less atten-
tion. Most BHNS calculations to date, including quasie-
quilibrium (QE) calculations [10–18] and dynamical
treatments [19–25], employ Newtonian gravitation in ei-
ther some or all aspects of their formulation. We have
recently launched a new effort to study BHNS binaries in
a fully relativistic framework (see also [26,27]), first by
constructing QE models [28,29] and then by employing
them as initial data in dynamical simulations [7,30]. So far
we have focused on binaries for which the black hole mass
is much greater than the neutron star mass. For binaries
with such extreme mass ratios, the rotation axis can be
taken to pass through the center of the black hole, and the
tidal effects of the neutron star on the black hole may be
ignored. These approximations simplify the problem con-

siderably (see [28]). However, they break down for binaries
containing comparable mass companions. Such systems
are more suitable as SGRB candidates, because the tidal
disruption of the neutron star by the black hole will occur
near or outside the innermost stable circular orbit. This
disruption may be necessary to create a gaseous accretion
disk around the black hole capable of generating a SGRB
[7]. Gravitational waves from BHNS binaries of compa-
rable mass are detectable by ground based laser interfer-
ometers like LIGO (Laser Interferometric Gravitational-
wave Observatory), while waves from systems with ex-
treme mass ratios are much lower in frequency and require
space-borne interferometers like LISA (Laser
Interferometer Space Antenna).

In this paper we describe the construction of QE sequen-
ces of BHNS binaries with companions of comparable
mass. We construct such binaries by solving the constraint
equations of general relativity together with the relativistic
equations of hydrodynamic equilibrium in a stationary
spacetime assuming the presence of an approximate helical
Killing vector (see, e.g., the recent reviews [31,32] as well
as Sec. II of [33]). Throughout this paper we adopt geo-
metric units with G � c � 1, where G denotes the gravi-
tational constant and c the speed of light. Latin and Greek
indices denote purely spatial and spacetime components,
respectively.

The line element in 3� 1 form can be written as

 ds2 � g��dx
�dx�

� ��2dt2 � �ij�dxi � �idt��dxj � �jdt�; (1)

where � is the lapse function, �i the shift vector, �ij the
spatial metric, and g�� the spacetime metric. Einstein’s
equations can then be split into constraint and evolution
equations for the spatial metric �ij. To decompose the
constraint equations we introduce a conformal rescaling
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�ij �  4 ~�ij, where  is the conformal factor and ~�ij the
spatial background metric. The Hamiltonian constraint
then reduces to

 

~r 2 � �2� 5��
1

8
 ~R�

1

12
 5K2 �

1

8
 �7 ~Aij ~Aij:

(2)

Here ~ri, ~Rij, and ~R � ~�ij ~Rij denote the covariant deriva-
tive, the Ricci tensor, and the scalar curvature associated
with ~�ij. We also decompose the extrinsic curvature Kij

into its trace (K) and traceless ( ~Aij) parts,Kij �  �10 ~Aij �
�ijK=3.

In the conformal thin-sandwich decomposition we ex-
press the traceless part of the extrinsic curvature in terms of
the time derivative of the background metric, ~uij � @t ~�ij,
and gradients of the shift. For the construction of equilib-
rium data it is reasonable to assume ~uij � 0 in a corotating
coordinate system, which yields

 

~A ij �
 6

2�

�
~ri�j � ~rj�i �

2

3
~�ij ~rk�k

�
: (3)

Inserting this into the momentum constraint we then obtain

 

~r 2�i �
1

3
~ri�~rj�j� � ~Rij�

j � 16�� 4ji

� 2 ~Aij ~rj�� 
�6�

�
4

3
�~�ij ~rjK: (4)

It is also reasonable to assume @tK � 0, which, from the
evolution equation for the extrinsic curvature, yields
 

~r2� � 4�� 4��� S� � � �8 ~Aij ~Aij � 2~�ij ~ri�~rj ln 

�
1

3
� 4K2 �  4�i ~riK: (5)

Before we can solve the above set of gravitational field
equations for  , �i, and �, we still need to specify the
spatial background metric ~�ij and the trace of the extrinsic
curvature K. We choose this background geometry to
describe the Schwarzschild metric expressed in Kerr-
Schild coordinates. Specifically, we choose ~�ij �
�ij � 2MBHlilj=rBH and K � 2�̂3

BHMBH�1�
3MBH=rBH�=r2

BH. Here �ij is the flat spatial metric, MBH

is the ‘‘bare’’ mass of the black hole, rBH � �X
2
BH � Y

2
BH �

Z2
BH�

1=2 is the coordinate distance from the black hole
center, li � li � XiBH=rBH is the radial vector pointing
away from the black hole center, and �̂BH � �1�
2MBH=rBH�

�1=2 is the lapse function of the
Schwarzschild metric in Kerr-Schild coordinates. The mat-
ter terms on the right-hand side of Eqs. (2), (4), and (5) are
the projections � � n�n�T��, ji � ��i�n�T��, Sij �
�i��j�T

��, and S � �ijSij of the stress-energy tensor
T��, where n� is the unit vector normal to the spatial

hypersurface. Assuming an ideal fluid, we have T�� �
��0 � �i � P�u�u� � Pg��, where u� is the fluid 4-
velocity, �0 the baryon rest-mass density, �i the internal
energy density, and P the pressure.

The elliptic Eqs. (2), (4), and (5) require boundary
conditions, both at spatial infinity and on the surface of
an excised sphere within the black hole interior. At spatial
infinity, where the metric becomes asymptotically flat in an
inertial frame, we impose the exact boundary conditions,
and on the excision surface (apparent horizon) we impose
the black hole equilibrium boundary conditions suggested
in [34]. To construct approximately nonspinning black
holes we set the shift according to Eqs. (39) and (50) in
[34] with �r � �0 in their notation. In the language of
[35] this assignment corresponds to the ‘‘leading-order
approximation,’’ and we plan to improve this approxima-
tion as outlined there.

In addition to the field Eqs. (2), (4), and (5), we have to
solve the equations of relativistic hydrodynamics. For sta-
tionary configuration, the relativistic Euler equation can be
integrated once to yield

 h��=�0 � constant; (6)

where h � ��0 � �i � P�=�0 is the fluid specific enthalpy,
and � and �0 are Lorentz factors between the fluid, the
rotating frame, and the inertial frame (see Sec. II.C. of [29]
for the definitions). For irrotational fluids the fluid velocity
can be expressed in terms of the gradient of a velocity
potential �. The equation of continuity then becomes

 ��0=h�r
�r��� �r���r���0=h� � 0; (7)

where r� is the covariant derivative associated with g��.
We solve these equations for a polytropic equation of state
P � 	��

0 , where � � 1� 1=n denotes the adiabatic index,
n is the polytropic index and 	 is a constant. Here, we focus
on the case n � 1 (i.e., � � 2).

We determine the orbital angular velocity by requiring
that the derivative in the X direction of the enthalpy field at
the center of the neutron star be zero, which implies that
the total force balances at the center of the neutron star
[29]. We confirm that the angular velocity obtained by this
method agrees with that obtained by requiring the enthalpy
at two points on the neutron star’s surface be equal to
within one part in 10�5 [28].

We locate the axis of rotation by requiring that the total
linear momentum Pi � 1

8�

H
1K

ijdSj vanish [36]. To do
so, we first align the axis of rotation with the Z axis and
place the X axis to be the perpendicular line to the Z axis
that passes through the black hole center. Given the equa-
torial symmetry in the problem, the Z component of the
momentum vanishes automatically. With the orbital angu-
lar velocity held fixed, we drive the Y component of the
linear momentum toward zero by adjusting the X coordi-
nate of each companion, keeping their separation in the X
direction unchanged. To determine their Y coordinates, we
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require that the X component of the linear momentum be
zero but only adjust the Y coordinate of the neutron star to
achieve this. Thus, we fix the black hole’s center to remain
on the x axis at Y � 0.

Our numerical code uses the spectral method LORENE

library routines developed by the Meudon relativity group
[37]. The computational grid is divided into 10 (8) domains
for a black hole (neutron star) and its exterior, and each
domain is covered byNr � N
 � N� � 33� 25� 24 col-
location points except for the closest two where 9 (8)
domains are covered by Nr � N
 � N� � 25� 21� 20
points.

In the following we focus on results for an inspiral
sequence of constant irreducible black hole mass MBH

irr

and neutron star baryon rest mass MNS
B . In Table I we list

results for a binary of mass ratio MBH
irr =M

NS
B � 5 and a

neutron star mass �MNS
B � 0:1, where the bar denotes non-

dimensional polytropic units �M � 	�n=2M. At infinite
separation, this neutron star has a compaction
MNS

ADM;0=R0 � 0:0879, where R0 is the areal radius of the
spherical star in isolation. In Fig. 1 we also show contours
of the lapse � for the innermost configuration of this
sequence. The value of the lapse everywhere on the black
hole apparent horizon is set to be its Kerr-Schild value
there, 2�1=2 � 0:7071; its value at the center of the neutron
star is 0.7275. Note that the center of the neutron star, as
defined by the maximum of the enthalpy, does not coincide
with the minimum point of the lapse inside the star. These
configurations are the first fully relativistic QE models of
BHNS binaries that do not assume an extreme mass ratio
and employ equilibrium boundary conditions to model the
black hole.

In the table we list the fractional binding energy
Eb=M0 � MADM=M0 � 1, total angular momentum J, or-

bital angular velocity �, maximum of the density parame-
ter qmax � �P=�0�max, minimum of the mass-shedding
indicator � � �@�ln h�=@r�eq=�@�ln h�=@r�pole [29,33], and
fractional difference between the Arnowitt-Deser-Misner
(ADM) mass and Komar mass M � j1�MKom=MADMj.
Quantities are tabulated as functions of the coordinate
separation between the center of the black hole and the
point of maximum baryon rest-mass density in the neutron
star. Here, M0 � MBH

irr �M
NS
ADM;0 is the ADM mass of the

binary system at infinite orbital separation, i.e., the sum of
the irreducible mass of the isolated black hole and the
ADM mass of an isolated neutron star with the same
baryon rest mass. For an isolated Schwarzschild black
hole, the ADM mass is the same as the irreducible mass.

We compared our values for the angular momentum
with those from third-order post-Newtonian approxima-
tions [38] and found agreement to within about 5% for
close binaries, and better agreement for larger separations.
In agreement with the third-order post-Newtonian results
we do not see any indication of a turning point in the
angular momentum, meaning that the tabulated sequence
does not exhibit an innermost stable circular orbit, hence
the binary orbits are all stable.

The quantity �min is defined by the minimum of the
indicator � which compares the gradient of lnh at the pole
with that on the equator. For spherical stars at infinite
separation we have �min � 1, while �min � 0 indicates
the formation of a cusp and hence tidal breakup. As we
have discussed in [29], spectral methods no longer con-
verge in the presence of discontinuities, so that our se-
quence terminates before reaching �min � 0. However,
extrapolating from the last three data points we estimate
that the star will be tidally disrupted when �M0 � 0:046.
This value agrees with those estimated via the approximate

TABLE I. Physical parameters for a binary sequence with
mass ratio MBH

irr =M
NS
B � 5 and neutron star compaction

MNS
ADM;0=R0 � 0:0879 (where R0 is the areal radius of the iso-

lated neutron star). The baryon rest mass, the ADM mass, and
the isotropic coordinate radius of the neutron star in isolation are
�MNS

B � 0:1, �MNS
ADM;0 � 0:0956, and �r0 � 0:990 (	 � 1). We list

the binding energy Eb, total angular momentum J, orbital
angular velocity �, maximum density parameter qmax, mass-
shedding indicator �min, and fractional difference M between
the ADM mass and the Komar mass.

d=M0 Eb=M0 J=M2
0 �M0 qmax �min M

20.46 �7:18��3� 0.679 1:10��2� 5:83��2� 0.892 7:95��4�
18.41 �8:11��3� 0.648 1:28��2� 5:84��2� 0.913 3:12��3�
16.36 �9:22��3� 0.615 1:52��2� 5:86��2� 0.953 6:41��3�
14.32 �1:03��2� 0.586 1:86��2� 5:87��2� 0.895 1:00��2�
12.29 �1:13��2� 0.556 2:36��2� 5:75��2� 0.843 1:43��2�
10.26 �1:34��2� 0.520 3:07��2� 5:61��2� 0.845 1:89��2�
9.243 �1:47��2� 0.502 3:59��2� 5:56��2� 0.791 2:07��2�
8.741 �1:53��2� 0.494 3:91��2� 5:48��2� 0.710 2:19��2�
8.439 �1:58��2� 0.488 4:11��2� 5:42��2� 0.588 2:27��2�

FIG. 1. Contours of the lapse � in the equatorial plane for the
innermost configuration of the sequence listed in Table I. The
thick circle on the left denotes the excision surface (apparent
horizon) of the black hole, while that on the right denotes the
surface of the neutron star. The cross ‘‘�’’ indicates the position
of the rotation axis.
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relativistic expansion of [18] (�M0 � 0:043) and the
purely Newtonian models of [16] (�M0 � 0:046).

Equality between the ADM mass and Komar mass is
equivalent to satisfying a relativistic virial theorem and
indicates that the system is stationary (cf. [39]). In our
calculation we do not impose this equality to construct the
sequence, but instead evaluate mass difference as a diag-
nostic. For decreasing separation, the fractional difference
between the two masses increases to over 2% for our
innermost configuration. This clearly indicates that our
closest models are not in perfect equilibrium. The resulting
small, but finite, systematic mass difference has a large
effect on the binding energy, which is also computed as the
small difference between much larger masses.

We speculate that the differences between the ADM and
Komar masses could be caused by our choice of the
background geometry. Our choice of a Kerr-Schild back-
ground metric is motivated by our requirement that it
correctly reduce to the exact solution for a spinning black
hole in the limit of large separation (although here we only
treat nonspinning holes). Also, in our coordinates, the lapse
remains positive on the horizon (‘‘horizon penetration’’),
which is necessary when computing ~Aij from Eq. (3). In
[29] we compared with a flat background and found that
the choice of the background has a small but nonvanishing
effect on the physical properties of the resulting binary
configurations (see also the discussion of nonmaximally
sliced black hole binaries in [34]), motivating our specu-
lation that our choice here may result in the small but
systematic deviation from perfect equilibrium. Our con-
figurations are solutions to the constraint equations and are
hence adequate initial data for dynamical simulations of
BHNS binaries (our main motivation here). We are cur-
rently experimenting with other background solutions to
find better approximations to quasiequilibrium. However,
this discrepancy in mass also heightens interest in the
recent ‘‘waveless’’ formulation of the initial value problem
that is based on the equality of the ADM and Komar
masses and avoids the need to choose a background ge-
ometry altogether [40,41].

Finally, we turn our attention to the validity of QE
configurations in circular orbit as initial data for dynamical
simulations. The assumption of circular orbits and an
associated helical Killing vector for relativistic binaries is
an approximation, since the emission of gravitational

waves leads to orbital decay. This approximation breaks
down at a certain binary separation when the inspiral can
no longer be ignored. We can quantify the departure from
true QE by comparing the time scale of the orbital period
with that of the orbital decay driven by the emission of
gravitational waves. To lowest order we can estimating the
ratio between these two time scales with the help of the
quadrupole formula for Newtonian point masses, which
yields

 

torb

tGW
’ 0:21

�
dmin

d

�
5=2
�

�
0:135

�
: (8)

Here � � MBHMNS=�MBH �MNS�2 and dmin denotes the
closest binary separation we computed in this paper (the
value of the last line in Table I). It is reasonable to ap-
proximate the binary orbit as circular as long as the ratio
torb=tGW is significantly smaller than unity (compare the
discussion in [42]). For d � dmin, we have torb � 0:2tGW,
and for larger separations the ratio torb=tGW falls off with
d�5=2. For these separations it is therefore reasonable to
neglect the inspiral and construct binaries in circular orbits
and in the presence of a helical Killing vector.

In summary, we compute sequences of BHNS binaries
with comparable mass companions. We solve the con-
straint equations of general relativity in the conformal
thin-sandwich decomposition, subject to equilibrium black
hole boundary conditions, together with the relativistic
equations for hydrodynamic equilibrium in a stationary
spacetime. We construct irrotational binaries, adopt a pol-
ytropic equation of state for the neutron star, and choose
the background geometry to be a Schwarzschild black hole
expressed in Kerr-Schild coordinates. As an example, we
present results for a binary of mass ratio MBH

irr =M
NS
B � 5

and neutron star of compaction MNS
ADM;0=R0 � 0:0879. To

the best of our knowledge, these are the first models of
quasiequilibrium, circular orbit, relativistic BHNS binaries
with companions of comparable mass.
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