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We present the first fully-nonlinear numerical study of the dynamics of highly-spinning-black-hole
binaries. We evolve binaries from quasicircular orbits (as inferred from post-Newtonian theory), and find
that the last stages of the orbital motion of black-hole binaries are profoundly affected by their individual
spins. In order to cleanly display its effects, we consider two equal-mass holes with individual spin
parameters S=m2 � 0:757, both aligned and antialigned with the orbital angular momentum (and compare
with the spinless case), and with an initial orbital period of 125M. We find that the aligned case completes
three orbits and merges significantly after the antialigned case, which completes less than one orbit. The
total energy radiated for the former case is � 7% while for the latter it is only � 2%. The final Kerr hole
remnants have rotation parameters a=M � 0:89 and a=M � 0:44 respectively, showing the unlikeliness of
creating a maximally rotating black hole out of the merger two highly spinning holes.
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Introduction—Spinning black holes play an important
role in some of the most energetic astrophysical phe-
nomena in the universe. They form part of the main engine
of gamma-ray bursts, being much more efficient at con-
verting matter into radiation than nonspinning-black holes.
They are also responsible for the radio jets observed in
active galactic nuclei, and the merger of two nonaligned
spinning-black holes is the likely explanation for the rapid
directional changes observed in these jets when galaxies
collide [1]. Recent estimates [2] of the spin of stellar mass
black holes by spectral fitting of the x-ray continuum set
the rotation parameter of two dynamically confirmed black
holes at a=M� 0:75. Accretion, of course, can spin up
black holes, reaching up to a submaximal spin rate of
a=M� 0:95, when magneto-hydrodynamics is taken into
account [3,4]. Other models using the combined effects of
gas accretion and binary-black-hole coalescence suggest
that black holes may be rapidly rotating in all epochs [5].

Recently new numerical techniques to solve the field
equations of general relativity have been developed [6–10]
that make it possible to stably evolve black-hole binaries
for several orbits and to compute the corresponding gravi-
tational waveforms [11–13]. Numerical simulations of
unequal-mass black-hole binaries, along with the calcula-
tion of the merger kicks, have been reported in Refs. [14–
16]. While research has been mainly focused on initially
nonspinning-black holes, there are important questions to
be addressed when we consider highly-spinning-black
holes (see [17] and references therein).

In this paper we study how the emission of gravitational
radiation affects the orbital trajectory of highly-spinning,
equal-mass black holes as a function of the spin orienta-
tion. In order to maximize the effect, we consider black-
hole binaries with both spins aligned and antialigned with
the orbital angular momentum, as well as the correspond-
ing spinless case. We shall consider quasicircular orbit
initial data with the same initial orbital period (as deter-

mined by the third post-Newtonian (3PN) expansion). In
this way differences in the subsequent evolution can be
attributed to the differences in the generation and emission
of gravitational radiation.

In Ref. [18] the numerical evolutions of spinning bi-
naries were studied for relatively modest values of the
spins (� 0:25 � S=m2 � 0:17, m being the horizon mass
of the individual holes) using the ‘‘Lazarus’’ technique of
matching full numerical evolutions to perturbation theory.
In those evolutions the spin of the remnant Kerr hole
increased with S=M2 for the aligned case. Extrapolation
to maximally spinning individual holes indicated that the
remnant would remain submaximal for S=m2 < 0:85. We
will revisit this scenario, now reaching much higher values
of the individual spins in order to make a more accurate
statement.

Initial data—We use the Brandt-Brügmann puncture
approach along with the elliptic solver BAM_Elliptic
[19,20] to compute initial data. Table I gives our choice
of initial parameters. We have taken a fiducial angular
frequency of M� � 0:05, which corresponds to an orbital
period of approximately T � 125M. This, accordingly to
our previous simulation for nonspinning-black holes [11]
makes the binary complete more than a full orbit before the
black holes merge. We choose individual spins S �
�0:757 m2 (as measured using isolated horizon techniques
[21]) to guarantee that the total angular momentum in the
aligned case exceedsM2, the maximum allowed value for a
common horizon to form. The gravitational radiation emit-
ted should efficiently carry out angular momentum from
the system in order for the cosmic censorship conjecture to
hold [22]. We can thus begin to explore its validity here,
and this will be the subject of a more detailed study in a
forthcoming paper by the authors.

With our choices of the spins and the orbital angular
frequency, we determine the remaining orbital parameters
by imposing quasicircular orbits according to the second
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post-Newtonian expansion of spinning particles [23] ex-
tended by the third-order orbital corrections [24]. We then
give those parameters to the exact Bowen-York [25] solu-
tion of the momentum constraints and solve for the con-
formal factor of the (conformally flat) three-metric to
complete our choice of the initial data. This post-
Newtonian data should produce orbits with acceptably
small eccentricities, as can be seen when comparing the
zero-spin parameters in Table I with others proposed in the
literature (e.g. [26]). We have also briefly studied the
effects of a different choice of the form of the initial data
(Kerr conformal extrinsic curvature) for spinning-black
holes, as proposed in Ref. [27]. However, the spurious
radiation in the initial data is dominated by the momentum
terms and both data sets give nearly identical waveforms
(see Fig. 3).

Techniques—We evolved these black-hole-binary data
sets using the LazEv [28] implementation of the moving
puncture approach [9,10]. In our version of the moving
puncture approach [9] we replace the BSSN [29–31] con-
formal exponent�, which is infinite on the punctures, with
the initially C4 field � � exp��4��. This new variable,
along with the other BSSN variables, will remain finite
provided that one uses a suitable choice for the gauge.

We obtained accurate, convergent waveforms by evolv-
ing this system in conjunction with a modified 1	 log
lapse, a modified Gamma-driver shift condition [9,32],
and an initial lapse �� �4

BL . The lapse and shift are
evolvedwith �@t��i@i����2�K, @t�a�Ba,and@tBa�
3=4@t~�

a��Ba. These gauge conditions require careful
treatment of � near the puncture in order for the system
to remain stable [9,11]. For our version of the moving
puncture approach, we find that the product � ~Aij@j� has
to be initially C4 on the puncture. In the spinning case, ~Aij

is O�r3� on the puncture, thus requiring that � / r3 to
maintain differentiability. We therefore choose an initial
lapse ��  �4

BL (which is O�r4� and C4 on the puncture). In
particular, ��t � 0� � 2=�1	  4

BL� reproduces the iso-
tropic Schwarzschild lapse at large distances from the
hole. The initial values of �i and Bi were set to zero.

The minimum resolution required to accurately model
the dynamics of the merger scales with mp. We would
expect satisfactory results for a minimum resolution of h �
M=30 (based on the nonspinning case, where satisfactory
results were obtained with h � M=21, and the ratio of the
puncture masses in the spinning and nonspinning cases),M
being the total ADM mass. However, the additional power
of 1=r introduced to Kij because of spin, necessitates even
higher resolution (we estimate M=40�M=50) to get
highly accurate waveforms.

Results—We evolved the ‘‘�� 0:757’’ configuration
using grid sizes of 3202 
 640, 3842 
 768, and 4482 

896 and resolutions of M=25, M=30, and M=35 respec-
tively. We used a multiple transition fisheye [11] to push
the physical boundaries to 134M. We calculate  4 in the
Quasi-Kinnersley frame using the recently developed tech-
niques of Ref. [33] that allow a meaningful extraction
closer to the hole. In Fig. 1 we show the real part of the
�‘ � 2; m � 2� mode of r 4 for the �� 0:757 case (ex-
tracted at r � 10M) for these resolutions, as well as a
convergence plot of these data. The waveforms show
fourth-order convergence up to t� 110M. The phase error
from the h � M=25 run becomes too large to measure a
meaningful convergence rate after t� 110M. Higher reso-
lution runs will remain convergent, as demonstrated by the
better phase agreement between the M=30 and M=35 runs.
We extract the waveform at 10M to minimize the effects of
the extreme fisheye deresolution (which is too strong in the
far field to get accurate waveforms). After a time trans-
lation, the waveforms from the three runs only differ by a
constant phase factor. We calculate this factor and plot the

TABLE I. Initial data for quasicircular orbits of black-hole
binaries with spin. The holes have proper horizon separation l,
with puncture locations �0;�y; 0�, linear momenta ��P; 0; 0�,
and spin �0; 0; S�. J is the total angular momentum, L is the
orbital angular momentum, � is the orbital frequency, mp is the
individual puncture mass. All in units of the ADM mass M.

S=m2 		 0:757 0.00 �� 0:757

l=M 9.27 9.62 10.34
y=M 3.0595 3.280 3.465
P=M 0.1291 0.1336 0.1382
S=M2 	0:1939 0.000 �0:1924
J=M2 1.1778 0.8764 0.5729
L=M2 0.7900 0.8764 0.9577
M� 0.0500 0.0500 0.0500
mp=M 0.3344 0.4851 0.3344
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FIG. 1 (color online). The real �‘ � 2; m � 2� component of
r 4 in the Quasi-Kinnersley tetrad at r � 10M for the ��
0:757 case. The lower inset shows the differences r 4�M=25� �
r 4�M=30� (solid line) and r 4�M=30� � r 4�M=35� (dotted
line), the latter rescaled by 2.33 to demonstrate fourth-order
convergence. The lack of convergence for t < 10M is due to
roundoff effects in the initial data solver. The upper inset shows
the real part of the phase-corrected �‘ � 2; m � 2�mode of  4 at
the same radius. Note the near-perfect agreement after t � 45M.
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phase-corrected waveforms [12,34] in the upper inset of
Fig. 1. Note the near-perfect agreement both in the orbital
and plunge waveforms. The waveforms calculated at r �
10M do not yield accurate estimates for the radiated energy
(as expected, since the observer is still in the near zone).
However, as shown below, we obtained highly accurate
estimates for the radiation by examining the remnant hori-
zon. In order to obtain accurate measurements for the
radiated energy and angular momentum from the wave-
form, one needs to use a weaker fisheye deresolution in the
outer region, and carefully adjust the gauge so that the
waveform is highly accurate at large radii (r� 50M).

The relatively large phase errors in this spinning case
compared with our zero-spin simulations [11] are due to
the fact that the effective resolution in the spinning case is
smaller due to the smaller value of mp as well as the lower
order differentiability of the spinning data compared to
zero-spin. A likely explanation is that numerical dissipa-
tion (which more strongly affects this higher frequency
data) causes the merger to happen sooner than expected.
This dissipation decreases with resolution.

We used Jonathan Thornburg’s AHFINDERDIRECT thorn
[35] to calculate the apparent horizons. We find that the
common horizon is first detected at t � 105:5M and has a
mass of MH � 0:978� :001M and rotation parameter of
a=MH � 0:443� 0:001. During the merger �2:2� 0:1�%
of the mass and �26� 2�% of the angular momentum are
converted into radiation.
MH and a=MH were obtained from the asymptotic

values of the horizon surface area and the ratio of the polar
to equatorial circumferences (see Refs [9,35,36]). The
ranges given for these quantities arise from the uncertain-
ties in obtaining these values at finite time, and are inde-
pendent of resolution. Thus, these horizon parameters give
an accurate and robust measurement (even in the under-
resolved h � M=25 case) for the radiated mass and angular
momentum.

Figure 2 shows the trajectories of the punctures for the
�� 0:757 configuration as well as the projection of the
first common horizon on the xy plane. It is evident from the
waveform and the track that the binary undergoes �0:9
orbits before merging.

We evolved the ‘‘		’’ configuration with a grid size of
3842 
 768 and resolution of M=30. We used multiple
transition fisheye to push the boundaries to 159M. In
Fig. 3 we show the �‘ � 2; m � 2� mode of r 4 in the
Quasi-Kinnersley frame for the ‘‘		 0:757’’ case, again
extracted at r � 10M. Note the ‘‘plunge’’ waveform is
delayed by �120M compared to the ‘‘�� 0:757’’ case.
The waveform shows approximately six periods of orbital
radiation prior to the plunge waveform, indicating that the
binary completed approximately three orbits.

We repeated the ‘‘		 0:757’’ case with a gridsize of
4482 
 896 and resolution ofM=30 to force the boundaries
to 266M. This new configuration allows us to accurately
obtain the horizon parameters (since they are not contami-

nated by the boundary), but is too coarse in the far-field
region to produce accurate waveforms. The first common
horizon was detected at t � 232:5M. In this case the final
horizon had a mass of 0:933� :001M and spin of 0:890�
:002 (indicating that �6:7� 0:2%� of the mass and �34�
1�% of the angular momentum are radiated away). Table II
gives a summary of these results. Note that the above
values for the radiated energy are in rough agreement
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FIG. 2 (color online). The puncture trajectories on the xy plane
for the ‘‘��’’ case with resolution M=35. The spirals are the
puncture trajectories with ticks every 10M of evolution. The
dashed- dotted ‘‘peanut shaped’’ figure is the first detected
common horizon at 105:5M. The (extrapolated) period of the
last orbit is around 120M.
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FIG. 3 (color online). The real part of the �‘ � 2; m � 2�
mode of r 4 in the Quasi-Kinnersley frame at r � 10M from
the ‘‘		 0:757’’ configuration. (The small circles are the early-
time waveform from conformal Kerr data.) The top inset shows a
magnified view of the early orbital motion. Note that the
‘‘		 0:757’’ waveform has 6 wavelengths of orbital motion
prior to the plunge waveform (at t� 232:5M), indicating that the
binary orbited approximately 3 times before merging. The
bottom inset shows the real (solid) and imaginary (dotted)
components of the (2,2) component of the strain h calculated
at r � 10M.
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with those estimated using the effective one body approxi-
mation for maximally spinning holes [37].

Figure 4 shows the track for the ‘‘		 0:757’’ configu-
ration. Note that the spiral is much tighter than in the
‘‘�� 0:757’’ configuration, and that the binary completes
roughly 3 orbits before the common horizon forms. Note
also that the first common horizon is much smaller in this
case (in these coordinates) than in the ‘‘�� 0:757’’ case.

To demonstrate consistency with the general relativity
field equations, we calculated the Hamiltonian constraint
violation. The constraint converges to fourth-order outside
a small region surrounding the puncture (the constraint
violation on the nearest neighboring points to the puncture
is roughly independent of resolution, but this nonconverg-
ing error does not propagate outside the individual hori-
zons). Figure 5 shows the Hamiltonian constraint
violations for the ‘‘��’’ configuration along the x axes
at t � 45M and along the y axis at t � 80M (at the time
when the punctures cross the x axis and 5M after the
punctures cross the y axis for the second time) for the
M=30 and M=35 runs. The constraint is convergent every-
where except points contaminated by boundary errors
(these points have been removed from the plot) and at
the points closest to the puncture.

We complete our initial study with the corresponding
spinless case as a reference point. For details on the accu-
racy and evolution of the spinless case see Ref. [11]. We
evolved the zero-spin case with a resolution ofM=22:5 and
gridsize of 3202 
 640 (the outer boundary was located at
216M). The first common horizon formed at t � 161M
with mass �0:965� :001�% and spin a=M � �0:688�
:001�. This corresponds to a radiated energy and angular
momentum of �3:5� 0:1�% and �26:9� 0:1�%
respectively.

Discussion—In this paper we have shown that the
‘‘moving puncture’’ approach can be used to accurately
simulate the inspiral orbit of spinning-black-hole binaries.
We found that the spin-orbit coupling delays the onset of
the plunge phase (compared to the nonspinning case) when
the spins are aligned with the orbital angular momentum,
while in the antialigned case the plunge phase is hastened.
In all cases, the black holes merge to form a single Kerr
black hole with rotation parameter a=M < 1.

A fit of the remnant spin to the spins of the initial black
holes leads to the simple extrapolation formula a=M �
0:688	 0:298�S=m2� � 0:038�S=m2�2. Although more ac-
curate simulations are needed, these results show that it
is very unlikely to form a nearly maximally rotating black
hole out of the merger of two highly-spinning ones.
Our results reinforce the same qualitative conclusions
reached with the Lazarus approach [18], and are consistent
with those in Refs [17,37]. Extrapolation of the radiated
energy to maximally rotating black holes with the fit

TABLE II. Results of the evolution as determined from the
remnant horizons. The horizon formed at t � 224:5M for the
‘‘		 0:757’’ configuration, t � 105:5M for the ‘‘�� 0:757’’
configuration, and t � 161M for the spinless configuration.

S=m2 Erad=MADM Jrad=JADM a=MH

		 0:757 �6:7� 0:2�% �34� 1�% 0:890� 0:002
�� 0:757 �2:2� 0:1�% �26� 2�% 0:443� 0:001
0.00 �3:5� :1�% �26:9� 0:1�% 0:688� 0:001
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FIG. 4 (color online). The puncture trajectories on the xy plane
for ‘		’ configuration with resolution M=30. The spirals are the
puncture trajectories with ticks every 10M of evolution. The
dashed-dotted ‘‘peanut shaped’’ figure is the first detected com-
mon horizon at t � 232:5M. The period of the last orbit is
around 36M. The last orbit begins when the punctures are
located at 1:4M from the origin (in these coordinates).
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FIG. 5 (color online). The Hamiltonian constraint violation at
t � 45M along the x axis (top plot) and at t � 80M along the y
axis (bottom plot) for the M=30 and M=35 runs (the latter
rescaled by �35=30�4) for the ‘‘��’’ configuration. The punc-
tures crossed the x axis at t � 45M and crossed the y axis for the
second time at t � 75M. Note the reasonable fourth-order con-
vergence (except at the puncture). Points contaminated by
boundary errors have been excluded from the plot. The high
frequency violations near the numerical coordinate y=M � �9
are due to the extreme fisheye deresolution near the boundary,
and converge with resolution.
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Erad=M�3:5	3�S=m2�	152=90�S=m2�2 set it near 8.2%,
not far from the assumed 10% in Ref. [17] a decade ago.

For the ‘‘�� 0:757’’ case the final orbit lasts �120M
starting at a separation of 7M in coordinate space, while for
the ‘‘		 0:757’’ case we have found that the duration of
the last orbit is �36M at a coordinate separation of 2:8M.
It is worth noting from [38], that the orbital period asso-
ciated with the ISCO for the ‘‘++0.17’’ case is roughly
27M at a coordinate separation of 1:6M, and that no ISCO
was found for higher spin configurations. This highlights
again the importance of the gravitational radiation in the
late binary black hole dynamics which is not captured in
the determinations of the ISCO. On the other hand, the
dependence of the ISCO on spin correctly implies that the
‘‘		’’ configurations are more stable at close separations
than the ‘‘��’’ configurations. This stability property is
observed in the significantly tighter spiral displayed in
Fig. 4.

The post-Newtonian equations of motion [23] indicate
that the leading spin-orbit interaction is of 1.5PN order,
while the spin-spin interaction is of 2PN order. It is the

spin-orbit interaction (attractive/repulsive for �� =		
configurations, respectively) responsible for the longer
stability of the aligned spin binary.

Many outstanding issues involving spinning-black-hole
scenarios remain to be explored. We plan to study some of
them next, including additional values of the individual
spins for the ‘‘		’’ cases in order to better extrapolate the
results to the limiting maximally rotating individual holes,
as well as unaligned spins to study precessional effects.
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