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A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible
with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a
consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and
that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark
energy required to achieve this might be provided by point symmetric domain wall network with P=� �
�2=3, although the concept is more general. We illustrate this with reference to a model with cubic
symmetry and discuss various aspects of the model.
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Observations of the angular power spectrum of the
cosmic microwave background (CMB) at intermediate
scales, multipoles 50< ‘< 1000, made by the
Wilkinson Microwave Anisotropy Probe (WMAP) satellite
[1,2] and other experiments combined with observations of
type Ia supernovae at high redshift [3–7] and the galaxy
power spectrum [8,9] appear to have confirmed the basic
tenets of the �CDM model based on adiabatic initial
conditions created during inflation. However, observations
on larger scales, while nominally compatible with scale
invariance, and hence with the �CDM model, appear to be
incompatible with the assumptions of Gaussianity, iso-
tropy, or both [10–14].

Of particular interest here are the North-South asymme-
try in estimates of the power spectrum in the direction of
�l; b� � �57; 10� and the so-called ‘‘axis-of-evil’’ in the
derived multipole coefficients in a coordinate system ori-
entated such that the North pole is in the direction of
�l; b� � ��110; 60�, which is orthogonal to the North-
South asymmetry. These results have led T. Jaffe et al
[15] to consider the possibility that the observed CMB
has two sources: a Gaussian component based on approxi-
mately scale invariant adiabatic fluctuations, and a tem-
plate created from a low density Bianchi VIIh universe.
They found that such a model with the template oriented
with a rotation axis in the direction �l; b� � �222;�62�,
shear �=H0 � 2:4� 10�10 and right-handed vorticity
!=H0 � 6:1� 10�10 fitted the observed anisotropies.
This result is independent of frequency, which appears to
rule out an obvious galactic origin for this effect and,
therefore, suggests an anisotropic universe which is also
rotating. There is also some evidence for these phenomena
in the COBE data but with lower signal-to-noise. A local
universe explanation of this phenomenon has been sug-
gested [16], but this appears to be unable to explain the
required amplitude.

While this work illustrates a fundamental aspect of the
data, the two components used in this analysis are logically
incompatible from a theoretical point of view: the first is
based on a flat universe created during inflation and the

second is an anisotropic universe with subcritical matter
density. In more recent work [17], it has been shown that
one cannot create a sufficiently strong effect to explain the
data when the universe is flat and dominated by a cosmo-
logical constant. This begs the question which we attempt
to address in this short paper: can there be a cosmological
origin of the observed anisotropy and can it be achieved
within a dark energy/cold dark matter (CDM) model? A
possible solution, we suggest, lies in the realization that the
stress-energy tensor of the cosmic fluids need not be rota-
tionally invariant at perturbative order, and that the stan-
dard scalar-vector-tensor (SVT) split of the linearized
gravity and conservation equations can only be made
when the full set of isometries of 3D Euclidean space are
assumed. This need not be the case if the dark energy
component, rather than being a cosmological constant, is
described by the dynamics similar to those of an elastic
continuum solid [18,19] which might have a microscopic
realization in a static domain wall configuration where the
density � and the pressure P are related by P=� � �2=3
and there is sufficient rigidity [20,21] to achieve stability.
The current constraints on such a scenario are presented in
Ref. [22] under the assumption of isotropy.

The standard lore of cosmological perturbation theory
(see, for example, Ref. [23]) is to decompose the perturbed
stress-energy tensor for each of the cosmological fluids,
�T��, into eigenfunctions of the rotationally invariant
Laplacian. In particular, one typically writes

 

�T�� � ���� �P�u
�u� � �P�

�
�

� ��� P��V�u� � u
�V�� ���

�; (1)

where u� is a unit vector specifying the fluid flow lines
(u�u� � 1), �� is the density perturbation, �P is the
pressure perturbation, V� (u�V� � 0) is the velocity per-
turbation orthogonal to the flow, and ��

� (��
�u� � 0,

��
�u� � 0, and ��

� � 0) is the anisotropic stress per-
turbation. If one transforms the spatial coordinates to
Fourier space with wave vector ki � kk̂i, then one can
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perform the SVT split for the velocity perturbation as Vi �
VSk̂i � V

V1l̂i � V
V2m̂i and the anisotropic stress perturba-

tion as

 �ij � �k̂ik̂j � �ij=3��S � k̂i��V1l̂j ��V2m̂j�

� k̂j��V1l̂i ��V2m̂i� ����l̂il̂j � m̂im̂j�

����l̂im̂j � m̂il̂j�; (2)

where l̂i and m̂i are unit vectors which form an orthonor-
mal triad with k̂i. VS is the irrotational velocity and VV1

and VV2 are the components of the vorticity. �S is the
scalar anisotropic stress, �V1 and �V2 are the vector
anisotropic stresses, and �� and �� are the tensor aniso-
tropic stresses.

The metric perturbations can also be split in a similar
way and due to rotational invariance the perturbed equa-
tions of motion can be split up into three noninteracting
blocks, the scalars, vectors, and tensors, which can be
evolved separately. In the case where the initial conditions
are density waves (scalars), then the vorticity (vectors) and
the gravitational waves (tensors) will remain zero, and the
statistical rotational invariance and the Gaussianity of the
initial fluctuations will be maintained at linear order. We
stress that this split, while well motivated, particularly in
the context of describing the radiation and CDM compo-
nents, is only an assumption. We will show that in a more
general treatment of cosmological fluids, as might be
required to describe dark energy, one need not make this
assumption.

Except for the case of a cosmological constant, it is
necessary to consider the evolution of perturbations in all
other fluid based dark energy models since it is imperative
to maintain energy conservation. This was first considered
in the context of scalar field dark energy in Ref. [24] and a
number of recent works (for example, Refs. [25,26]) have
developed the treatment of this issue. Scalar field fluids are
not adiabatic since the perturbations in the scalar field
allow for the CDM and dark energy to have different rest
frames. If one wishes to consider general adiabatic fluids,
then one has to consider fluids whose macroscopic
Lagrangian L is just a function of the metric. In this case
the stress-energy tensor is given by the appropriate func-
tional derivative of the Lagrangian with respect to the
metric and one can also define a rank four tensor,
W����, which is the second functional derivative of the
Lagrangian, such that

 T�� � �2jgj�1=2 �
�g��

�jgj1=2L�; (3)

 W���� � 4jgj�1=2 �
�g��

�
�g��

�jgj1=2L�

� �2jgj�1=2 �
�g��

�jgj1=2T���; (4)

where jgj is the determinant of the metric.
One can rewrite (4) as �T�� � � 1

2 �W
���� �

T��g����g��, where the perturbation in the metric is
given in terms of the background metric perturbation h��
and the Lagrangian perturbation of the fluid �� (i.e. the
perturbation of the field in terms of a coordinate system
which itself is dragged along by the displacement by ��)
by �g�� � h�� � 2r�����. Since the flow is defined rela-
tive to constant density lines of the fluid, one can then
decompose [27] the stress-energy tensor as T�� �
�u�u� � P�� and the second functional derivative as
 

W���� � E���� � P��u�u� � P��u�u� � P��u�u�

� P��u�u� � P��u�u� � P��u�u�

� �u�u�u�u�; (5)

where P�� (P��u� � 0) is the pressure tensor and E����

(which satisfies E����u� � 0 and E���� � E�������� �
E����) can be interpreted as an elasticity tensor [28] which
in general has 21 components. One of these, the bulk
modulus, is specified by the pressure and the other 20 are
shear moduli. It is this tensor which will give us a general
parametrization of linearized perturbations in these adia-
batic dark energy models. A detailed exposition of the
isotropic case, where there is just a single shear modulus,
is presented in Ref. [29], it suffices to say that stability
requires the shear modulus to be sufficiently large to over-
come the natural instability of fluids with negative
pressure.

Here, we will be concerned with anisotropic models
where, by analogy to the standard theory of elasticity in
solids, we can deduce that all the possible cases can be
completely classified in terms of the well-known Bravais
lattices. In particular, the perturbations must have cubic,
hexagonal, rhombohedral, tetragonal, orthorhombic,
monoclinic, or triclinic symmetry [28]. In the rest of this
work we will consider for definiteness the cubic case for
which the pressure is isotropic P�� � P���, where ��� �
g�� � u�u�, and there are two nonzero shear moduli �L,
�T plus the bulk modulus defined by � � ��� P� dPd� . If
one defines 1 � xx, 2 � yy, 3 � zz, 4 � yz, 5 � xz, 6 �
xy then the nonzero components of the elasticity tensor are
given by E11 � E22 � E33 � �� P� 4

3�L, E12 � E23 �

E31 � �� P� 2
3�L, and E44 � E55 � E66 � P��T. If

�L � �T this returns to the isotropic case considered in
Ref. [29]. Moreover, motivated by domain walls [18,19],
we will concentrate our numerical work on the case ofw �
P=� � �2=3. The basic qualitative features of our analy-
sis will be present in more general cases.
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From the point of view of the present discussion, the
important aspect of these cubic models is that the three
independent speeds of wave propagation, commonly called
sound speeds, depend on the direction of the wave vector,
defined here in terms of the polar angles 	 and
 [21], as is
the case in crystals. By requiring that each of the sound
speeds are greater than zero for all directions, we showed
that the lattice will be stable to continuum modes if both
�L=� > 1=6 and �T=� > 1=6. Moreover, assuming
Nambu-Goto walls, we have computed the two moduli
for the three primitive cells with cubic symmetry, the
Wigner-Seitz cells of simple cubic, body-center cubic
(BCC), and face-centered cubic (FCC) which correspond
to polyhedral cells made from cubes, truncated octahedra,
and rhombic dodecahedra. The stability conditions are
violated by the BCC cell, and the other two lattices have

zero modes, meaning that the sound speed is zero in at least
one direction. In this work we will assume that a stable
structure can be constructed from a compound (as opposed
to primitive) cell and discuss the phenomenology of the
resulting perturbation equations for stable lattices.

The equation of motion for �i (using a gauge where
��u� � 0) is modified from that presented in Ref. [29] to

 

��� P�� ��i �H�i� � 3�H _�i � ��@i@j�j � @ih=2�

��L�@j@j�i � @i@j�j=3� @jhij � @
ih=3� � ��Fi;

(6)

where H is the conformal time Hubble parameter and we
have used the synchronous gauge, h is the trace of the
spatial metric perturbation hij and

 Fi �
�@y@

y � @z@
z��x � @x�@y�

y � @z�
z� � @yhxy � @

zhxz
�@x@x � @z@z��y � @y�@x�x � @z�z� � @xhyx � @zhyz
�@x@

x � @y@
y��z � @z�@x�

x � @y�
y� � @xhzx � @

yhzy

0
B@

1
CA; (7)

where Fi represents the additional terms due to cubic
symmetry. The degree of anisotropy is quantified by �� �
�T ��L which is zero in an isotropic model. If both �L

and �T are zero then this equation describes perturbations
in a perfect fluid.

If �� � 0, one can perform the standard SVT split since
the isometries of Euclidean space allow one to define pure
SVT modes. However, if one attempts to perform the same
split in the more general case, then the SVT sectors, which
are usually decoupled, can source each other and initial
conditions which are comprised of pure scalar, adiabatic
modes can excite vector and tensor modes spontaneously.
In order to illustrate this we have computed the power
series solution to the equations of motion (6) coupled to
the relevant linearized Einstein equations, plus those for
the perturbations to radiation, CDM, and dark energy (with
w � �2=3) components, with initial conditions �iDE �
_�iDE � 0 and hij � 6k�3=2�k̂ik̂j �

1
3�ij�. The first term in

the expansion for �iDE is

 �iDE �
k3=2

12

A Bk̂xk̂y Bk̂xk̂z
Bk̂xk̂y A Bk̂yk̂z
Bk̂xk̂z Bk̂yk̂z A

0
B@

1
CA

k̂x
k̂y
k̂x

0
B@

1
CA�4; (8)

where A � 1
3 �

1
4� �̂L�, B � ���̂=2, �̂L � �L=�, �̂T �

�T=�, and ��̂ is similarly defined.
One can define the ‘‘would-be’’ scalar displacement

�S
DE � k̂i�iDE which is given to the same order by

 �S
DE �

k3=2

144
��1� 4�̂L� � 12��̂�k̂2

xk̂
2
y � k̂

2
yk̂

2
z � k̂

2
z k̂

2
x�	�4:

(9)

The first term, which is independent of the direction of k̂i,

is what was computed in the isotropic case [29], but the
second term, which is explicitly symmetric under cubic
transformations, is direction dependent. Moreover, the
equivalent vector displacement is nonzero if �� � 0.

One can define the density contrast in the dark energy
component to be �DE � ��1� w��k�

S
DE �

1
2h� and its

velocity perturbation to be ViDE �
_�iDE � VS

DEk̂
i �

VV1
DEl̂

i � VV2
DEm̂i. This allows the definition of the total

density contrast �T � �DE�DE ��m�m ��r�r in terms
of the densities of the dark energy, CDM, and radiation
components relative to critical, which is responsible for the
gravitational potential and hence all observational effects,
whether they are in the CMB or the galaxy distribution.
From this we can then define the total power spectrum
PT � j�Tj

2.
We have evolved the equations of motion numerically

for w � �2=3, �̂L � 0:18, and ��̂ � 0:01, which were
chosen so that each of the moduli satisfy the stability
criteria. Figure 1 shows that time evolution of the scalar
and vector velocities of the dark energy component, jVS

DEj

and �jVV1
DEj

2 � jVV2
DEj

2�1=2, for k � 10�3 Mpc�1 in the di-
rection 	 � �=2 and 
 � �=8, and also the vector and
tensor metric components. The important point is that the
vector velocity and these metric perturbations would be
zero if ��̂ � 0, but are clearly nonzero here illustrating
the mixing of SVT modes. In Fig. 2 we present the angular
distribution of PT and jVV1

DEj
2 � jVV2

DEj
2 at the present day

for k � 10�3 Mpc�1. It is clear that there are cubic anisot-
ropies at the level of a few percent in the distribution of PT,
and that the vector velocity is highly anisotropic, being
zero in some directions and large in others.

In order to quantify the amplitude of the effect as a
function of ��̂ we have computed two average quantities
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as functions of k. First is the normalized variance of the
power spectrum over the angular directions K, which is
related to the kurtosis of the density field. This determines
the level of anisotropy, or non-Gaussianity [30] expected.
The second is the ratio of the vector and scalar velocities of
the dark energy R, which quantifies the level of local
rotation. Formulae for K and R are given by

 K �
hP2

Ti � hPTi
2

hPTi
2 ; R�

�
hjVV1

DEj
2i � hjVV2

DEj
2i

hjVS
DEj

2i

�
1=2
;

(10)

where h. . .i corresponds to the average over the sphere.

These quantities are plotted in Fig. 3 for the range of
values of the ��̂. We see that the level of anisotropy peaks
at around k
 10�3 Mpc�1 and increases with ��̂ as one
would expect. This is because, for the specific choice of �̂L

which we have used, the Jeans length of the dark energy
component is a substantial fraction of the horizon.
Therefore, when a particular mode comes inside the hori-
zon it only grows for a short period of time and the
anisotropy is maximal just inside the present horizon,
that is, on large scales and for low multipoles of the
CMB. The ratio of the vector and scalar velocities is
constant on very large scales, the amplitude again increas-
ing with ��̂, and falls off on smaller scales since the vector
(vortical) velocity component decays once the mode comes
inside the horizon.

Therefore, we have shown that in principle the specific
model which we are discussing gives rise to the anisotropy
on the very largest scales, primarily since the dark energy is
dominating when these scales cross the horizon. Quali-
tatively, this kind of phenomenon has been observed in the
WMAP data. It is clear from the preceding discussion that
the power spectrum measured in small regions will have an
excess variance over an isotropic, Gaussian case. More-
over, due to the point symmetry, it is inevitable that differ-
ent Fourier modes will be coupled together on large scales
inducing something qualitatively similar to an ‘‘axis-of-
evil.’’ We should emphasize that we do not claim at this
stage that we have shown any quantitative agreement

5.1 5.2 5.3 5.4 5.5

x 10
10

1 2 3 4 5

x 10
5

FIG. 2 (color online). PT (top) and jVV1
DEj

2 � jVV2
DEj

2 (bottom)
at k � 10�3 Mpc�1 as a function with 	 and 
 plotted in the
Hammer-Aitoff projection when w � �2=3, �̂L � 0:18, and
��̂ � 0:01. Note the anisotropy of the PT and that �jVV1

DEj
2 �

jVV2
DEj

2�1=2 is nonzero. Both have obvious cubic symmetry.

FIG. 1. Perturbation evolution for k � 10�3 Mpc�1 for a com-
ponent with w � �2=3, �̂L � 0:18, and ��̂ � 0:01 in the
directions 	 � �=2 and 
 � �=8. On the top is the scalar
velocity of the dark energy component jVS

DEj (solid line) and
the vector velocity component �jVV1

DEj
2 � jVV2

DEj
2�1=2 and on the

bottom are the vector (dotted line) and tensor metric compo-
nents. Note that the vector and tensor perturbation are nonzero
even though the initial conditions were pure scalar.
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between the predictions of this model and the observed
anomalies. This is the next step in our work where we will
compute the correlation matrix halma�l0m0 i. Finally, we make
the disclaimer that we have also not yet shown that such a
domain wall lattice can be formed in any reasonable sce-
nario although we believe it to be possible. Nonetheless,

we feel that the work presented here illustrated an interest-
ing avenue for future investigation.

It is a pleasure to thank Elie Chachoua and Brandon
Carter for helpful comments and their collaboration on
related work.
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