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We consider electrodynamics on a noncommutative spacetime using the enveloping algebra approach
and perform a nonrelativistic expansion of the effective action. We obtain the Hamiltonian for quantum
mechanics formulated on a canonical noncommutative spacetime. An interesting new feature of quantum
mechanics formulated on a noncommutative spacetime is an intrinsic electric dipole moment. We note,
however, that noncommutative intrinsic dipole moments are not observable in present experiments
searching for an electric dipole moment of leptons or nuclei such as the neutron since they are spin
independent. These experiments are sensitive to the energy difference between two states and the
noncommutative effect thus cancels out. Bounds on the noncommutative scale found in the literature
relying on such intrinsic electric dipole moments are thus incorrect.
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I. INTRODUCTION

Gauge theories formulated on a canonical noncommu-
tative spacetime have recently received lots of attention
when they were shown to appear in a certain limit of string
theory (see e.g. [1]). This is not, however, the only moti-
vation to consider a noncommutative spacetime. A natural
way to implement the notion of minimal length [2] in
gauge theories and gravitational theories is to formulate
these models on a noncommutative spacetime. The aim of
this paper is to reconsider the bounds on spacetime non-
commutativity. We shall be dealing with the simplest ex-
ample one can think of: the canonical noncommutative
spacetime.

The idea of spacetime noncommutativity is not new and
was first discussed by Snyder [3] in the early days of
quantum field theory at a time when these theories were
still plagued by infinities. The motivation to consider
spacetime noncommutativity was that introducing a cutoff
could help one to deal with infinities. Nowadays we know
that the quantum field theories relevant for the electroweak
and strong interactions are renormalizable and thus cutoff
independent, but modifying spacetime at short distances
might be relevant for quantum gravity, whatever this theory
might be. It is also well known that noncommuting coor-
dinates are relevant to nature, as soon as one restricts a
system to the first Landau level. A textbook example is an
electron in a strong magnetic field.

In this work we shall derive quantum mechanics from an
action for electrodynamics formulated on a noncommuta-
tive spacetime taking the fields in the enveloping algebra.
The case of Lie algebra valued fields has been treated in the
literature [4–10]. Our main motivation to study quantum
mechanics using the enveloping algebra approach [11–14]
is that this approach allows a formulation of the standard
model on a noncommutative spacetime [14]. As we shall

discuss in this work, spacetime noncommutativity introdu-
ces a new source ofCP violation in noncommutative gauge
theories. In gauge theories beyond the standard model, new
sources of CP violation are typically giving rise to poten-
tially large electric dipole moments (EDM). Electric dipole
moments of the electron, muon, neutron, and other nuclei
are expected to be extremely tiny within the standard
model. Even a tiny amount of CP violation coming from
physics beyond the standard model could thus naively have
a big impact on the electric dipole moments of these
particles. Electric dipole moments are low energy phe-
nomena and the relevant experiments are performed at
low energy. A nonrelativistic limit of the noncommutative
action for electrodynamics is thus required to study these
phenomena.

A canonical noncommutative spacetime is defined by
the noncommutative algebra

 �x̂�; x̂�� � i��� (1)

where � and � run from 0 to 3 and where ��� is constant
and antisymmetric with mass dimension minus 2. We take
��� of the form

 ����� �

0 �C1=c �C2=c �C3=c
C1=c 0 D3 �D2

C2=c �D3 0 D1

C3=c D2 �D1 0

0
BBB@

1
CCCA (2)

where c is the speed of light. Since we shall consider a
nonrelativistic limit, it is important to keep the factor c
explicitly. The vectors ~C and ~D are dimension full. In
principle, each of the components of these vectors could
correspond to a different scale. We assume for the sake of
simplicity that there is only one noncommutative scale,
which we denote by �NC. We then have j ~Cj / 1=�2

NC and
j ~Dj / 1=�2

NC. This definition is analogous to that of the
field strength tensor of electromagnetism:

*Electronic address: xcalmet@ulb.ac.be
†Electronic address: selvaggi@clipper.ens.fr

PHYSICAL REVIEW D 74, 037901 (2006)

1550-7998=2006=74(3)=037901(4) 037901-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.037901


 �F��� �

0 �E1=c �E2=c �E3=c
E1=c 0 B3 �B2

E2=c �B3 0 B1

E3=c B2 �B1 0

0
BBB@

1
CCCA: (3)

Formulating Yang-Mills theories relevant to particle
physics on such a spacetime requires us to consider matter
fields, gauge fields, and gauge transformations in the en-
veloping algebra; otherwise SU(N) gauge symmetries can-
not be implemented. The bounds on the noncommutative
scale �NC relevant for the enveloping algebra approach
[11–14] are only fairly weak and of the order of a few TeVs
[15]. In this paper we shall show that the new CP violation
introduced through ��� in gauge theories formulated on
noncommutative spaces does not lead to a tighter limit on
the noncommutative scale despite a different claim in the
literature [9]. We will consider low energy experiments
such as experiments searching for an intrinsic electric
dipole moment of leptons or nuclei such as the neutron.

We first derive quantum mechanics on a noncommuta-
tive spacetime in the first section, and then discuss the
bounds on noncommutative intrinsic electric dipole mo-
ments from low energy experiments in Sec. II. Finally, we
conclude in Sec. III.

II. QUANTUM MECHANICS ON
NONCOMMUTATIVE SPACETIME

The enveloping algebra approach [11–14] allows us to
map a noncommutative action Ŝ on an effective action

formulated on a regular commutative spacetime. The di-
mension four operators are the usual ones and the non-
commutative nature of spacetime is encoded into higher
order operators. In this section we will be considering
electrodynamics on a noncommutative spacetime. The
noncommutative action for a Dirac fermion coupled to a
U(1) gauge field is given by

 

Z
d4x �̂��x̂��i ^6D�mc��̂�x̂� �

1

4

e2

c2

Z
d4xF̂���x̂�F̂

���x̂�

(4)

where the hat on the coordinate x indicates that the func-
tions belong to the algebra of noncommutative functions
and the hat over the functions indicates that they are to be
considered in the enveloping algebra. Throughout this
paper will shall keep the speed of light c explicitly in our
calculations, but we set @ � 1. The procedure [11–14] to
map actions such as (4) on an effective action formulated
on a commutative spacetime requires us to first define a
vector space isomorphism that maps the algebra of non-
commutative functions on the algebra of commutative
functions. The price to pay to replace the noncommutative
argument of the function by a commutative one is the
introduction of a star product: f�x̂�g�x̂� � f�x� ? g�x�. It
turns out that this theory is renormalizable [16] and invari-
ant under noncommutative Lorentz transformations [17].
One then expands the fields in the enveloping algebra using
the Seiberg-Witten maps [1] and obtains

 

Z �̂��x̂��i ^6D�mc��̂�x̂�d4x �
Z

� �i 6D�mc� d4x�
1

4

e
c

Z
��� � F���i 6D�mc� d4x�

1

2

e
c

Z
��� � ��F��iD� d4x;

(5)

 �
1

4

Z
F̂���x̂�F̂

���x̂�d4x � �
1

4

Z
F��F

��d4x�
1

8

e
c

Z
���F��F��F

��d4x�
1

2

e
c

Z
���F��F��F

��d4x; (6)

to first order in ��� and where, as usual, F�� � @�A� � @�A� and A� � ��; Ai�.
Using Eq. (5), it is easy to derive the noncommutative Dirac equation; we find

 �i 6D�mc� �
e
4c
���F���i 6D�mc� �

1

2

e
c
�����F��iD� � 0: (7)

Performing a nonrelativistic expansion of this equation and splitting the bi-spinor  into two components to prepare the
nonrelativistic expansion,

  �
� ~�

~�

�
� eimc

2t
�
�
�

�
; (8)

we find two coupled differential equations:
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�
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4c
���F��
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�
1�

e
4c
���F��

��
c ~� � ~	

� �
�

�
� e�

��
�

�
� 2mc2

� 0

�

��

�
e
2
��0F0�

�
mc2 � i@t �

e
c

�
�� �

��

�
�
e
2
��0Fk��

k
�
mc2 � i@t �

e
c

�
�� �
�

�

�
e
2
��jF0�	j

� �

��

�
�
e
2
��jFk��

k	j

� �
�

�
: (9)

Within our approximation, i.e. leading order expansion in �, first relativistic corrections, and weak field limit, we recover
the usual relation between the small and large components,

 � �
~� � ~	
2mc

�: (10)

We obtain

 i@t� �
�
~� � ~	 ~� � ~	

2m
� e�

�
��

e
2
�i0F0imc

2��
e
4c
�i0Fki�

k ~� � ~	��
e
2
�ijF0i	j��

e
4mc

��jFk��
k	j ~� � ~	� (11)

and
 

i@t� �
�
p2

2m
�

e
2mc

� ~L� 2 ~S� � ~B� e�
�
��

e
2
�i0F0imc2��

e
4c
�i0Fki	k�� i

e
c
Sj
jkn�i0Fki	n��

e
2
��jF0�	j�

�
e

4mc
��jFk�	j	

k�� i
e

2mc
�l


lmn��jFm�	j	n�; (12)

where Si � �i=2 is the spin operator. Dropping terms which are not linear in the fields, we obtain the low energy
Hamiltonian for quantum mechanics on a noncommutative spacetime:
 

H �

�
p2

2m
�

e
2mc

� ~L� 2 ~S� � ~B� e�
�
�
em
2
~C � ~E�

e

4c2
~C � ~B	 ~p� i

e

c2 �
~C � ~p ~S � ~B� ~S � ~C ~B � ~p� �

e
2c

~E � � ~D	 ~p�

�
e

4mc3
~C � ~p ~E � ~p�

e
4mc

� ~D � ~p ~B � ~p� ~D � ~B ~p � ~p� � i
e

mc3 �
~C � ~p� ~S � � ~E	 ~p� � i

e
mc

~S � � ~D	 ~p� ~B � ~p:

�

�
p2

2m
�

e
2mc

� ~L� 2 ~S� � ~B
�
�
e
2c

~E � � ~D	 ~p� �
e

4mc
� ~D � ~p ~B � ~p� ~D � ~B ~p � ~p� � i

e
mc

~S � � ~D	 ~p� ~B � ~p; (13)

where we have dropped the constant term � em
2
~C � ~E and

terms of higher order in the nonrelativistic expansion in
1=c. We shall discuss the meaning of these new noncom-
mutative operators in the next section. We note that the one
loop contribution to the electric dipole moment [16] is also
of the form ~E � � ~D	 ~p�.

III. NONCOMMUTATIVE ELECTRIC DIPOLE
MOMENTS

Spacetime noncommutativity introduces a new source of
CP violation in the standard model. Let us first discuss the
transformation properties of ��� under CP transforma-
tions. We have CP� ~D� � � ~D and CP� ~C� � ~C.
Furthermore, as usual, CP� ~B� � ~B, CP� ~E� � � ~E,
CP� ~p� � � ~p, CP� ~S� � ~S, and CP� ~L� � ~L. In a similar
manner we have T� ~D� � � ~D, T� ~C� � ~C, T� ~B� � ~B,
T� ~E� � � ~E, T� ~p� � ~p, T� ~S� � ~S, and T� ~L� � ~L under
time reversal. The transformation under charge conjugate
of ��� is chosen in such a way that it is CPT invariant, i.e.

C����� � ����. We can then see easily that the operators

 �
e
2c

~E � � ~D	 ~p� �
e

4mc
� ~D � ~p ~B � ~p� ~D � ~B ~p � ~p�

� i
e
mc

~S � � ~D	 ~p� ~B � ~p (14)

are CP violating. Note that CPT is conserved. We will
concentrate on one of these operators,

 

~E � ~dNC �
e
2
��jF0�pj �

e
2c

~E � � ~D	 ~p�; (15)

as it gives rise to a noncommutative intrinsic EDM and
could have observable effects. This term is not, however,
an usual EDM since it is spin independent, i.e. not of the
form ~E � ~S.

This operator has been identified in the Lie algebra
approach as well [6,9]. Naively, one might think that the
operator ~dNC will give a contribution to the Lamb shift in
the hydrogen atom [6,9]. However, a clean treatment of the
hydrogen atom requires us to solve the Schroedinger equa-
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tion for two particles. This has been done in Ref. [8] where
it is shown that the relative coordinate in the two body
problem is actually commutative and, since the potential is
translation invariant, one can eliminate completely the
effects of spacetime noncommutativity at tree level from
the hydrogen atom problem.

The operator ~dNC could also naively give rise to a non-
commutative intrinsic electric dipole moment for the lep-
tons and for the quarks [9]. But, although ~dNC does violate
CP, it does not involve the spin, as the usual intrinsic EDM
does. Experiments which are searching for an EDM of the
electron [18] or the nuclei such as the neutron [19] measure
the energy difference between two spin states. Since our
NCEDM is not sensitive to the spin, the noncommutative
contribution cancels out. There is thus no bound on the
noncommutative scale coming from EDM measurements
despite the claim made in Ref. [9].

IV. CONCLUSIONS

We have derived quantum mechanics on a canonical
noncommutative spacetime using a nonrelativistic limit
of the action obtained in the case of fields and gauge
transformations valued in the enveloping algebra. We
show that in this case, as in the Lie algebra case, there is
a new source of CP violation in the effective action. It
appears in the form of a noncommutative intrinsic electric
dipole moment.

We then used these noncommutative intrinsic electric
dipole moments to study bounds on the noncommutative
scale relevant for the enveloping algebra approach. In this
approach, noncommutative gauge theories have minimal
deviations with respect to regular gauge theories, and it is
thus quite difficult to put a bound on the new scale involved
in these models. We found that these electric dipole mo-
ments are not measurable in experiments searching for an
EDM of leptons or of the neutron. Therefore, there is no
obvious bound on spacetime noncommutativity coming
from low energy effects such as an EDM or the Lamb
shift. The bounds on spacetime noncommutativity remain
weak, as argued in [15]. One could think that these electric
dipole moments could have a large contribution to the Z
width; it is, however, easy to show that the effect is largely
suppressed by fermion masses. The only valid bound
which is not a test of Lorentz invariance [20] and is thus
a direct test of spacetime noncommutativity is that coming
from Z! �� [21]. The calculation performed in [21] can
be translated into a bound on the noncommutative scale of
the order of 1 TeV; it is, however, slightly model dependent
since it depends on the choice of the representation of the
gauge fields in the enveloping algebra.
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