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The recently developed on-shell bootstrap for computing one-loop amplitudes in nonsupersymmetric
theories such as QCD combines the unitarity method with loop-level on-shell recursion. For generic
helicity configurations, the recursion relations may involve undetermined contributions from nonstandard
complex singularities or from large values of the shift parameter. Here we develop a strategy for
sidestepping difficulties through the use of pairs of recursion relations. To illustrate the strategy, we
present sets of recursion relations needed for obtaining n-gluon amplitudes in QCD. We give a recursive
solution for the one-loop n-gluon QCD amplitudes with three or four color-adjacent gluons of negative
helicity and the remaining ones of positive helicity. We provide an explicit analytic formula for the QCD
amplitude A6;1�1

�; 2�; 3�; 4�; 5�; 6��, as well as numerical results for A7;1�1
�; 2�; 3�; 4�; 5�; 6�; 7��,

A8;1�1
�; 2�; 3�; 4�; 5�; 6�; 7�; 8��, and A8;1�1

�; 2�; 3�; 4�; 5�; 6�; 7�; 8��. We expect the on-shell
bootstrap approach to have widespread applications to phenomenological studies at colliders.
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I. INTRODUCTION

The success of the forthcoming experimental program at
CERN’s Large Hadron Collider will depend in part on
theoretical tools. Our ability to find and understand new
physics at the TeV scale will rely on the quality of pre-
dictions for a variety of known-physics processes. A clas-
sic example is the W � 4 jet background to top-quark
production. Tools to perform higher-order corrections to
a wide variety of processes in the component gauge theo-
ries of the standard model will play an important role.
Tree-level scattering amplitudes provide the basic predic-
tions for cross sections for standard model processes.
However, next-to-leading order (NLO) QCD corrections
are typically quite large. One-loop QCD amplitudes, which
enter at NLO, are therefore needed in order to reduce
theoretical uncertainties to the level of 10% or so. An
important set of standard model backgrounds to new phys-
ics dictates the computation of new one-loop amplitudes
for processes containing one or more vector bosons (Ws,
Zs, and photons) and multiple jets.

Experience has shown that while methods relying on
direct analytical evaluation of Feynman diagrams can be
used for five-point processes, they have not proven power-

ful enough to compute six-point processes or beyond in
QCD. The recent development of seminumerical ap-
proaches [1–3] shows promise for improving traditional
capabilities. All helicity configurations for the six-gluon
amplitude have been evaluated numerically in this way,
and numerical results presented for a single phase-space
point [3]. These results are also of utility in confirming
analytic expressions. (For other numerical or seminumer-
ical approaches, see Ref. [4].)

On-shell methods for computing amplitudes can be
much more efficient than Feynman diagrams, because
they avoid gauge noninvariant intermediate states and in-
stead focus on the key analytic properties that any physical
amplitude must satisfy. The unitarity-based method [5–8]
was applied long ago, not only to six-point processes, but
also to all-multiplicity amplitudes, for particular configu-
rations of external helicities. Early applications of the
method were generally restricted, for practical reasons, to
supersymmetric theories or to the polylogarithmic part of
QCD amplitudes. This practical restriction arose from the
greater complexity of D-dimensional unitarity calcula-
tions, required for full QCD amplitudes in this approach.

A key feature of the unitarity method is that new
amplitudes are constructed with only on-shell tree-level
amplitudes (which are generally quite simple) as inputs. A
number of related techniques have emerged in the past two
years, including the application of maximally helicity-
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violating (MHV) vertices [9,10] to loop calculations
[11,12] and the use [13,14] of the holomorphic anomaly
[15] to evaluate the cuts.

More recent improvements to the unitarity method [16–
19] use complex momenta within generalized unitarity
[20–22], allowing, for example, a simple and purely alge-
braic determination of all box integral coefficients. (The
name ‘‘generalized unitarity,‘‘ as applied to amplitudes for
massive particles, can be traced back to Ref. [23].) In
Ref. [18], Britto, Buchbinder, Cachazo, and Feng devel-
oped efficient techniques for evaluating generic one-loop
unitarity cuts, by using spinor variables, and performing
the cut integration via residue extraction. Quite recently,
Britto, Feng, and Mastrolia [19] further extended these
techniques and completed the computation of all cut-
containing terms for the six-gluon helicity amplitudes.
The cut-containing terms for other helicity configurations,
and for other components of the amplitudes, were obtained
in Refs. [5,6,18,24–26]. The only terms now missing in the
analytic expressions for the six-gluon amplitudes are the
pure-rational ones. The computation of the rational terms,
in these and more general amplitudes, is the subject of this
paper.

In a previous paper [27], three of the authors presented a
systematic, recursive bootstrap approach to making high-
multiplicity QCD calculations practical within the frame-
work of the unitarity-based method. It complements the
use of four-dimensional unitarity for logarithmic and poly-
logarithmic terms with an on-shell recursion relation [28–
31] for the purely rational terms. This approach system-
atizes a unitarity-factorization bootstrap previously applied
to the amplitudes for e�e� ! 4 partons [20]. It has already
been used to solve for infinite sequences of one-loop
n-gluon helicity amplitudes, in particular, the MHV ampli-
tudes containing two color-adjacent negative-helicity glu-
ons and (n� 2) positive-helicity ones [32]. These papers
do not explain how to attack more general helicity con-
figurations. That is the purpose of the present paper: to
extend the range of applicability of the recursive bootstrap
method to cover as generic a helicity configuration as
possible.

Recursion relations have long been used in QCD
[33,34], and are an elegant and efficient means for comput-
ing tree-level amplitudes. Other related approaches [35], as
well as computer-driven approaches such as MADGRAPH

[36], have also been employed. Stimulated by the compact
forms of seven and higher-point tree amplitudes [22,37,38]
that emerged from studying infrared consistency equations
[39] for one-loop amplitudes (computed using the
unitarity-based method), Britto, Cachazo, and Feng wrote
down [28] a new set of tree-level recursion relations. The
new recursion relations differ in that they employ only on-
shell amplitudes (at complex values of the external mo-
menta). A simple and very general proof of the relations,
using special continuations (shifts) of the external mo-

menta in terms of a complex variable z, was then given
by Britto, Cachazo, Feng, and Witten [29]. The power of
this type of recursion relation follows from the generality
of the proof, which relies only on factorization and
Cauchy’s theorem. (The numerical efficiency of these re-
cursion relations, with respect to the older, off-shell recur-
sion relations [33,34] and those based on MHV vertices
[9,40], has been studied recently [41].) On-shell recursive
methods have also yielded compact expressions for tree
amplitudes in gravity [42] as well as gauge theory [43], and
have been extended to theories with massive scalars and
fermions [44,45]. They even provide a derivation [10] of
the Cachazo-Svrček-Witten representation of amplitudes
in terms of MHV vertices [9]. Many of these develop-
ments, as well as the resurgence of interest in unitarity
methods, were inspired by the development of twistor
string theory [46].

The unitarity-based method [5,6] turns a general prop-
erty of field theories—the unitarity of the (perturbative)
S-matrix—into a practical technique for computing cut-
containing terms in amplitudes. In a similar spirit, on-shell
recursion relations turn another general property—facto-
rization on poles in intermediate states—into a technique
for computing rational terms in amplitudes. The idea of
using factorization as a computational tool goes back to the
computation of the Z! 4 parton one-loop matrix elements
[20] (or equivalently, by crossing, the virtual diagrams for
pp! W;Z� jets), wherein all terms consistent with the
helicity assignments were written down, and collinear
limits used to isolate the correct ones and their coefficients.
This approach gets harder to apply as the number of
external legs increases, because of the difficulty of finding
terms with the correct factorization properties. The one-
loop on-shell recursion relations [27] provide a practical
and systematic method for constructing the rational terms,
avoiding this difficulty. Moreover, in special cases, when
certain criteria on the unitarity cuts are satisfied [26], it is
also possible to obtain the rational coefficients of the cut-
containing (poly)logarithmic terms via on-shell recursion
relations.

The factorization properties of one-loop amplitudes in
gauge theories, as a function of real Minkowski four-
momenta, have been known for a long time. We may
distinguish two different cases. In the first case, dubbed
‘‘multiparticle’’ factorization, the momentum going on
shell is a sum of three or more external momenta. In the
second case, called ‘‘collinear’’ factorization, it is a sum of
two momenta. The standard derivations describe how am-
plitudes factorize in either of these limits, when all mo-
menta involved are real. The implementation of on-shell
recursion relations requires a generalization of these facto-
rizations to complex momenta. This generalization is
straightforward, both at tree level and at one loop, for
multiparticle factorization. The generalization is also
straightforward at tree level for collinear factorization.
This is no longer true at one loop.
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The heuristic reason why collinear factorization is more
intricate with complex momenta is that one cannot define a
nonsingular all-massless three-point kinematics with real
momenta, while one can using complex momenta. At the
loop level, the complexity of complex collinear factoriza-
tion is reflected in the appearance of double poles and
‘‘unreal’’ poles in scattering amplitudes [30,31]. As yet,
we have no general theorems providing universal factori-
zation formulæ in these ‘‘nonstandard’’ cases. In previous
computations [27,32] of one-loop amplitudes with two
color-adjacent negative legs, these problems could be side-
stepped by making special choices in constructing recur-
sion relations. Within the framework of Ref. [27], we must
choose momentum shifts under which the amplitude van-
ishes at large shift parameter z. Otherwise, the contour
integral over z which gives rise to the recursion relation
would receive an undetermined contribution from large z.
In the case of MHV n-gluon amplitudes, which contain
only two negative-helicity gluons, it is possible to make
such a choice and yet avoid channels with unknown facto-
rizations [27,32,47].

For general helicity configurations, however, it is no
longer possible to do this. It might seem that we should
therefore study the ‘‘difficult’’ channels, and attempt to
derive a universal form for their complex-momentum fac-
torization. It turns out, however, that it is easier to relax the
other requirement, that of a vanishing amplitude at large
shift parameter z. Indeed, in Ref. [30] it was shown that, if
we somehow knew the large-z behavior of an amplitude in
a recursion, then a nonvanishing behavior posed no prob-
lems; the recursion relations still reconstructed the remain-
ing terms in an amplitude correctly. Our aim here is to
show how to determine the large-z behavior of amplitudes
from scratch. We will do so by using an auxiliary recursion
relation, constructed by considering pairs of momentum
shifts, one in the parameter z and a second involving
different external legs and another parameter w. With these
additional terms in hand, we can follow the approach of
Ref. [27] for the remainder of the calculation, computing
recursive and overlap diagrams to add to the cut-containing
terms.

As an illustration of our method, we will compute one-
loop corrections to a class of next-to-maximally helicity-
violating (NMHV) n-gluon amplitudes in QCD, those with
three adjacent negative helicities in the color ordering,
A1-loop
n;1 �� ����� � � � ��. Under a supersymmetric

decomposition [48], these amplitudes may be thought of
as composed of N � 4 and N � 1 supersymmetric
pieces together with a nonsupersymmetric (N � 0)
scalar-loop contribution. The N � 4 contributions were
computed in Ref. [37], and the N � 1 terms in Ref. [49].
The logarithmic parts of the N � 0 scalar-loop ampli-
tudes were determined in Ref. [26], by constructing an on-
shell recursion relation for integral-function coefficients
appearing in the amplitudes. We shall complete the QCD

computation in this paper by obtaining the rational-
function contributions.

We also describe a recursive solution for the rational-
function parts of the scalar-loop amplitudes with four
color-adjacent negative helicities, using the logarithmic
terms computed in Ref. [26] as a starting point. We have
computed in this way the N � 0 terms in the eight-gluon
amplitude A1-loop

8;1 �� ��������.
We present numerical values for the six-, seven-, and

eight-gluon amplitudes with ‘‘split’’ helicity configura-
tions, in which all the negative helicities are color adjacent,
as a reference point for future implementations of these
amplitudes in phenomenological studies.

This paper is organized as follows. In the next section,
we review notation and the organization of color-ordered
amplitudes used in this paper. In Sec. III, we present a
known five-point amplitude, to illustrate and guide our
strategy for obtaining the rational parts of one-loop ampli-
tudes with general helicity configurations. In Sec. IV, we
then apply this strategy to determine a sample six-point
amplitude. Before continuing to more general cases in
Sec. V, we review and extend the on-shell bootstrap for-
malism [27] to cases where the shifted amplitudes An�z� do
not vanish for large shift parameter z. In Sec. VI, we
observe various empirical properties, which we use to
construct a procedure for general helicities, focusing on
n-gluon amplitudes. As a nontrivial confirmation of the
general procedure, in Sec. VII we present examples of
applications of our procedure for determining the behavior
of amplitudes for large values of the shift parameter. This
procedure is then used in Sec. VIII to determine a recursive
solution of the rational functions for n-point amplitudes
with three nearest-neighboring negative helicities in the
color ordering. We also describe a recursive solution to the
eight-gluon amplitude with four color-adjacent negative
helicities, A1-loop

8;1 �� ��������. In Sec. IX we
present numerical values of the scattering amplitudes at
select kinematic points. In Sec. X we present our conclu-
sions and outlook for the future. We include an appendix
collecting previously computed amplitudes that feed into
our recursive computations.

II. NOTATION

In this section we summarize the notation used in the
remainder of the paper. Following the notation of previous
papers [27,30,31], we use the spinor helicity formalism
[50,51], in which the amplitudes are expressed in terms of
spinor inner-products,

 hjli � hj�jl�i � �u��kj�u��kl�;

�jl� � hj�jl�i � �u��kj�u��kl�;
(2.1)

where u	�k� is a massless Weyl spinor with momentum k
and positive or negative chirality. The notation used here
follows the QCD literature, with �ij� � sign�k0

i k
0
j �hjii


 so
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that,

 hiji�ji� � 2ki � kj � sij: (2.2)

Our convention is that all legs are outgoing. We also define,

 �i � u��ki�; ~�i � u��ki�: (2.3)

We denote the sums of cyclically consecutive external
momenta by

 K�
i...j � k�i � k

�
i�1 � � � � � k

�
j�1 � k

�
j ; (2.4)

where all indices are mod n for an n-gluon amplitude. The
invariant mass of this vector is

 si...j � K2
i...j: (2.5)

Special cases include the two and three-particle invariant
masses, which are denoted by
 

sij � K2
ij � �ki � kj�

2 � 2ki � kj;

sijk � �ki � kj � kk�
2:

(2.6)

We also define spinor strings,
 

hi�j�a	 b�jj�i � hiai�aj� 	 hibi�bj�;

hi�j�a� b��c� d�jj�i � �ia�ha�j�c� d�jj�i

� �ib�hb�j�c� d�jj�i: (2.7)

We use the trace-based color decomposition of ampli-
tudes [51–54]. For tree-level amplitudes with n external
gluons, this decomposition is
 

Atree
n �fki; hi; aig� � gn�2

X
�2Sn=Zn

Tr�Ta��1� � � �Ta��n� �

� Atree
n ���1

h1 ; . . . ; nhn��: (2.8)

Here g is the QCD coupling, Sn=Zn is the group of non-
cyclic permutations on n symbols, and jhj denotes the jth

gluon, with momentum kj, helicity hj, and adjoint color
index aj. The SU�Nc� color matrices in the fundamental
representation are normalized by Tr�TaTb� � �ab.

For spin-J adjoint particles circulating in the loop, the
color decomposition for one-loop n-gluon amplitudes is
given by [55]
 

Aadjoint
n �fki; hi; aig� � gn

X
J

nJ
Xbn=2c�1

c�1

X
�2Sn=Sn;c

Grn;c���

� A�J�n;c���: (2.9)

The notation in Eq. (2.9) has been described repeatedly
elsewhere [27,30,31,55]. Here we just note that we need to
compute only the leading-color partial amplitudes
A�J�n;1�1

h1 ; . . . ; nhn�, because the subleading-color partial am-

plitudes for a gluon in the loop, A�1�n;c for c > 1, are given by
a sum over permutations of the leading-color ones [5]. The
analog of Eq. (2.9) for fundamental-representation parti-

cles in the loop (such as quarks, with spin J � 1=2) is also
expressed in terms of A�J�n;1,
 

Afund
n �fki; hi; aig� � gn

X
J�0;1=2

nJ
X

�2Sn=Zn

Tr�Ta��1� � � �Ta��n� �

� A�J�n;1���: (2.10)

The contributions of different spin states can be rewrit-
ten in terms of supersymmetric and nonsupersymmetric
parts [48],

 A�1=2�
n;1 � AN�1

n;1 � AN�0
n;1 ; (2.11)

 A�1�n;1 � AN�4
n;1 � 4AN�1

n;1 � AN�0
n;1 : (2.12)

The nonsupersymmetric amplitudes, denoted by N � 0,
are just the contributions of a complex scalar circulating in
the loop, AN�0

n;1 � A�0�n;1. The supersymmetric and nonsu-
persymmetric pieces have different analytic properties.
The supersymmetric pieces can be constructed completely
from four-dimensional unitarity cuts [5,6] and have no
additional rational contributions. The polylogarithms and
logarithms of the N � 0 nonsupersymmetric contribu-
tions may also be computed from the four-dimensional
unitarity cuts. (In certain cases, the coefficients of integral
functions containing the logarithms and polylogarithms
may instead be determined recursively [26].)

The leading-color QCD amplitudes are expressible in
terms of the different supersymmetric components via,
 

AQCD
n;1 � AN�4

n;1 � 4AN�1
n;1 � �1� ��R�A

N�0
n;1

�
nf
Nc
�AN�1

n;1 � AN�0
n;1 � �

ns
Nc
AN�0
n;1 ; (2.13)

where nf is the number of active quark flavors in QCD. We
also allow for a term proportional to the number of active
fundamental-representation scalars ns, which vanishes in
QCD. We regulate the infrared and ultraviolet divergences
of one-loop amplitudes dimensionally. (In this paper, we
will not treat divergent and finite parts separately.) The
regularization-scheme-dependent parameter �R specifies
the number of helicity states of internal gluons to be (2�
��R). For the ’t Hooft-Veltman scheme [56] �R � 1, while
in the four-dimensional helicity (FDH) scheme [6,57,58]
�R � 0.

The amplitudes in this paper have not been renormal-
ized. To perform an MS renormalization, subtract from the
leading-color partial amplitudes AQCD

n;1 the quantity,

 c�

�
n� 2

2

1

�

�
11

3
�

2

3

nf
Nc
�

1

3

ns
Nc

��
Atree
n ; (2.14)

with the universal prefactor,

 c� �
1

�4��2��
��1� ���2�1� ��

��1� 2��
: (2.15)
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III. A FIVE-POINT AMPLITUDE THE HARD WAY

A. Overview of the on-shell bootstrap

In this paper we will continue the development of the
method of Ref. [27] for obtaining complete one-loop
amplitudes in QCD and other nonsupersymmetric theories.
In Refs. [27,32], amplitudes with two color-adjacent
negative-helicity legs were considered. In that case, it
was possible to choose a shift so that:

(1) the recursion relations do not contain any terms with
nonstandard complex factorizations, and

(2) the amplitude vanishes for large values of the com-
plex shift parameter z.

However, for general helicity configurations it is not pos-
sible to satisfy both conditions at once. Here we will
provide a simple procedure for sidestepping this apparent
difficulty.

Before we attempt to calculate some six and higher-
point helicity amplitudes with three negative helicities,
for which both conditions cannot be satisfied, let us exam-
ine a five-point amplitude, AQCD

5;1 �1
�; 2�; 3�; 4�; 5��. We

shall focus on the scalar-loop contribution, AN�0
5;1 , which is

the only component not computable from the D � 4 uni-
tarity cuts. We know the answer for this amplitude [48],
which makes it a good test case. Of course, it is maximally
helicity-violating in the conjugate spinors, and therefore
could be computed as in Ref. [27]. Here, we will instead
compute it in a way that foreshadows our computation of
higher-point amplitudes.

We now briefly review the construction of Ref. [27]; in
Sec. V we will present a more systematic review and
extension of the on-shell bootstrap. We first choose a
complex-valued shift [29] of the momenta of a pair of
external particles, kj ! k̂j�z�, kl ! k̂l�z�. We describe a
�j; li shift in terms of the spinor variables � and ~� defined
in Eq. (2.3),

 �j; li: ~�j ! ~�j � z~�l; �l ! �l � z�j: (3.1)

To compute the amplitude, we must first examine the cut
terms, obtained from the unitarity method and/or recursion
on the coefficients of integral functions, for the presence of
spurious singularities. Spurious singularities refer to kine-
matic regions where the full amplitude is nonsingular, but
different components of it can contain (cancelling) diver-
gent behavior. If we use the unitarity-based method to
obtain coefficients of complete loop integrals (including
associated rational pieces), then the cut terms should be

free of spurious singularities. If we extract pure (poly)lo-
garithmic expressions, then we must generally add rational
terms to cancel such singularities. The result of this pro-
cedure is referred to as the completed-cut term Ĉn.

Next, we have to compute a set of recursive rational
terms RDn , corresponding to all diagrams in which the
shifted legs are attached to different amplitudes. For each
arrangement of legs, we must sum over the different (com-
plex) factorizations in that channel, schematically shown in
Fig. 1: tree times loop, loop times tree, or tree times tree
times a factorization function [59]. The factorization-
function contribution—which is equivalent to a propagator
or vacuum-polarization correction in the N � 0 case—
does not appear for MHV amplitudes, and was therefore
unnecessary in Ref. [27].

Finally, we compute the residues of the rational part of

the completed-cut terms, denoted by cCRn, in the channels
affected by the shift. The computation of the residues ofcCRn�z�=z on the physical poles gives us the overlap terms
On, which correct for double-counting of terms between
the recursive diagrams and the completed cut.

The amplitude is the sum of these three terms,

 An � c��Ĉn � RDn �On�: (3.2)

(See Section Vof Ref. [27] for a relatively simple example
of overlap contributions for n � 5.) In the present paper we
will modify this construction somewhat to allow also for
nontrivial contributions from z! 1. Note that in the
present paper, as in the derivation in Section 3 of
Ref. [27], these individual contributions are defined with
respect to A, whereas in the explicit calculations in
Ref. [27], these quantities were defined with respect to
pure-finite terms (Fx parts of amplitudes). This means
the explicitly computed quantities in Ref. [27] differ
from the quantities in the present paper by a factor of i.

B. Choice of shifts

What shift should we choose? The computation in
Ref. [27] corresponds to choosing a �4; 5i shift (j � 4, l �
5, in Eq. (3.1)) here. However, several properties of the
amplitude under this shift do not generalize to higher-point
amplitudes. In particular, the amplitude may not vanish as
the shift parameter z is taken to infinity. A ��;�i shift,
such as �3; 4i or �1; 5i in the present case, appears quite
generally to have good behavior at infinity. For the five-
point case, we can verify this explicitly using the known

j

l̂

. ... .
T 

...T 
ĵ .

T L 
.....

l̂

^ ĵ

l̂

.... L T 

(a) (b) (c)

FIG. 1. Schematic representation of recursive contributions. The labels ‘T’ and ‘L’ refer to tree and loop vertices. The multiparticle
factorization-function contribution (c) does not appear for MHV amplitudes.
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answer [48], given in Eq. (A24) of the appendix. For reasons we shall comment on in Sec. IV, for our purposes, here it is
convenient to introduce a modified L2 function,

 L2a�r� �
L1�r� �

1
2

1� r
� L2�r� �

1

2r
; (3.3)

rather than the more standard L2�r� defined in Eq. (A17). These functions differ only in terms that are nonsingular as
r! 1. Using L2a�r�, we can give an alternate expression for AN�0

5;1 , instead of the form in Eq. (A24),
 

AN�0
5;1 �1�; 2�; 3�; 4�; 5�� �

1

3
AN�1

5;1 �1�; 2�; 3�; 4�; 5�� �
2

9
c�Atree

5 �1
�; 2�; 3�; 4�; 5�� � c�R̂5a

� i
c�

3

h12i�24��52�h23i��51�h12i�24� � �52�h23i�34��

�12��23�

L2a�
�s34

�s51
�

s3
51

; (3.4)

where

 R̂5a � i
�

1

3

h13i2�s12 � s23�

�12��23�h34ih45ih51i
�

1

6

h12ih23i�24��25�h3�j�2� 1�j5�i

�12��23�h34is2
51

�
: (3.5)

Consider now the �3; 4i shift,

 

~� 3 ! ~�3 � z~�4; �4 ! �4 � z�3: (3.6)

The three nonvanishing recursive diagrams are shown in
Fig. 2. These diagrams correspond to residues of the shifted
amplitude at poles in z where intermediate states go on
shell. Diagrams 2(a) and 2(c) are straightforward to
evaluate, because the three-point vertex is one which ap-
pears at tree level, and which can have only a single pole.
Diagram 2(b), however, involves a one-loop ‘‘vertex’’
A�1�3 �2

�; 3̂�; K̂��. From Refs. [30,31], we know that the
related vertex, with opposite intermediate helicity,
A�1�3 �2

�; 3̂�; K̂��, does not factorize in complex momenta
as a naive generalization of the factorization in real mo-
menta. This property is related to the appearance of double
poles at the loop level. In that case it was possible to
deduce the relatively simple nonfactorizing structure, at
least for the finite one-loop helicity amplitudes studied in
Refs. [30,31]. For the case of A�1�3 �2

�; 3̂�; K̂��, however,
we do not know the general structure. Analysis of the
behavior under shifting of AN�0

5;1 �1�; 2�; 3�; 4�; 5�� (see
Eq. (3.21) below), and of other known amplitudes, reveals
that it is more subtle than the case of A�1�3 �2

�; 3̂�; K̂��. (It
may even be that, in situations where double poles can
appear, additional contributions arise which cannot be
interpreted as factorized diagrams at all. However, an

analysis of the diagrams such as those in Fig. 2, which
incorporates some empirical information about the non-
standard terms, appears to cover any such additional con-
tributions as well.)

Can we avoid diagrams like 2(b)? To study this, let us
consider a �1; 2i shift,

 

~� 1 ! ~�1 � z~�2; �2 ! �2 � z�1; (3.7)

which does in fact avoid generating diagrams whose com-
plex factorization is as yet unknown. The recursive dia-
grams for this shift are shown in Fig. 3. (In the five-point
case, choosing a �4; 5i or �5; 4i shift would avoid non-
standard complex singularities, but as noted above its
properties do not generalize simply to higher-point
amplitudes.)

Before proceeding to inspect the specific diagrams in
Fig. 3, we make a few general remarks about the properties
of three-point vertices, at one loop and beyond, which will
be relevant for diagrams 3(a) and 3(e). Prior to assigning
definite helicities to a three-point vertex with external legs
a and b, it can be written as A�3 �"a; "b�, where "a, "b are
the external polarization vectors, and � is the Lorentz
index for the intermediate gluon. This gluon is going on
shell in a particular way; either habi or �ab� is vanishing,
depending on the choice of shift. Because of Bose sym-
metry, and the antisymmetry of the extracted color factor,
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+
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FIG. 2. The recursive diagrams arising from a �3; 4i shift in AN�0
5;1 �1�; 2�; 3�; 4�; 5��. Diagram (b) has a nonstandard complex

singularity.
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A�3 �"a; "b� is antisymmetric under the exchange ka $ kb,
"a $ "b. Using Bose symmetry and gauge invariance,
there are only two possible terms in the tensor decompo-
sition of A�3 �"a; "b� [60,61],

 

A�3 �"a; "b� � g1

�
sab;

ka � �
�ka � kb� � �

�
1

sab
� �"�a "b � ka � "

�
b "a � kb � k

�
b "a � "b�

� g2

�
sab;

ka � �
�ka � kb� � �

�
k�a

1

sab

�

�
"a � "b �

"a � kb"b � ka
ka � kb

�
; (3.8)

where the form factors g1 and g2 are symmetric under
ka $ kb. (The required antisymmetry in ka $ kb follows
from the subleading nature of terms proportional to K� �
��ka � kb��.) We have introduced a fixed external vector
� to indicate that g1 and g2 may depend on how the
intermediate gluon is going on shell. For example, in a
real collinear limit, ka��

�ka�kb���
is the longitudinal momentum

fraction carried by gluon a. The form factors can also
depend on the vanishing quantity sab. However, the leading
dependence can only be logarithmic, and so it is subdo-
minant to the power-law behavior of the tensor structures.

The first tensor structure in Eq. (3.8) is the one that
appears at tree level,

 Atree;�
3 �"a; "b� �

1

sab
�"�a "b � ka � "

�
b "a � kb � k

�
b "a � "b�;

(3.9)

so we know a lot about its behavior in complex on-shell
kinematics. The second tensor structure vanishes for
opposite-helicity gluons; with reference vectors qa and qb,

 

"�a � "
�
b �

"�a � kb"�b � ka
ka � kb

� �
�aqb�hbqai
haqai�bqb�

�
�ab�hbqaihbai�aqb�
haqai�bqb�habi�ba�

� 0:

(3.10)

Therefore, in the case that the two external gluons have
opposite helicity, if the tree-level vertex vanishes, the loop-
level vertex (at any number of loops) should also vanish,
since the same tensor structure is all that enters.

If the gluons have the same helicity, say both positive,
the second tensor structure is nonvanishing off shell,

 

"�a � "
�
b �

"�a � kb"�b � ka
ka � kb

�
�ab�hqbqai
haqaihbqbi

�
�ab�hbqai�ba�haqbi
haqaihbqbihabi�ba�

� �
�ab�

habihaqaihbqbi
�habihqaqbi

� hbqaihaqbi�

� �
�ab�
habi

: (3.11)

However, it vanishes if we approach the complex on-shell
kinematics such that �ab� ! 0. Similarly, the structure
relevant when both gluons have negative helicity vanishes
as habi ! 0. These configurations are those for which the
corresponding tree-level vertices are also known to vanish.
In summary, whenever a tree-level three-point vertex van-
ishes, the corresponding loop-level vertex should vanish as
well.

Note that the identical-helicity tensor structure (3.11),
which has a vanishing form factor g2 at tree level, but not at
one loop and beyond, has the form of an ‘‘unreal pole’’
[31]; that is, it is nonsingular for real collinear limits, but
blows up or vanishes in complex on-shell kinematics. In
the case that it blows up, the additional factor of 1=sab can
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FIG. 3. The recursive diagrams arising from a �1; 2i shift in AN�0
5;1 �1�; 2�; 3�; 4�; 5��. As discussed in the text, only diagram (d) is

nonvanishing.
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produce a double pole in habi, for the appropriate helicity
of the intermediate gluon P. (The contraction "P � ka is
proportional to either �ab� or habi, depending on the
helicity of P; the former case leads to the double pole.)
The subleading terms in the expansion around such a
double pole are nonstandard, and are not yet understood.
But again, this problem can occur only for the identical-
helicity case, and only for the complex kinematical con-
figuration for which the tree vertex is nonvanishing.

Now we return to the diagrams of Fig. 3. First note that
diagram 3(c) contains a tree-level vertex which vanishes in
the complex on-shell kinematics, because

 Atree
3 �2̂

�; 3�;�K̂�23� / h2̂3i3 � 0: (3.12)

As a result, diagram 3(c) vanishes. Note that
Atree

3 �2̂
�; 3�;�K̂�23� would not have vanished with a shift

of ~�2 instead of �2. From the above discussion, the loop
vertex for the same helicity configuration and type of shift
should also vanish. This vertex appears in diagram 3(a).
Thus diagram 3(a) also vanishes. In the particular case at
hand, we can easily verify that diagram 3(a) must vanish: If
we examine the amplitude (3.4), we see that there is no pole
in the (23) channel. The reason is that only �23� products,
not h23i products, are present in the denominators. The
�23� products are left untouched by the �1; 2i shift. Hence
they cannot give rise to a pole in z corresponding to
diagram 3(a), which would be located at h2̂3i � 0, or z �
�h23i=h13i.

Diagram 3(b) vanishes for the same reason as
diagram 3(c). Diagram 3(e) contains a loop vertex with a
configuration for which the corresponding tree vertex
(which appears in diagram 3(d)) is nonvanishing.
However, because it has opposite-helicity external gluons,
we know that only the ‘‘standard’’ tree-type tensor struc-
ture in Eq. (3.8) contributes. The one-loop form factor g1

for the N � 0 case of a scalar in the loop can then be
extracted from the one-loop splitting amplitude, and it
vanishes. (In the notation of Ref. [5], r�0�S ��P; a

	; b� �
0, for either sign of �P.) In summary, all the recursive
diagrams in Fig. 3 are under control, and only diagram 3(d)
is nonvanishing.

The �1; 2i shift, however, fails to satisfy the second
requirement that An�z� ! 0 as z! 1. For large z, we
find that

 

AN�0
5;1 �1�; 2�; 3�; 4�; 5�; z� ���! i

c�

3

h13i3�zh15i � h25i�

h15i2h34ih45i�12�

�O

�
1

z

�
: (3.13)

It is easy to see that the following rational function has the
same large-z behavior as the full amplitude,

 Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � i

c�

3

h13i3h25i

h15i2h34ih45i�12�
;

(3.14)

where Inf�1;2i A denotes those terms in A that would give
rise to a nonvanishing contribution upon performing a
�1; 2i shift and taking z! 1. (See Sec. VA for further
discussion of such terms.)

We note in contrast that AN�1
5;1 does vanish in the limit.

More generally, supersymmetric loop amplitudes appear to
vanish at large z whenever the corresponding tree-level
amplitudes do.

Based on our discussion, it is not surprising that with
more positive-helicity gluons, higher-point N � 0 ampli-
tudes in general suffer from one of these two problems (or
perhaps both) under any shift: either a ‘‘bad’’ channel with
nonstandard complex singularities, or ‘‘bad’’ large-z
behavior.

C. Pairs of shifts to the rescue

To get around these problems, we use a combination of
shifts, one particular shift to obtain one set of contribu-
tions, and a different shift to obtain the remaining contri-
butions. In our five-point example, we take the �1; 2i shift
as the primary one for determining all terms except for the
large-z contributions given in Eq. (3.14). We then use the
�3; 4i shift as an auxiliary shift for determining the large-z
contributions of the �1; 2i shift. To see how this might be
possible, imagine constructing the amplitude
AN�0

5;1 �1�; 2�; 3�; 4�; 5�� via the auxiliary �3; 4i shift

 

~� 3 ! ~�3 � w~�4; �4 ! �4 � w�3; (3.15)

where we have taken the shift parameter to be w, to
distinguish it from the primary shift parameter in
Eq. (3.7). As above, we decompose the result into three
pieces: the completed-cut terms, the overlap diagrams, and
the recursive diagrams. Let us examine how each of these
�3; 4i-decomposed pieces behaves under the action of the
primary �1; 2i shift, in particular as the parameter z of that
shift goes to infinity. To the recursive diagrams for the
�3; 4i shift shown in Fig. 2, we add the overlap diagrams in
Fig. 4.

In computing the overlap diagrams in Fig. 4, we choose
a completed-cut expression based on Eq. (3.4),

5+CR5
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+
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^

+

3−

5

4
^ −

CR5

^
3

1−

^4+

−2 (b)(a)

FIG. 4. The overlap diagrams arising from an auxiliary �3; 4i
shift in AN�0

5;1 �1�; 2�; 3�; 4�; 5��.
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Ĉ5�1
�; 2�; 3�; 4�; 5�� �

1

3c�
AN�1

5;1 �1�; 2�; 3�; 4�; 5�� �
2

9
Atree

5 �1
�; 2�; 3�; 4�; 5��

�
i
3

h12i�24��52�h23i��51�h12i�24� � �52�h23i�34��

�12��23�

L2a�
�s34

�s51
�

s3
51

; (3.16)

where we have kept the 2=9Atree
5 term in the completed-cut

term for consistency with our later computations. With this
choice, it is a simple matter to check that under the �1; 2i
shift Ĉ5�z� vanishes for z! 1, using the N � 1 ampli-
tude given in Eq. (A23), as well as Eq. (3.3) for L2a�r�.

Now consider the overlap contributions. These are ob-

tained by extracting the residues of cCR5�w�=w, on the
physical poles,

 w�a� � �
h45i

h35i
; w�b� �

�23�

�24�
; (3.17)

after applying the �3; 4i shift. (The rational part of the

completed-cut terms, cCR5, is obtained by setting all loga-
rithms to zero in Eq. (3.16).) The absence of a h45i product
in the denominator of Eq. (3.16) tells us that the first
overlap contribution, Fig. 4(a), vanishes. The other overlap
contribution is straightforward to evaluate,
 

O�b� � �
�

1

3�
�

8

9

�
Atree

5 �1
�; 2�; 3�; 4�; 5��

�
i
3

h12i�24��52�h23i��51�h12i�24� � �52�h23i�34��

�12��23�

�
3s51 � s34

2�s51 � s34�
2s2

51

: (3.18)

Applying a �1; 2i shift to this expression and taking z! 1,
we see that this expression also vanishes. This is, of course,
not surprising, given that it is extracted from the
completed-cut piece Ĉ5, which vanishes at large z. Thus,
there are no �1; 2i large-z contributions arising from cut or
overlap terms.

This leaves us with the recursive diagrams to inspect.
The first recursive diagram in Fig. 2(a) is simple to evalu-
ate, yielding

 D�a� � i
�

1

3�
�

8

9

�
�45�3

�12��15��23��34�
: (3.19)

The �1; 2i shift of D�a� clearly vanishes as z! 1.
While we do not know how to evaluate the second

recursive diagram, we can nonetheless extract its value
by ‘‘reverse engineering’’ from the final answer. That is,
we start from the final answer in Eq. (3.4) (or equivalently,
the form in Eq. (A24)), shift it, and extract the residue of
�AN�0

5;1 �w�=w atw � �23�=�24�, with the logarithms set to
zero. We find the contributions corresponding to the sum of
diagrams 2(a) and 2(b). Subtracting off the value of dia-
gram 2(a), Eq. (3.19), gives us the reverse-engineered value
for the nonstandard residue encoded in diagram 2(b),

 D�b� �
i
6

�
�
h12ih23i�24��25��s15 � s34��h5

�j12j4�i � h5�j23j4�i�

h15ih34i�12��15��23��34��s15 � s34�
2 �

h12ih23i�24��25��45�

�12��23�s34s15
� 2

h13i2h12i�24�

�12��23�h34ih51i2

�
:

(3.20)

Using some spinor-product identities, this result can be
simplified to
 

D�b� �
i
3

h12i2�24�2h23i

�12��23�h51i2�s34 � s15�
2

�

�
2h15i�52� �

h13i

h23i
�s34 � s15�

�
: (3.21)

The appearance of the unreal pole h23i=�23� in this dia-
grammatic contribution is the hallmark of a nonstandard
factorization. If we now shift this expression under the
primary �1; 2i shift, and take the large-parameter limit,
we see that both diagrams 2(a) and 2(b) vanish. In sum-
mary, the only piece of AN�0

5;1 �1�; 2�; 3�; 4�; 5��, decom-
posed according to the auxiliary �3; 4i shift, which survives
in the large-z limit of the �1; 2i shift, is that given by the
�3; 4i recursive diagram in Fig. 2(c).

Therefore, while the �3; 4i shift is not useful for evaluat-
ing the entire amplitude, because of the nonstandard facto-
rization in diagram 2(b), it is useful for deriving a recursion
for those terms with bad large-z behavior under a different
shift. And once we have those terms, we can make use of
the primary �1; 2i shift to compute the entire amplitude.

Retaining only those terms from diagram 2(c) that con-
tribute in the large-z limit of the �1; 2i shift, we find a
remarkably simple recursion formula for these terms,

 Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4�; 5��

� Inf
�1;2i

AN�0
4;1 �1�; 2�; 3̂�; K̂�45� �

i
s45

� Atree
3 ��K̂

�
45; 4̂

�; 5��: (3.22)

Here, we denote the operation of extracting the large-z
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behavior of the �1; 2i shift by Inf�1;2i. We will give a formal
definition of this operation in Sec. VA below. In this
recursion relation, â denotes a shifted momentum with
the shift parameter frozen to the value

 w�c� � �
h45i

h35i
; (3.23)

according to the auxiliary �3; 4i shift. The right-hand side
of the recursion relation (3.22) simplifies, because both
legs 1 and 2 that are shifted under the primary shift lie
on one side of the pole, so only the first factor is affected by
the extraction of the large-z behavior.

To evaluate the recursion relation (3.22), we need the
source of the large-z behavior in the four-point amplitude,
AN�0

4;1 �1�; 2�; 3̂�; K̂�45�, which may be obtained by relab-
eling the parity conjugate of Eq. (A14) in the appendix. We
find
 

Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4�; 5��

� �i
c�

3

�13̂�h13̂i3

hK̂451i�12��23̂�h3̂K̂45i

1

s45

�4̂5�3

�K̂454̂��5K̂45�

� i
c�

3

h13i3h25i

h15i2h34ih45i�12�
; (3.24)

an expression identical to Eq. (3.14). We see that the
recursion relation (3.22), containing only the (45) channel,
reproduces the entire large-z behavior of the five-point
amplitude.

With this term in hand, we can compute the five-point
amplitude using the �1; 2i shift, even though the amplitude
does not vanish as z! 1, because the difference AN�0

5;1 �

Inf�1;2i A
N�0
5;1 does have good behavior at infinity. The

difference is given by the sum (3.2) of the completed-cut
expression (3.16), the recursive diagrams (only
diagram 3(d) is nonvanishing), and the overlap diagrams
(only one is nonvanishing). This gives us a modified for-
mula for the amplitude,

 An � Inf An � c��Ĉn � R
D
n �On�; (3.25)

where the new term, Inf An, accounts for a nonvanishing
contribution at z! 1, compared to Eq. (3.2). (We will
need to modify this formula in subsequent sections to
account for the possibility that the completed-cut terms
also have nonvanishing large-z behavior.)

D. Summary of strategy

In summary, the above example suggests a simple strat-
egy for constructing loop amplitudes, avoiding difficulties
from either nonvanishing large-z behavior or from non-
standard complex factorizations:

(i) Use a primary shift whose recursion relation does
not contain any nonstandard complex factorizations,

but under which the amplitude might not vanish at
large z.

(ii) Use an auxiliary shift and recursion relation to
determine the large-z behavior of the amplitude
under the primary shift. This auxiliary recursion
relation may contain nonstandard complex factori-
zations, but these will be harmless if the contribu-
tions from these channels vanish in the large-z limit
of the primary shift.

In general, of course, we may not know ahead of time
whether an amplitude has nontrivial large-parameter be-
havior for a chosen shift. We should therefore first derive
an auxiliary recursion for this behavior (which might of
course reveal that it is absent). The derivation of an auxil-
iary recursion relation may require assumptions about the
behavior of contributions in ‘‘bad’’ channels, such as that
of the vanishing of diagram 2(b) in the large-parameter
limit of the �1; 2i shift. These assumptions can be verified
once we have obtained a (candidate) final answer for the
full amplitude, through a check of all (real-momentum)
factorization limits. If the assumptions are not valid, and
the auxiliary recursion relation yields an incomplete ex-
pression for the large-parameter behavior, the final answer
will not have the correct collinear or multiparticle factori-
zation limits. In Sec. VI, we present shifts that we expect
will satisfy all criteria necessary for constructing the ra-
tional parts of any n-gluon amplitude. We also expect this
strategy to be widely applicable to other phenomenologi-
cally interesting amplitudes.

IV. A NON-MHV SIX-POINT EXAMPLE:
A6�1�; 2�; 3�; 4�; 5�; 6��

In the previous section we have developed a strategy for
computing amplitudes even with shifts under which
An�z� =! 0 as the shift parameter z! 1. We now
apply these ideas to the calculation of a previously un-
known amplitude with three negative helicities,
AN�0

6;1 �1�; 2�; 3�; 4�; 5�; 6��.
As in the five-point case, we shall use a �1; 2i shift as the

primary shift for computing the amplitude. For the same
reasons as in the five-point case, the six-point amplitude is
also free of contributions in ‘‘bad’’ channels with non-
standard complex singularities. So we can evaluate all of
the recursive diagrams. It is clear from a consideration of
the factorization properties as the momenta of gluons 5 and
6 become collinear that the amplitude must have nontrivial
behavior at large z, because the corresponding five-point
amplitude has such behavior under the shift. Our first task
is to obtain a rational function which reproduces that
behavior.

The full amplitude is obtained by combining the large-z
terms with the other standard terms—completed-cut
terms, recursive diagrams, and overlap diagrams—via
Eq. (3.25). It turns out that we need to modify Eq. (3.25)
a bit more to subtract out nonvanishing large-z contribu-
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tions from the completed-cut terms, Ĉn. As we shall dis-
cuss more fully in Sec. V, we are really performing a
contour-integral analysis on the rational function of z,
�An�z� � �Inf An��z�� � Ĉn�z�. It is this expression that
must vanish as z! 1 to allow closing the contour at
infinity. In the five-point example of the previous section,
we avoided the need for subtracting the large-z behavior of
Ĉn, by use of the modified L2 function in Eq. (3.3); we
simply ensured that Ĉ5�z� ! 0 as z! 1. For more
general amplitudes it is simpler to subtract out any non-
vanishing large-z contributions arising from Ĉn, before
adding back the complete large-z behavior. This amounts
to performing a contour-integral analysis on �An�z� �
�Inf An��z�� � �Ĉn�z� � �Inf Ĉn��z��, which automatically
vanishes at infinity. The full result is then

 An � Inf An � c��Ĉn � Inf Ĉn � R
D
n �On�; (4.1)

where Inf An contains the large-z behavior of the entire
amplitude, RDn are the contributions from the recursive
diagrams, and On are the overlap pieces. In Sec. V, we
will provide a more systematic derivation of this formula.

A. A recursion relation for large-parameter behavior

We begin by conjecturing a recursion relation for the
large-z behavior under the �1; 2i shift that is the simplest
possible generalization of the one we found for the five-
point amplitude, namely,

 Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��

� Inf
�1;2i

AN�0
5;1 �1�; 2�; 3̂�; K̂�45; 6

�� �
i
s45

� Atree
3 ��K̂

�
45; 4̂

�; 5��: (4.2)

As in Eq. (3.22) for the five-point case, â indicates a
momentum shifted according to the auxiliary �3; 4i shift
in Eq. (3.15), with w frozen to the value

 w�d� � �
h45i

h35i
: (4.3)

We will return to a more systematic construction of the
large-z contributions via on-shell recursion in Secs. V, VI,
and VII. Here we only wish to provide some motivation for
the large-z recursion relation (4.2), following the same
procedure as at five points.

The recursive diagrams for computing the amplitude
using a �3; 4i shift are displayed in Fig. 5. However, we
are only interested in the values of the diagrams in the
large-z limit of the �1; 2i shift. Diagram 5(a) has legs 1 and
2 attached to a tree which vanishes in the large-z limit [29].
As we shall discuss in Sec. V D, we assume, based on
empirical evidence from known amplitudes, that the full
diagram is also suppressed at large z, even though the loop
vertex is nonstandard. Diagram 5(b) is more complicated,
in that the shifted legs straddle the pole, but its value may
be determined easily since its components are known; it is
then not difficult to verify that it is suppressed at large z.
Diagram 5(c) is problematic, since it also contains a non-
standard complex pole. For this case, we assume that the
addition of the extra leg on the tree side, compared to the
corresponding five-point diagram shown in Fig. 2(b), does
not upset the suppression at large z; we take it to have a
vanishing contribution in this limit. One must also check
that there are no additional large-z contributions from the
cut terms (after subtracting Inf Ĉn) or from the overlap
terms. Following a similar analysis as for the five-point
case, it is not difficult to verify that there are none in this
case. We are left with the single diagram 5(d), as the sole
surviving contribution in the large-z limit of the primary
�1; 2i shift, motivating Eq. (4.2).

To evaluate the large-z recursion relation in Eq. (4.2), we
use the five-point large-z result in Eq. (3.24) as input. We
obtain

 

Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��

� �i
c�

3

h13̂i3h26i

h16i2h3̂K̂45ihK̂456i�12�

1

s45

�4̂5�3

�K̂454̂��5K̂45�

� i
c�

3

h13i3h26i

h16i2h34ih45ih56i�12�
; (4.4)

where, as above, â indicates a momentum shifted accord-
ing to the �3; 4i shift in Eq. (3.15), with w frozen to the
value (4.3).

B. The completed-cut terms

The cut-containing terms of our target amplitude were
computed in Ref. [26] using a recursion relation on coef-
ficients of integral functions, along with known lower-point
results [6,48]. In the six-point case, this procedure yields
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FIG. 5. The recursive diagrams arising from an auxiliary �3; 4i shift in AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��. Diagram (c) has nonstandard

complex singularities.

BOOTSTRAPPING ONE-LOOP QCD AMPLITUDES WITH . . . PHYSICAL REVIEW D 74, 036009 (2006)

036009-11



 Ĉ 6�1
�; 2�; 3�; 4�; 5�; 6�� �

1

3c�
AN�1

6;1 �1�; 2�; 3�; 4�; 5�; 6�� �
2

9
Atree

6 �1
�; 2�; 3�; 4�; 5�; 6�� � Ĉa6 � Ĉ

a
6

��������flip 1
;

(4.5)

where

 Ĉ a
6 �

i
3

�
h12ih23i�24�h1�j�3� 4�j2�i�h3�j42j1�is234 � h3

�j2�3� 4�j1�is34�

h34ih56ih61i�23�h5�j�3� 4�j2�i

L2�
�s234

�s34
�

s3
34

�
h35i�45��56�h5�j�1� 2�j6�i�h3�j�5� 4�j6�is345 � h3

�j�4� 5�j6�is34�

h45i�12��16�h5�j�3� 4�j2�i

L2�
�s345

�s34
�

s3
34

�
; (4.6)

and where we have introduced the flip symmetry operation,

 X�1; 2; 3; 4; 5; 6�jflip 1 � X�3; 2; 1; 6; 5; 4�: (4.7)

The first term in Eq. (4.5) is proportional to the contribution of an N � 1 chiral multiplet in the loop. This contribution is
fully constructible from the four-dimensional cuts [6]. The result is [24]

 AN�1
6;1 �1�; 2�; 3�; 4�; 5�; 6�� � Sa6 � S

a
6

��������flip 1
; (4.8)

where
 

Sa6 �
ic�

2

�
1

i
Atree

6 �1
�; 2�; 3�; 4�; 5�; 6��K0�s34� �

h1�j�2� 3�j4�i2�h3�j42j1�is234 � h3
�j2�3� 4�j1�is34�

h56ih61i�23�s234s34h5
�j�3� 4�j2�i

L0�
�s234

�s34
�

s34

�
h3�j�1� 2�j6�i2�h3�j�5� 4�j6�is345 � h3

�j�4� 5�j6�is34�

h34ih45i�12��16�s345h5
�j�3� 4�j2�i

L0�
�s345

�s34
�

s34

�
: (4.9)

After performing the �1; 2i shift, the completed-cut expression given in Eq. (4.5) does not vanish as z! 1, but tends to a
purely rational constant,

 

Inf
�1;2i

Ĉ6�1
�; 2�; 3�; 4�; 5�; 6�� � lim

z!1
Ĉ6�1

�; 2�; 3�; 4�; 5�; 6�; z�

�
i
6

h12ih13ih3�j�4� 5�j2�i��h1�j2�4� 5�j3�i � h13is345�

�12�h34ih45ih61i2s345h5
�j�3� 4�j2�i

�
i
6

h12i�24�h13i�h12i�24� � h13i�34��

�23�h56ih61is34h5
�j�3� 4�j2�i

: (4.10)

Since we have already determined the complete large-z
behavior of the full amplitude in Eq. (4.4), we must sub-
tract from Ĉ6 this rational constant, Inf�1;2i Ĉ6, so that the
difference Ĉ6 � Inf�1;2i Ĉ6 vanishes as z! 1. When com-
puting the overlap contribution we may use either this
difference or the original Ĉ6. They are equivalent because
Inf�1;2i Ĉ6 has no poles in z under a �1; 2i shift; therefore it
does not generate an overlap contribution.

C. Recursive contributions

Next we evaluate the recursive diagrams for the �1; 2i
shift of AN�0

6;1 �1�; 2�; 3�; 4�; 5�; 6��. Most of them van-
ish. Some of the vanishing diagrams are shown in Fig. 6.
(We omitted two diagrams in the (23) channel, where
(� K̂23) carries negative helicity, which vanish even
more trivially.) The first two diagrams, 6(a) and 6(b),
vanish because the loop vertices R3�6

�; 1̂�;�K̂	61� vanish,

as discussed in Sec. III B and in the appendix.
Diagrams 6(c) and 6(d) vanish because

 Atree
3 �6

�; 1̂�;�K̂�61� / �6K̂61�
3 � 0;

Atree
3 �2̂

�; 3�;�K̂�23� / h2̂3i3 � 0:
(4.11)

As discussed for the five-point case, diagram 6(e) vanishes
because its loop vertex is of the same type as the vanishing
tree vertex in diagram 6(d). Summarizing, we have

 D�a�6 � D�b�6 � D�c�6 � D�d�6 � D�e�6 � 0: (4.12)

The four nonvanishing recursive diagrams,

 RD6 � D�f� �D�g� �D�h� �D�i�; (4.13)

are shown in Fig. 7. These diagrams are straightforward to
evaluate because all channels involve standard factoriza-
tions. Diagram 7(f) yields
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D�f�6 � Atree
3 �1̂

�;�K̂�61; 6
��

i
s61

R5�2̂
�; 3�; 4�; 5�; K̂�61�

� �i
�

1

3�
�

8

9

�
h3�j�1� 2�j6�i3

�12�h34ih45i�61�s345h5
�j�3� 4�j2�i

�
i
6

s345 � s34

s34s345�s345 � s34�
2

h35i�45��56�h5�j�1� 2�j6�i

�12�h45i�61�h5�j�3� 4�j2�i

� �h3�j4j5�ih5�j�1� 2�j6�i � h3�j5j6�is345� �
i
3

�46�3h4�j�3� 5�j2�i

�12��23��34�h45i�61�h5�j�3� 4�j2�i

�
i
3

�46�2h3�j�1� 2�j6�i

�12��34�h45i�61�h5�j�3� 4�j2�i
�
i
6

h35i�45��56�h3�j�1� 2�j6�ih5�j�1� 2�j6�i

�12�h45i�61�s34s345h5
�j�3� 4�j2�i

; (4.14)

where the five-point scalar-loop vertex is given in Eq. (A26). Diagram 7(g) is
 

D�g� � Atree
4 �2̂

�; 3�; 4�; K̂�561�
i
s561

R4�1̂
�;�K̂�561; 5

�; 6��

�

�
1

3�
�

8

9

�
Atree

4 �2̂
�; 3�; 4�; K̂�561�

i
s561

Atree
4 �1̂

�;�K̂�561; 5
�; 6��

� i
�

1

3�
�

8

9

�
h1�j�2� 3�j4�i3

�23��34�h56ih61is234h5
�j�3� 4�j2�i

; (4.15)

where we used the four-point tree amplitude, Eq. (A4), and
the loop four-vertex given in Eq. (A21). It is easy to see that
diagram 7(h) gives the same value,

 D�h� � D�g�: (4.16)

Diagram 7(i) contains the factorization-function
contribution [59], which for the scalar-loop case amounts
to a vacuum-polarization insertion. The value of the
factorization-function vertex appearing in this diagram is
given in Eq. (A12). Using this value of the factorization
function, diagram 7(i) is given by

 D�i� � �
�

1

3�
�

8

9

�
Atree

4 �2̂
�; 3�; 4�; K̂�561�

�
i
s561

Atree
4 �1̂

�;�K̂�561; 5
�; 6��

� �D�g�: (4.17)

The fact that diagrams 7(g)–7(i) are equal, up to signs, is
rather special to this amplitude.

D. The overlap contributions

To evaluate the overlap contributions we start from the
rational parts of the completed-cut terms, obtained by
setting all logarithms to zero in Eq. (4.5). That is, we
replace the K0 and Li functions defined in Eq. (A17)
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FIG. 7. Nonvanishing recursive diagrams. Diagram (i) is the
factorization-function contribution.
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FIG. 6. Some vanishing recursive diagrams for the �1; 2i shift of AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��.
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with their rational parts,

 K 0�r� !
1

�
� 2; L0�r� ! 0;

L2�r� !
1

2

�r� 1�

r�1� r�2
:

(4.18)

Making these replacements in Eq. (4.5) for Ĉ6 gives uscCR6. Applying the �1; 2i shift, Eq. (3.7), yields cCR6�z�,
which we use to evaluate the overlap contributions.

As depicted in Fig. 8, for the �1; 2i shift there are three
channels which can potentially contribute to the overlap,

 O � O�a� �O�b� �O�c�; (4.19)

corresponding to the three residues of cCR6�z�=z located at
the values of z,

 z�a� � �
h23i

h13i
; z�b� �

�16�

�26�
;

z�c� � �
s234

h1�j�3� 4�j2�i
:

(4.20)

Evaluating these residues gives us the overlap contribu-
tions. After simplification, they are given by

 

O�a� � 0;

O�b� � i
�

1

3�
�

8

9

�
h3�j�1� 2�j6�i3

�12�h34ih45i�61�s345h5
�j�3� 4�j2�i

�
i
6

h12ih3�j�4� 5�j2�ih3�j�1� 2�j6�i2

�12�h34ih45is61s345h5
�j�3� 4�j2�i

�
i
6

�45��56�h35ih5�j�1� 2�j6�i�h35i�56�s345 � h34i�45�h5�j�3� 4�j6�i�

�12�h45i�61�h5�j�3� 4�j2�i

s34 � s345

s34s345�s345 � s34�
2

�
i
6

h15i�45��46�h1�j�5� 6�j4�i

�23��34�h56is61h5
�j�3� 4�j2�i

;

O�c� � �i
�

1

3�
�

8

9

�
h1�j�2� 3�j4�i3

�23��34�h56ih61is234h5
�j�3� 4�j2�i

�
i
6

h12i�24�h1�j�2� 3�j4�i2

�23��34�h56ih61is234h5
�j�3� 4�j2�i

�
i
6

h15ih34i�45�h16ih1�j�2� 3�j4�i2

�23�h56ih61i2s34s234h5
�j�3� 4�j2�i

:

(4.21)

Although there is no need to keep the 1=� terms (their
values are known a priori), we have carried them along.

E. The full amplitude and consistency checks

We may now combine all the pieces to obtain the full
amplitude,

 AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6�� � c��Ĉ6 � R̂6�; (4.22)

where Ĉ6 is given in Eq. (4.5). The rational remainder R̂6,
consisting of recursive diagrams, overlap diagrams, and
large-z contributions, is
 

R̂6 �
1

c�
Inf
�1;2i

AN�0
6;1 � Inf

�1;2i
Ĉ6 �D

�f� �D�g� �D�h�

�D�i� �O�b� �O�c�; (4.23)

where Inf�1;2i A
N�0
6;1 is given in Eq. (4.4) and Inf�1;2i Ĉ6 in

Eq. (4.10). The values of the recursive and overlap contri-
butions are given in Eqs. (4.14), (4.15), (4.16), (4.17), and

(4.21). Simplifying the result for the rational remainder and
making use of the flip symmetry (4.7), we can write the
result for the remaining rational part in a rather compact
form,

 R̂ 6 � R̂a6 � R̂
a
6

��������flip 1
; (4.24)

where
 

R̂a6 �
i
6

1

�23�h56ih5�j�3� 4�j2�i

�
�
�46�3�25�h56i

�12��34��61�

�
h13i3h25i�23�

h34ih45ih61i
�
h1�j�2� 3�j4�i2

�34�h61i

�

�
h1�j2j4�i � h1�j5j4�i

s234
�
h13i

h34i
�
�46�

�61�

�

�
h13i2�3h1�j2j4�i � h1�j3j4�i�

h34ih61i

�
�46�2�3h1�j5j4�i � h1�j6j4�i�

�34��61�

�
: (4.25)
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FIG. 8. The overlap diagrams for the �1; 2i shift. Diagram (a) vanishes.
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The result (4.24) is manifestly symmetric, not only under
the flip (4.7), but also under the second flip symmetry,
involving spinor conjugation

 X�1; 2; 3; 4; 5; 6�jflip 2 � X
�6; 5; 4; 3; 2; 1�: (4.26)

The remarkable simplicity of the rational remainder is
rather striking.

We have performed a number of checks on our result for
the amplitude, Eq. (4.22). We have confirmed that it has the
proper factorization properties in real momenta in all two-
and three-particle channels and that all spurious singular-
ities indeed cancel as they should. Since the large-z con-
tribution in Eq. (4.4) contains kinematic poles in a variety
of channels, an omitted piece would necessarily be de-
tected in some of the collinear limits. Finally, the numeri-
cal value at one phase-space point agrees with that in
Ref. [3]. The consistency of the amplitude demonstrates
the validity of our procedure for determining the large-z
terms, for a new and rather nontrivial analytic amplitude.

V. ON-SHELL RECURSION RELATIONS FOR
LOOP AMPLITUDES

Before continuing to the case of general helicities, we
present in this section a more systematic discussion of
loop-level on-shell recursion relations, emphasizing the
extensions beyond Ref. [27]. The derivation of such loop
recursion relations is similar in spirit to the tree-level case,
but it does require the treatment of factorizations which
differ from the ‘‘ordinary’’ factorization in real momenta.
It also differs because of the appearance of branch cuts and
spurious singularities associated with logarithms or poly-
logarithms. The cut-containing parts of the amplitude are
an input to the loop recursion relations. We assume that
they have been computed by other means, such as the
unitarity-based method.

A. Analytic behavior of shifted loop amplitudes

The starting point for the loop recursion relations is a
complex-valued shift of the momenta of a pair of external
particles in an n-point amplitude, kj ! k̂j�z�, kl ! k̂l�z�.
We describe a �j; li shift in terms of the spinor variables �
and ~� defined in Eq. (2.3),

 �j; li: ~�j ! ~�j � z~�l; �l ! �l � z�j; (5.1)

following the tree-level construction [29]. The shift main-
tains overall momentum conservation as well as the mass-
lessness of the external momenta, k̂2

j � k̂2
l � 0. Let us

denote the original n-point amplitude by An � An�0�, and
the shifted one by An�z�. We seek an equation for An�0�
relying on the analytic properties of An�z�. (We will also
denote by f�z� other functions f of the momenta, such as
the cut-containing terms, after the shift (5.1).)

At tree level, An�z� is a meromorphic function of z. Its
poles are determined by the factorization properties of An

as multiparticle invariants or spinor products vanish. The
former are identical for real and complex momenta, and at
tree level, the singularities for spinor products of complex
momenta are also completely determined by the corre-
sponding singularities (collinear factorizations) for real
momenta. At tree level, one can show [29,44,62] that there
are always choices of shift momenta for which An�z� ! 0
as z! 1. This allows the derivation of a recursion relation
through consideration of a contour integral on a circle at
infinity.

At one loop, we must consider several new aspects. The
most obvious of these is the presence of branch cuts, which
arise from logarithms or polylogarithms in the amplitudes.
But there are a number of other important features. While
factorization in real momenta is understood [5,59,61], this
does not completely determine the singularity structure in
complex momenta. In particular, we must in general handle
double poles as well as ‘‘unreal’’ poles, present for com-
plex momenta but absent for real ones. We obtained some
of the required factorizations heuristically [30,31], con-
firming them by explicit calculation. In certain two-particle
channels, however, the structure of complex factorization
is not yet completely clear; accordingly, we will design our
calculations to avoid relying on them.

While it does appear in general possible to find momen-
tum shifts under which An�z� ! 0 as z! 1, it is not
always possible to do so while avoiding poles in channels
with obscure complex-factorization behavior. Accordingly,
we must deal with amplitudes that have either a pole at
infinity, so that An�z� ! 1 as z! 1, or that behave as a
finite constant. We will, however, assume that this behavior
is given by a rational function of z. In all cases we deal
with here, where the corresponding tree amplitudes vanish
in the large-z limit, the large-z terms are purely rational.
For the moment, let us assume we know these terms, along
with the cut-containing terms; below we return to the issue
of their computation.

More precisely, we wish to define an operator Inf that
yields a pole-free rational function reproducing the large-z
behavior of an amplitude, when both are shifted

 lim
z!1
��Inf An��z� � An�z�� � 0: (5.2)

We implement this operator via a series expansion of the
amplitude around the point z � 1, or u � 1=z � 0. We
take An�z� to be an analytic function with a series expan-
sion of the form

 An�z� �
Ximax

i�0

1

ui
a��i� �

X1
i�1

uib�i� �
X1
i�1

ln�u�uic�i�

�
X1
i�1

ln2�u�uid�i�; (5.3)

where the coefficients, a��i�, b�i�, c�i�, and d�i� depend on
spinor products. The leading degree of large-z behavior,
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imax, depends on the helicity configuration. In writing this
expansion, we have assumed that no ln�z� factors appear in
terms which survive as z! 1. (We can always confirm the
validity of this assumption for a given amplitude, since all
logs and polylogarithms will have already been computed
via the unitarity method or other means.) The large-z terms
are those which do not vanish as z! 1,

 Alrg z
n �z� �

Ximax

i�0

zia��i� � �Inf An��z�; (5.4)

given by shifting their progenitor Inf An.
We may then write An�z� as a sum of the large-z terms

and the remaining terms,

 An�z� � Alrg z
n �z� � A

poles
n �z�; (5.5)

so that all finite-z poles, logarithms, and polylogarithms in
z are put in the second term. We will call the latter object
the ‘finite-pole’ terms.

Since we will be interested in the unshifted physical
amplitude obtained by setting z � 0, we will need those
terms in An�0� that generate Alrg z

n �z� under the shift. We
find in practice that these are given by setting z � 0 in
Alrg z
n �z�, that is keeping only the z0 � u0 terms in the

expansion of An�z�,

 Inf An � a�0�: (5.6)

A key aim of this paper is to provide a means for comput-
ing this quantity.

Since Apoles
n �z� vanishes for z! 1, we may apply

Cauchy’s residue theorem. Consider the contour going
along the circle at infinity, but avoiding the branch cuts
by integrating inwards along one side, and then outwards
along the other, as shown in Fig. 9. We route the branch
cuts so that no two overlap. (As discussed in Ref. [27] the

case of poles touching the ends of branch cuts works in the
same way as the basic case, and we shall not distinguish it
further in our discussion.) The integral along this contour is
given by the sum of residues. This contour, however,
includes a branch-cut-hugging integral

 

1

2�i

Z
B"�i�

dz
z
Apoles
n �z� �

1

2�i

Z
B#�i�

dz
z
Apoles
n �z�; (5.7)

where B" is directed from an endpoint B0 to infinity, and B#

is directed in the opposite way. Now, Apoles
n �z� has a branch

cut along B, which means that it has a nonvanishing dis-
continuity
 

2�iDiscBA
poles
n �z� � Apoles

n �z� i�� � Apoles
n �z� i��;

z on B: (5.8)

(Because Alrg z
n is taken to be purely rational,

DiscBA
poles
n �z� � DiscBAn�z�.) Thus, using the vanishing

of Apoles
n �z� for z! 1, we have

 0 � Apoles
n �0� �

X
poles �

Res
z�z�

Apoles
n �z�
z

�
Z 1
B0

dz
z

DiscBA
poles
n �z�: (5.9)

B. Cuts and cut completion

To proceed further, let us assume that we have already
computed all terms having branch cuts, along with certain
closely related terms that can generally be obtained from
the same computation. That is, we have computed all
polylog terms, all log terms, and all �2 terms. As discussed
in Ref. [27], there are also certain classes of rational terms
that are natural to include with the cut-containing terms.

In particular, there are rational terms whose presence is
required to cancel spurious singularities in the (poly)logar-
ithmic terms. Such spurious singularities arise in the course
of integral reductions. They are not singularities of the final
amplitude, because they are unphysical, and not singular-
ities of any Feynman diagram. A simple example comes
from a ‘two-mass’ triangle integral for which two of the
three external legs are off shell (massive), with momentum
invariants s1 and s2, say. When there are sufficiently many
loop momenta inserted in the numerator of this integral, it
gives rise to functions such as

 

ln�r�

�1� r�2
; (5.10)

where r is a ratio of momentum invariants (here r �
s1=s2). The limit r! 1 (that is, s1 ! s2) is a spurious
singularity; it does not correspond to any physical factori-
zation. Indeed, this function always appears in the ampli-
tude together with appropriate rational pieces,

C

FIG. 9 (color online). A configuration of poles and branch cuts
for a term in a one-loop amplitude, with a branch-cut-hugging
contour.
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ln�r� � 1� r

�1� r�2
; (5.11)

in a combination which is finite as r! 1. From a practical
point of view, it is most convenient to ‘‘complete’’ the
unitarity-derived answer for the cuts by replacing functions
like Eq. (5.10) with nonsingular combinations like
Eq. (5.11). Such completions are of course not unique;
one could add additional rational terms free of spurious
singularities.

The reason we want to eliminate spurious singularities
from subexpressions has to do with the sum over pole
residues in Eq. (5.9). The sum runs over all poles, whether
they arise from a shift in a physical singularity variable, or
in a spurious one. In practice, it is sufficient to eliminate all
spurious singularities that acquire a z dependence under
the momentum shift. By construction, Alrg z

n �z� is free of
such ‘‘dangerous’’ spurious singularities, since it cannot
contain poles in z.

Singularities that look like collinear ones, but involve
nonadjacent momenta, are also spurious. For example, in
the scalar contributions to the five-gluon (����� )
amplitude [48], there are factors of h24i and h25i appearing
in the denominators of certain coefficients. These might
appear to give rise to nonadjacent collinear singularities in
complex momenta; but by expanding the polylogarithms
and logarithms in that limit, one can show that these
singularities are in fact absent in the full amplitude.

Let us define two decompositions of the amplitude. The
first is into ‘‘pure-cut’’ and ‘‘rational’’ pieces. The rational
parts are defined by setting all logarithms, polylogarithms,
and �2 terms to zero,

 Rn�z� �
1

c�
An

��������rat
�

1

c�
An

��������ln;Li;�2!0
: (5.12)

(The normalization constant c�, defined in Eq. (2.15), plays
no essential role in the following arguments, we carry it
along for completeness.) The pure-cut terms are the re-
maining terms, all of which must contain logarithms, poly-
logarithms, or �2 terms,

 Cn�z� �
1

c�
An

��������pure-cut
�

1

c�
An

��������ln;Li;�2
: (5.13)

In other words,

 An�z� � c��Cn�z� � Rn�z��; (5.14)

where we have explicitly taken c� outside of Cn�z� and
Rn�z�.

The second decomposition uses the ‘‘completed-cut’’
terms, obtained from Cn�z� by replacing logarithms and
polylogarithms by corresponding functions free of spuri-
ous singularities (at least those that suffer a shift). We call

this completion Ĉn. The decomposition defines the remain-
ing rational pieces R̂n,

 An�z� � c��Ĉn�z� � R̂n�z��: (5.15)

This reorganization has effectively moved some of the
rational terms into the completed-cut terms. In general,
Cn�z� and Ĉn�z� will not vanish as z! 1. We will assume
that the large-z behavior is given by a rational function of
the spinor products, as in the previous examples. The
rational function may include contributions from series
expansions of the logarithms and polylogarithms in
Ĉn�z�. Taking this into account, we can define a useful
decomposition of the finite-pole terms

 

Apoles
n �z� � c��Ĉn�z� � R̂n�z� � �Inf Ĉn��z� � �Inf R̂n��z��:

(5.16)

In the cases relevant to the present paper, �Inf Ĉn��z� is in
fact at worst a constant in z. Note that the additional terms
will not contain any ‘‘dangerous’’ spurious singularities, as
the act of taking the large-z limit will eliminate them.

We also need to define the rational part of the

completed-cut terms, cCRn�z�. We write

 Ĉn�z� � Cn�z� � cCRn�z�; (5.17)

where

 

cCRn�z� � Ĉn�z�
��������rat

: (5.18)

Combining Eqs. (5.14), (5.15), and (5.17), we see that the
full rational part is the sum of the rational part of the
completed-cut terms, and the remaining rational pieces

 Rn�z� � cCRn�z� � R̂n�z�: (5.19)

Now, because we know all the terms containing branch
cuts, we could compute the branch-cut-hugging integral in
Eq. (5.9),
 Z 1
B0

dz
z

DiscBA
poles
n �z� �

Z 1
B0

dz
z

DiscB�Ĉn�z� � �Inf Ĉn��z��

�
Z 1
B0

dz
z

DiscBĈn�z�; (5.20)

where the second line follows from the rational nature of
�Inf Ĉn��z�. However, there is no need to do the integral
explicitly, because we already know the answer for the
integral, plus the associated residues. Up to a contribution
coming from Inf Ĉn, it is just Ĉn�0�, part of the final
answer. That is, applying the same logic to Ĉn�z� �
�Inf Ĉn��z� as was applied to Apoles

n �z� in Eq. (5.9), we have
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 Ĉ n�0� � Inf Ĉn �
X

poles �

Res
z�z�

Ĉn�z�
z
�
Z 1
B0

dz
z

DiscBĈn�z�;

(5.21)

where by construction Inf Ĉn does not contribute to the
sum over residues either.

Using Eq. (5.9), the decomposition (5.15), and Eq. (5.21)
to evaluate the terms involving Ĉn�z�, we can write our
desired answer as follows,

 Apoles
n �0� � �c�

�Z 1
B0

dz
z

DiscBĈn�z� �
X

poles �

Res
z�z�

Ĉn�z�
z

�
X

poles �

Res
z�z�

R̂n�z�
z

�

� c�

�
Ĉn�0� � Inf Ĉn �

X
poles �

Res
z�z�

R̂n�z�
z

�
:

(5.22)

By construction, the completed-cut terms Ĉn�z� contain no
spurious singularities, and so the sums over the poles in
Eq. (5.22) are only over the genuine, ‘‘physical’’ poles in
the amplitude. As we are working with complex momenta,
these are the poles that arise for such momenta, and not
merely those that arise for real momenta. In particular, this
means that double poles and unreal poles may appear, as
discussed in detail in Refs. [30,31].

C. Residues of the remaining rational pieces R̂n�z�

Our next task is to evaluate the residues of the remaining
rational terms, R̂n. We will do this by setting up an on-shell
recursion relation. As discussed in Ref. [27], pure-cut and
rational terms factorize independently, and so one can use
factorization to construct an on-shell recursion relation for
the full rational terms Rn. However, there is no fundamen-
tal factorization distinction between the rational terms in
Ĉn and those in R̂n, so we cannot set up a direct recursion
relation for them. We will instead compute them indirectly,
by first computing the full rational terms, and then sub-
tracting terms which are present in both the full rational
terms and in the completed-cut terms. These are exactly

terms coming from cCRn, which we therefore call ‘‘over-
lap’’ terms,

 �
X

poles �

Res
z�z�

R̂n�z�
z
� �

X
poles �

Res
z�z�

Rn�z�
z

�
X

poles �

Res
z�z�

cCRn�z�
z

: (5.23)

Since we know cCRn explicitly, we can compute the last
sum by shifting and extracting poles,

 On �
X

poles �

Res
z�z�

cCRn�z�
z

: (5.24)

To obtain the first term on the right-hand side of
Eq. (5.23), we must analyze the poles in Rn�z�, that is to
say its properties at appropriate null complex momenta.
The behavior of Rn�z� can be extracted from the factoriza-
tion properties of the amplitude as a whole, by following
the analysis of Ref. [27], and separating two classes of
terms—pure-cut and rational—in the factorized ampli-
tudes. Only rational terms in the factorization can contrib-
ute to the required sum of residues.

Given the �j; li shift (5.1), we define a partition P to be a
set of two or more cyclicly consecutive momentum labels
containing j, such that the complementary set �P consists of
two or more cyclicly consecutive labels containing l:

 

P � fP1; P2; . . . ; j; . . . ; P�1g;

�P � f �P1; �P2; . . . ; l; . . . ; �P�1g;

P [ �P � f1; 2; . . . ; ng:

(5.25)

This definition ensures that the sum of momenta in each
partition is z-dependent, so that it can go on shell for a
suitable value of z. The complex on-shell momenta k̂j, k̂l,
and P̂ are determined by solving the on-shell condition,
P̂2 � 0, for z.

At one loop, there are in general three contributions to
factorization in any given channel,

 

A1-loop

��������si...j

� A1-loop
L �

i
si...j
� Atree

R

� Atree
L �

i
si...j
� A1-loop

R

� Atree
L �

iF 1-loop

si...j
� Atree

R : (5.26)

In the first two terms, one of the factorized amplitudes is a
one-loop amplitude and the other is a tree amplitude. The
last term contributes only in multiparticle channels, and
contains a one-loop ‘‘factorization function.’’ For the case
of a scalar in the loop (N � 0), this function is equal to
the scalar contribution to the gluon vacuum polarization
[59]. Accordingly, in addition to the sum over channels, we
will have a sum over these different factorization contri-
butions. Taking the rational parts, we obtain
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 �
X

poles �

Res
z�z�

Rn�z�
z
� RDn �k1; . . . ; kn�

�
X

partitions P

X
h�	

�
R�kP1

; . . . ; k̂j; . . . ; kP�1
;�P̂h� �

i

P2 � A
tree�k �P1

; . . . ; k̂l; . . . ; k �P�1
; P̂�h�

� Atree�kP1
; . . . ; k̂j; . . . ; kP�1

;�P̂h� �
i

P2 � R�k �P1
; . . . ; k̂l; . . . ; k �P�1

; P̂�h�

� Atree�kP1
; . . . ; k̂j; . . . ; kP�1

;�P̂h� �
iRF �P�

P2 � Atree�k �P1
; . . . ; k̂l; . . . ; k �P�1

; P̂�h�
�
; (5.27)

where P2 is the squared momentum associated with the
partition P, and RF is defined in the appendix. The hatted
variables are given as usual by shifting momenta according
to Eq. (5.1), and freezing z to the value that puts P̂ on shell,

 z �
P2

hj�jPjl�i
: (5.28)

The result (5.27) follows directly from the general factori-
zation behavior of one-loop amplitudes, plus the separate
factorization of pure-cut and rational terms [27]. Although
the R functions are not complete amplitudes, they can be
thought of as vertices. Equation (5.27) then gives rise to a
set of ‘‘recursive diagrams.’’

Inserting the result into Eq. (5.22), and then into
Eq. (5.5), gives us the basic on-shell recursion relation
for complete one-loop amplitudes,

 An�0� � Inf An � c��Ĉn�0� � Inf Ĉn � R
D
n �On�:

(5.29)

To compute with this equation, we construct RDn via recur-
sive diagrams; that is, via Eq. (5.27). The ‘‘overlap’’ terms
On can also be given a diagrammatic interpretation, asso-
ciating each pole in Eq. (5.24) with a specific diagram, as
we have done in Figs. 4 and 8. Although the definition of
the completed-cut terms Ĉn is not unique, the ambiguity

cancels between Ĉn�0�, Inf Ĉn, and the sum over cCRn
residues in On.

In general, it is useful to combine all the rational func-
tions not included in the cut completion into a single
function

 R̂ n �
1

c�
Inf An � Inf Ĉn � R

D
n �On; (5.30)

so that

 An�0� � c��Ĉn�0� � R̂n�: (5.31)

If Ĉn�0� is chosen to preserve a symmetry of the amplitude
(e.g., under a particular permutation of legs), then R̂n will
also have this symmetry, even if the individual components
of R̂n do not.

D. Determining terms arising from large shifts

Our remaining task is to determine the large-z contribu-
tions set aside in Eq. (5.5), and put back unevaluated in
Eq. (5.29). As already discussed in Secs. III and IV, to do so
we will use a second, auxiliary shift,

 �a; bi : ~�a ! ~�a � w~�b; �b ! �b � w�a; (5.32)

distinct from the primary shift in Eq. (5.1). It is useful to
choose the auxiliary shift so that An�w� vanishes in the
largew limit. (For the gluon amplitudes we consider in this
paper, and likely in general, such choices can be found, as
we discuss in Sec. VI.) The price that we must pay is the
presence of contributions to the amplitude from channels
with nonstandard complex factorizations. However, we can
arrange matters so that these channels do not contribute to
the terms we are seeking to compute, those that survive in
the limit when the original shift’s parameter z becomes
large.

To do that, it suffices to ensure that channels with non-
standard complex factorizations vanish at large z when the
primary shift (5.1) is applied to the auxiliary recursion
relation. The details of the factorization behavior in those
channels are then unimportant.

For multiparticle channels, factorization in complex
momenta is the same as in real momenta. For two-particle
channels with opposite-helicity gluons, the discussion in
Sec. III B showed that only the standard tree-level tensor
structure contributes, and that for scalars in the loop the
relevant form factor actually vanishes. For like-helicity
gluons, in the complex kinematics for which the tree vertex
is nonvanishing, the situation is more complicated. The
structure of the factorization is known empirically for one
of the two possible helicities of the intermediate gluon, for
the case where the other possible intermediate helicity
vanishes. This case occurs in studying the finite series of
n-gluon amplitudes A1-loop

n �1�; 2�; . . . ; n��. The factoriza-
tion has the form [30]
 

A1-loop
n �1; . . . ; b�; �b� 1��; . . . ; n�

!
i

�sb�b�1��
2 V

1-loop
3 ��K�; b�; �b� 1���

� Atree
n�1�1; . . . ; K�; . . . ; n� � �1� correction factors�:

(5.33)
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This configuration is shown schematically in Fig. 10(a). So
long as the legs shifted under the original, primary, shift are
both contained on the Atree side of the factorization, the
form of the correction factors in Eq. (5.33) is such that the
term vanishes as the primary shift variable z! 1, because
the tree amplitude vanishes in that limit. We will defer a
general study of the structure for the other intermediate
helicity shown in Fig. 10(b); the only property that we will
need is the vanishing of the primary shift z! 1 limit
for contributions where both shifted legs are on the tree
side of the factorization, as in Fig. 10. This property holds
for previously-computed five- and six-point amplitudes
[27,48], and we will assume it holds more generally for
both intermediate helicity configurations. The validity of
this assumption can be tested at the end of a calculation, by
checking all the symmetry and factorization properties of
the fully assembled amplitude.

The auxiliary shift gives us the following expression for
the complete amplitude,

 An�0� � c��Ĉn�0� � Inf
�a;bi

Ĉn � R
D;�a;bi
n �O�a;bin �; (5.34)

where the superscript �a; bi denotes the legs shifted under
the auxiliary shift, and where the recursive diagrams are
built and the overlap contributions determined, with re-
spect to this shift. The large-parameter (large-w) terms of
the auxiliary shift (5.32) are absent by design. We can now
extract the large-parameter (large-z) behavior with respect
to the primary �j; li shift,

 Inf
�j;li

An � c�Inf
�j;li
�Ĉn�0� � Inf

�a;bi
Ĉn � R

D;�a;bi
n �O�a;bin �:

(5.35)

Following the discussion above, we arrange the shifts so
only channels with standard factorizations will survive in
the large-z limit of the �j; li shift. In extracting the large-z
behavior, we must in general keep all nonvanishing con-
tributions to the amplitude, which may arise not only from
the recursive diagrams with respect to the auxiliary shift,
but also from completed-cut or overlap terms. In many
practical cases, however, the only surviving contributions
are from a limited set of recursive diagrams. Indeed, the
typical surviving term will have the form

 Inf
�j;li

R�kP1
; . . . ; k̂a; . . . ; kP�1

;�P̂h� �
i

P2

� Atree�k �P1
; . . . ; k̂b; . . . ; k �P�1

; P̂�h�; (5.36)

where legs j and l are both on the loop side.
In the next section, we shall present shift choices for

general helicity configurations that implement the ap-
proach outlined in this section: a primary shift free of
nonstandard channels, but having nontrivial large shift-
parameter behavior, and an auxiliary shift free of nontrivial
large shift-parameter behavior, but containing nonstandard
channels that in turn vanish at large values of the primary
parameter.

VI. GENERAL HELICITIES

As an illustration of our strategy, in this section we now
present specific shift choices for determining the rational-
function parts of generic one-loop n-gluon amplitudes. As
discussed in previous sections we must choose a primary
shift so that nonstandard complex singularities do not
occur in the recursion. If there are contributions from large
values of the shift parameter z, we determine these using an
auxiliary shift and recursion relation.

A. Empirical structure of the amplitudes

In order to proceed, we will need a few analytic proper-
ties of amplitudes. Unfortunately, as yet there are no
theorems to guide us on the properties of complex facto-
rizations of amplitudes or on the behavior of loop ampli-
tudes under large complex shifts z. We therefore follow the
empirical approach of Refs. [27,30,31]. We observe certain
useful properties of known amplitudes and then use these
properties to aid in the computation of new amplitudes. We
shall not prove these properties, noting that such proofs
would be valuable to help guide future developments. This
empirical approach has been effective for obtaining a
variety of new one-loop amplitudes [27,30–32]. By now,
a large number of QCD amplitudes are known analytically
[30–32,47,48,57,63–67], making it straightforward to de-
velop a heuristic understanding of their analytic properties.

Our confidence in this pragmatic approach stems from
the rather nontrivial checks that may be performed on any
loop amplitude. In particular, the factorization properties
of one-loop amplitudes in real momenta are well under-
stood [5,6,59–61] and provide rather nontrivial constraints
on the amplitudes by demanding that every pole in the
amplitude corresponds to a physical factorization. The
nontrivial consistency requirement stems from the fact
that only a limited number of factorization channels enter
into the recursive construction.

An investigation of the analytic properties of the known
one-loop amplitudes reveals some striking properties:

(1) For any ��;�i shift, all n-gluon amplitudes vanish
for a large shift parameter, z! 1.

FIG. 10. A nonstandard factorization using an auxiliary �a; bi
shift is assumed to be suppressed in the large-z limit of the
primary �j; li shift, if the tree amplitude naively appearing in the
factorization contains both legs j and l and is suppressed.
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(2) For n-gluon amplitudes with the split-helicity con-
figuration, An�1�; 2�; . . . ; �m� 1��; m�; �m� 1��;
. . . ; n��, an alternative set of shifts where the am-
plitudes vanish at large z are �1; m� 1i, �m� 1; 1i,
�m; ni, and �n;mi.

(3) For a given �j; li shift, there are no more than four
channels with nonstandard complex singularities,
depending on the helicities of the legs nearest to j
and l, as depicted in Fig. 11.

The above properties are by no means exhaustive. In
particular, there are other shifts where one-loop n-gluon
amplitudes vanish at large z, although the above observa-
tions will be sufficient for our purposes here.

As already discussed in Sec. V D, an empirical rule for
suppressing diagrams with nonstandard complex singular-
ities in an auxiliary recursion relation is to ensure that the
primary shift legs are both on the tree side of the naive
factorization and that this tree amplitude is suppressed in
the large-z limit of the primary shift. Such configurations
are displayed in Fig. 10.

It is worth mentioning that based on our empirical
studies of MHV supersymmetric amplitudes [5,6,11], it
appears that in the supersymmetric case, the complete set
of shifts where An�z� vanishes for z! 1 is identical to the
set of shifts where this is true at tree level, i.e. any ��;�i,
��;�i, and ��;�i shift.

B. Systematics for general helicities

Using the above empirical observations, we now present
a systematic procedure for finding pairs of shifts which
will allow us to compute the rational terms in any
n-gluon amplitude while avoiding nonstandard complex
singularities.

Depending on the helicity configuration, we will use the
three independent shift choices:

(i) If the amplitude contains four color-neighboring
legs having the helicity structure i�, �i� 1��,
�i� 2��, �i� 3��, then choose the shift
�i� 1; i� 2i. With this shift, the amplitude van-
ishes as z! 1 and no nonstandard complex sin-
gularities appear in the recursion relation. Only a
single shift, and hence only a single recursion
relation, is required in this case.

(ii) If the amplitude has three nearest-neighboring legs
i�, �i� 1��, �i� 2��, choose �i� 1; ii as the pri-

mary shift. For determining the behavior of the
amplitudes for large values of the primary shift
parameter, choose an auxiliary shift �a; bi such
that a is a negative-helicity leg, b is a positive-
helicity leg, and a � i� 1, i, i� 1.

(iii) For the special case of split-helicity configurations,
An�1

�;2�; . . . ; �m� 1��;m�; �m� 1��; . . . ; n��, a
rather convenient choice is a primary �1; 2i shift
and an auxiliary �n;mi shift.

The above choices are not the complete set of choices
that we need. However, all the remaining cases are simply
related to the above ones via parity conjugation or a
reversal of legs in the color ordering. For convenience,
we also list these shift choices:

(iv) If four neighboring legs in the color ordering have
helicities i�, �i� 1��, �i� 2��, �i� 3�� then
choose the single shift �i� 2; i� 1i.

(v) If the amplitude has three nearest-neighboring legs
i�, �i� 1��, �i� 2��, choose �i� 1; i� 2i as the
primary shift. As the auxiliary shift choose any
�a; bi such that a is a negative-helicity leg, b is a
positive-helicity leg, and a � i� 1, i� 2, i� 3.

(vi) If the amplitude has three nearest-neighboring legs
i�, �i� 1��, �i� 2�� choose �i� 2; i� 1i as the
primary shift. As the auxiliary shift choose any
�a; bi such that a is a negative-helicity leg, b is a
positive-helicity leg, and b � i� 1, i� 2, i� 3.

With these choices we should then be able to construct
the rational-function contributions of all unknown n-gluon
amplitudes, once the cut-containing pieces are known.
(The above choices are not useful for constructing ampli-
tudes with identical helicities, but those are already known
[66,67].) If more than one of the above choices is satisfied
in a given amplitude, one may choose whichever is the
most convenient. In Table I we have listed all the helicity
configurations with three negative-helicity legs and up to
seven external gluons, along with choices of primary and
auxiliary shifts which may be used to construct the ampli-
tudes. (In the first row, for 1�, 2�, 3�, 4�, 5�, our choice of
auxiliary shift actually has no nonstandard factorization
channels, so it could be used by itself to fully determine the
amplitude. We display this particular shift choice because
it is based on the above rules and generalizes to the case of
more adjacent positive-helicity gluons.)

It is important to note that there are many other valid
shift pairs besides those in the above construction. For
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FIG. 11. For a �j; li shift, the four potential channels with nonstandard complex singularities. Whether these are actually present in a
given amplitude depends on the helicities of the legs nearest to j and l in the color ordering.
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example, although we can use the rules to determine all
amplitudes with two negative helicities, it turns out that a
somewhat more convenient choice is to choose a �i; ji shift,
where legs i and j are the two negative-helicity legs, as we
shall discuss in a companion paper [47]. In many cases, it is
also possible to relax the conditions we impose on the
shifts. For example, we have been demanding that under
the auxiliary shift the amplitude vanish for large shift
parameter. In fact, this restriction is not necessary; we
need only demand that any such terms do not contribute
to the large shift terms of the primary shift. For example,
the identical-helicity amplitudes An;1�1

�; 2�; . . . ; n�� can
be determined using a primary �5; 7i shift and an auxiliary
�1; 3i shift (for n � 7), even though the amplitudes do not
vanish [30] under the large-z limit of either shift. In
Table II we have collected a variety of examples of shift
pairs which may be used to determine the amplitudes, but
are outside the class of shifts described above for determin-
ing general helicity configurations.

We expect that a similar strategy will be effective for
amplitudes with massless quarks, and for amplitudes with
external massive vector bosons or Higgs particles. With
suitable modifications it should be possible to use the on-
shell bootstrap to construct amplitudes with massive par-
ticles in the loops as well.

VII. RECURSIVE DETERMINATIONS OF LARGE-z
BEHAVIOR

Following the procedure of the last section we now
determine the large shift-parameter behavior of some sam-
ple amplitudes. We focus on amplitudes with three or four
color-adjacent negative-helicity legs, as a nontrivial illus-
tration of the method. Because the logarithmic terms in
these amplitudes have already been calculated [26], we can
obtain the complete amplitudes by computing the rational
terms recursively, as we do in the next section. We can
confirm indirectly that our approach to determining the
large-z behavior is valid in these cases, by verifying that
the amplitudes have the proper symmetries, and that they
factorize correctly.

To determine the large-z behavior of an amplitude, with
the help of an auxiliary shift, one must include in general
the large-z behavior of the completed-cut, overlap and
recursive contributions (with respect to the auxiliary shift).
In Subsection VII C, we shall encounter a five-point ex-
ample where all three types of contributions are nonvan-
ishing at large z. However, in Subsections VII A and VII B,
we shall arrange the shifts, for the respective cases of three
and four color-adjacent negative helicities, so that the
entire large-z behavior comes from the recursive diagrams
of the auxiliary shift. In this way it is very simple to obtain

TABLE II. This table lists examples of valid shift pairs besides those selected by the procedure
discussed in the text.

Helicity Primary shift Auxiliary shift Suppressed channels

1�; 2�; . . . ; n� �5; 7i �1; 3i � � �

1�; 2�; . . . ; j�; �j� 1��; . . . ; n� �1; ji � � � � � �

1�; 2�; 3�; 4�; . . . ; n� �1; 2i �4; 5i (56)
1�; . . . ; �m� 1��; m�; . . . ; n� �1; 2i �m;m� 1i (m� 1, m� 2)

TABLE I. This table lists helicities and pairs of shifts that may be used to construct any six- or
seven-gluon amplitude with three negative-helicity legs. The primary shift in the second column
generates a recursion relation which does not have nonstandard complex singularities, but the
amplitude may not vanish for a large shift parameter z. Under the auxiliary shift in the third
column, the recursion relation may have nonstandard complex singularities in the channels listed
in the fourth column. However, these singularities should be suppressed in the large-z limit of the
primary shift.

Helicity Primary shift Auxiliary shift Suppressed channels

1�, 2�, 3�, 4�, 5� �1; 2i �5; 4i � � �

1�, 2�, 3�, 4�, 5� �4; 3i � � � � � �

1�, 2�, 3�, 4�, 5�, 6� �1; 2i �6; 4i �45�
1�, 2�, 3�, 4�, 5�, 6� �4; 3i � � � � � �

1�, 2�, 3�, 4�, 5�, 6� �1; 2i � � � � � �

1�, 2�, 3�, 4�, 5�, 6�, 7� �1; 2i �7; 4i �45�
1�, 2�, 3�, 4�, 5�, 6�, 7� �4; 3i � � � � � �

1�, 2�, 3�, 4�, 5�, 6�, 7� �1; 2i �5; 6i �67�
1�, 2�, 3�, 4�, 5�, 6�, 7� �3; 4i � � � � � �
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compact expressions for the large-z behavior of these
amplitudes under the �1; 2i shift.

A. AN�0
n;1 �1

�; 2�; 3�; 4�; 5�; . . . ; n��

Consider now the n-gluon amplitudes with three color-
adjacent negative-helicity legs. We use the special split-
helicity shift choice described in the last section: a �1; 2i
shift as our primary shift, and an �n; 4i shift as the auxiliary
shift. This shift allows for an especially simple determi-
nation of the large-z behavior in the n-point case.

How do the individual contributions behave as the z
parameter associated with a �1; 2i shift is taken to infinity?
First consider the completed-cut contributions, Ĉn. These
contributions were obtained in Ref. [26] and are given in
Sec. VIII, Eq. (8.1), where we describe them in more detail.
As explained in that section, Ĉn is nonvanishing in the
large-z limit of the �1; 2i shift (see Eq. (8.10)). However, a
computation shows that the large-z limit of the overlap
terms obtained from Ĉn cancels this term. So there are no
large-z �1; 2i shift contributions arising from the sum of the
completed-cut and overlap contributions of our auxiliary
�n; 4i shift. All that remains is to inspect the large-z be-
havior of the recursive diagrams.

As a warm-up for the all-n case, we consider the six-
point case again, this time with an auxiliary �6; 4i shift
instead of �3; 4i. The recursive diagrams are shown in
Fig. 12, omitting diagrams where the tree vertex vanishes.
The simplest diagrams to analyze are those where both
shifted legs 1 and 2 are attached to a tree vertex in a

‘‘standard’’ channel, as is true for Figs. 12(a)–12(c). The
remainder of the diagram (the propagator and other vertex)
is independent of the shift parameter, and so the large-
parameter behavior is determined by the tree alone.
Because this shift is a well-behaved shift at tree level
[29,44], the tree vertex, and hence the diagram, vanishes
in the large-z limit. The same reasoning applies to dia-
grams where both shifted legs are attached to a loop vertex,
and where we already know from previous computations
that the �1; 2i shift is well behaved. This is the case for
Fig. 12(d). We cannot be certain that the same logic will
apply to diagrams such as Fig. 12(e), where both shifted
legs are attached to a tree vertex, when the contribution is
in a channel with nonstandard factorization. Nonetheless,
analysis of specific analogous cases leads us to conclude
that these diagrams should be suppressed in the large-
parameter limit. As discussed in the previous section, this
assumption can be tested once the final answer for the
amplitude is in hand. Diagrams where the shifted legs are
attached to different vertices, such as those in Figs. 12(f)–
12(j), must be analyzed explicitly. These diagrams involve
only standard channels, and all do indeed vanish in the
large-parameter limit.

This leaves us with two diagrams, those of Figs. 12(k)
and 12(l). Here, the shifted legs are both attached to the
same five-point loop vertex with a standard factorization,
so the large-parameter behavior is determined solely by the
loop vertex. We know from Eq. (3.14) that it has nontrivial
behavior in that limit, which survives to contribute to the
auxiliary recursion relation. Collecting these two contribu-
tions, we obtain the desired relation,
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FIG. 12. Recursive diagrams for AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��, for the auxiliary �6; 4i shift. We drop the diagrams for which the tree

vertex vanishes. Diagram (e) has nonstandard complex singularities. Only diagrams (k) and (l) contribute to the large-z limit of the
�1; 2i shift. Diagrams (c) and (f) represent the factorization-function contribution.
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 Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6�� � Inf

�1;2i
AN�0

5;1 �1�; 2�; K̂�34; 5
�; 6̂��

i
s34

Atree
3 �3

�; 4̂�;�K̂�34�

� Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; K̂�45; 6̂

��
i
s45

Atree
3 �4̂

�; 5�;�K̂�45�; (7.1)

where â refers to legs shifted and frozen according to the auxiliary �6; 4i shift. Evaluating this relation (and as we shall see
below, even solving it for all n) is straightforward, thanks to its similarity to a tree-level MHV recursion relation [29].
Plugging in the known values on the right-hand side, we obtain
 

Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6�� �

ic�

3

h1K̂34i
3h26̂i

h16̂i2hK̂345ih56̂i�12�

1

s34

�K̂344̂�3

�34̂��K̂343�

�
ic�

3

h13i3h26̂i

h16̂i2h3K̂45ihK̂456̂i�12�

1

s45

�54̂�3

�K̂455��4̂K̂45�

�
ic�

3

h13i3h26i

h16i2h34ih45ih56i�12�
; (7.2)

in agreement with Eq. (4.4).
It is straightforward to generalize Eq. (7.1) to obtain the large-z behavior of the n-gluon amplitude under a �1; 2i shift.

Following the same logic, we obtain the recursion relation, using an auxiliary �n; 4i shift

 Inf
�1;2i

AN�0
n;1 �1�; 2�; 3�; 4�; 5�; . . . ; n�� � Inf

�1;2i
AN�0
n�1;1�1

�; 2�; K̂�34; 5
�; . . . ; n̂��

i
s34

Atree
3 �3

�; 4̂�;�K̂�34�

� Inf
�1;2i

AN�0
n�1;1�1

�; 2�; 3�; K̂�45; 6
�; . . . ; n̂��

i
s45

Atree
3 �4̂

�; 5�;�K̂�45�; (7.3)

where we assumed that diagrams involving nonstandard
factorization, and diagrams where legs 1 and 2 appear on
different vertices, are suppressed at large z, the same way
they were at six points. Solving this recursion relation by
induction, we obtain the large-z behavior at n points,

 Inf
�1;2i

AN�0
n;1 �1�; 2�; 3�; 4�; . . . ; n��

�
ic�

3

h13i3h2ni

�12�hn1i2
Qn�1
k�3hk �k� 1�i

: (7.4)

We will use this result in the next section to construct a
recursive solution for the rational functions in the n-point
amplitude.

B. AN�0
n;1 �1

�; 2�; 3�; 4�; 5�; . . . ; n��

We now consider the case of four color-adjacent nega-
tive helicities. Once again it is useful to illustrate the six-
point case, AN�0

6;1 �1�; 2�; 3�; 4�; 5�; 6��, before turning
to the n-point case. Following the discussion of the pre-
vious section, a convenient pair of shifts is the �1; 2i shift as
the primary shift and the �4; 5i shift as the auxiliary shift
for determining the large-z behavior of the amplitude
under the primary shift. (An alternative choice would be
an auxiliary �n; 5i shift.)

As was the case for three color-adjacent negative hel-
icities, an examination of the cut terms given in Ref. [26]
reveals that in the large-z limit of the �1; 2i shift there are
no contributions from the sum of the completed-cut and
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FIG. 13. Nonvanishing recursive diagrams for AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��, for the auxiliary �4; 5i shift. We use this recursion to

determine the large-z behavior under the primary �1; 2i shift. Only diagrams (a) and (b) contribute to the large-z limit.
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overlap contributions. So here we focus on the nonvanishing rational-recursive contributions.
The auxiliary �4; 5i shift diagrams are shown in Fig. 13 and are given by

 

RD;�4;5i6 �1�; 2�; 3�; 4�; 5�; 6�� � D�a� �D�b� �D�c� �D�d� �D�e�

� Atree
3 �3

�; 4̂�;�K̂�34�
i
s34

R5�1
�; 2�; K̂�34; 5̂

�; 6��

� R5�1
�; 2�; 3�; 4̂�; K̂�56�

i
s56

Atree
3 �5̂

�; 6�;�K̂�56�

� R3�3
�; 4̂�;�K̂�34�

i
s34

Atree
5 �1

�; 2�; K̂�34; 5̂
�; 6��

� R3�3
�; 4̂�;�K̂�34�

i
s34

Atree
5 �1

�; 2�; K̂�34; 5̂
�; 6��

� R4�2
�; 3�; 4̂�;�K̂�234�

i
s234

Atree
4 �1

�; K̂�234; 5̂
�; 6��; (7.5)

where â denotes momenta shifted and frozen according to
the auxiliary �4; 5i shift. We apply the �1; 2i shift to this
recursion relation and then take the large-z limit of this
primary shift. We assume that diagrams 13(c) and 13(d),
which contain nonstandard complex singularities, are sup-
pressed in this limit (as discussed in Sec. V D), because the
corresponding tree vertices are suppressed.

Diagram 13(e) is also suppressed, but that requires a
closer inspection. To analyze diagram 13(e) we need the
vertex, obtained by parity conjugation from Eq. (A14),

 R4�1
�; 2�; 3�; 4�� �

i
3

�24�h24i3

h12i�23��34�h41i
: (7.6)

Then diagram 13(e) is

 D�e� � R4�2
�; 3�; 4̂�;�K̂�234�

i
s234

Atree
4 �1

�; K̂�234; 5̂
�; 6��

�
i
3

�24̂�h24̂i3

hK̂2342i�23��34̂�h4̂K̂234i

1

s234

h1K̂234i
3

hK̂2345̂ih5̂6ih61i

�
i
3

�24̂�h24i3

h2�j 6K234j5
�i�23��34̂�h4�j 6K234j5

�i

1

s234

�
h1�j 6K234j5

�i3

h5̂�j 6K234j5
�ih5̂6ih61i

:

(7.7)

We can simplify this term further, by substituting in the
remaining hatted variables, which become independent of

z as z! 1; but already in this form we can see that it
vanishes in the large-z limit of the �1; 2i shift. Therefore
diagram 13(e) does not contribute to the recursion relation
for the large-z terms.

Thus we obtain a very simple recursion relation for the
nonvanishing large-z terms, based only on diagrams 13(a)
and 13(b),

 Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6��

� Atree
3 �3

�; 4̂�;�K̂�34�

�
i
s34

Inf
�1;2i

AN�0
5;1 �1�; 2�; K̂�34; 5̂

�; 6��

� Atree
3 �5̂

�; 6�;�K̂�56�

�
i
s56

Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4̂�; K̂�56�: (7.8)

On the right-hand side there are two large-z contributions.
The first one is familiar from Eq. (3.24),

 Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � i

c�

3

h13i3h25i

�12�h51i2h34ih45i
:

(7.9)

To get the second one, we start from formula (A16) for
AN�0

5;1 �1�; 2�; 3�; 4�; 5��, relabel, and take the parity con-
jugate, to get

 AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � �i

c�

3

1

�23�2

�
�
h14i3

h51ih45i
�
�53�3h34i�24�

�51��12��34�2
�
�52�3h21i�31�

�54��43��21�2

�
: (7.10)

Applying the �1; 2i shift and extracting the z0 terms gives us the desired contribution, which we wish to feed into the
recursion,

 Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � �i

c�

3

1

�23�2

�
�
h14i3

h51ih45i
�
�52�3h21i�31�

�54��43��21�2

�
: (7.11)

Relabeling and inserting the large-z terms (7.9) and (7.11) into the recursion (7.8) we obtain
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Inf
�1;2i

AN�0
6;1 �1�; 2�; 3�; 4�; 5�; 6�� � Atree

3 �3
�; 4̂�;�K̂�34�

i
s34

Inf
�1;2i

AN�0
5;1 �1�; 2�; K̂�34; 5̂

�; 6��

� Atree
3 �5̂

�; 6�;�K̂�56�
i
s56

Inf
�1;2i

AN�0
5;1 �1�; 2�; 3�; 4̂�; K̂�56�

� i
c�

3

h34̂i3

h4̂K̂34ihK̂343i

1

s34

h1K̂34i
3h26i

�12�h61i2hK̂345̂ih5̂6i
� i

c�

3

�5̂6�3

�5̂K̂56��K̂566�

1

s56

1

�23�2

�

�
�

h14̂i3

hK̂561ih4̂K̂56i
�
�K̂562�3h21i�31�

�K̂564̂��4̂3��21�2

�

� i
c�

3

�
h1�j�3� 4�j5�i3h26i

�12��34��45�h61i2s345h6
�j�4� 5�j3�i

�
h14i3

�23�2h45ih56ih61i

�
h4�j�5� 6�j2�i3h21i�13�

�12�2�23�2h45ih56is456h6
�j�4� 5�j3�i

�
: (7.12)

We have checked that this result is in agreement with the large-z behavior extracted from the parity conjugation of the six-
point amplitude obtained in Ref. [27].

It is straightforward to generalize the discussion to n-point amplitudes. Following the same logic as for six points, we
obtain a recursion relation for the large-z behavior under the �1; 2i shift,

 Inf
�1;2i

AN�0
n;1 �1�; 2�; 3�; 4�; 5�; . . . ; n�� � Atree

3 �3
�; 4̂�;�K̂�34�

i
s34

Inf
�1;2i

AN�0
n�1;1�1

�; 2�; K̂�34; 5̂
�; . . . ; n��

� Atree
3 �5̂

�; 6�;�K̂�56�
i
s56

Inf
�1;2i

AN�0
n�1;1�1

�; 2�; 3�; 4̂�; K̂�56; 7
�; . . . ; n��: (7.13)

We have solved this recursion relation with the result

 Inf
�1;2i

AN�0
n;1 �1�; 2�; 3�; 4�; 5�; . . . ; n�� � i

c�

3

�
h14i3

�23�2
Qn�1
k�4hk �k� 1�ihn1i

�
h4�jK6 5...nj2

�i3h21i�13�

s4...nhn�jK6 4...nj3
�i�12�2�23�2

Qn�1
k�4hk �k� 1�i

�
Xn�1

j�5

hj �j� 1�ih1�jK6 3...jK6 5...jj4
�i3h2ni

s3...js4...jh�j� 1��jK6 4...jj3
�ihj�jK6 4...jj3

�i�12�
Qn�1
k�4hk �k� 1�ihn1i2

�
:

(7.14)

C. Another look at AN�0
5;1 �1�; 2�; 3�; 4�; 5��

In the two previous subsections, the completed-cut and
overlap contributions did not contribute to the large-z
terms of the primary shift. However, as we now illustrate,
this is not always true. We reexamine the large-z limit of
the five-point amplitude AN�0

5;1 �1�; 2�; 3�; 4�; 5�� under a
�1; 2i shift. This example was already considered in
Sec. III. However, here we recursively construct the
large-z behavior by using a different auxiliary shift, a
�4; 5i shift. Although there are no nonstandard factoriza-
tion channels here, the example displays several important
features: The large-z recursive contribution comes entirely
from a diagram where legs 1 and 2, the primary shift legs,
are split across the pole of the auxiliary shift. Also, as was

just mentioned, we need to account for contributions from
completed-cut and overlap terms under the auxiliary shift.

The nonvanishing recursive diagrams of the auxiliary
�4; 5i shift are shown in Fig. 14. First observe that the
behavior of diagram 14(b) under the �1; 2i shift is deter-
mined by the rational part of the four-point one-loop MHV
amplitude with adjacent negative helicities, which is pro-
portional to the tree amplitude, according to Eq. (A21).
Tree amplitudes vanish at large z for shifts of identical-
helicity pairs of legs [29,44]; hence diagram 14(b) does not
contribute to the large-z limit. Therefore, we need only
evaluate the contribution of diagram 14(a). Here we find a
new feature: The shifted legs of the primary �1; 2i shift
cross the pole in the auxiliary recursion relation.
Nevertheless, the large-z contribution can be determined
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just as in the previous examples. This pole-crossing con-
tribution is given by

 RD;�a�5 � Atree
3 �1

�;�K̂�51; 5̂
��

i
s51

R4�2
�; 3�; 4̂�; K̂�51�

�
i
3

�K̂513�hK̂513i3

�23�h34̂ih4̂K̂51i�K̂512�

1

s51

�5̂K̂51�
3

�1K̂51��5̂1�
;

(7.15)

where â refers to legs shifted according to the auxiliary
�4; 5i shift. We then obtain in the large-z limit of the �1; 2i
shift the contribution

 Inf
�1;2i

RD;�4;5i5 �1�; 2�; 3�; 4�; 5�� � �
i
3

h13i3h24i

�23�h34i2h45ih51i
:

(7.16)

Comparing Eq. (7.16) to the known expression in
Eq. (3.24) we see that the two expressions do not match.
However, we also have to take into account the contribu-
tions to the large-z limit from the overlap contributions as

indicated in Eq. (5.29). We apply the �4; 5i shift to cCR5,
which can be extracted from Eq. (3.16). We obtain the

overlap contribution from the residues of cCR5�w�=w at
the following values of w, illustrated in Fig. 15,

 w�a� � �
h15i

h14i
; w�b� �

�34�

�35�
: (7.17)

Evaluating these in the standard way, we obtain the large-z
contributions,
 

Inf
�1;2i

O�a�;�4;5i5 � �
i
3

h13i2�25�h23i

�12��23�h34i2h51i

�
i
6

h13i2�45�

�12��23�h34ih51i
; (7.18)

 Inf
�1;2i

O�b�;�4;5i5 �
i
6

h13i�45�2

�12��23�s34
: (7.19)

Notice that both Eqs. (7.16) and (7.18) have double poles in
1=h34i, which cancel correctly upon adding up all
contributions.

Finally, we need to take into account the contribution
from the completed-cut terms Ĉ5, which are easily found to
be

 

Inf
�1;2i

Ĉ5�1
�; 2�; 3�; 4�; 5��

� �
i
6

h12i�24�h13i�h12i�24� � h13i�34��

�12��23�h51i2s34

: (7.20)

Upon adding all contributions, Eqs. (7.16), (7.18), (7.19),
and (7.20), we obtain

 

Inf
�1;2i

AN�0
5;1 � �ic�

�
1

3

h13i3h24i

�23�h34i2h45ih51i

�
1

3

h13i2�25�h23i

�12��23�h34i2h51i
�

1

6

h13i2�45�

�12��23�h34ih51i

�
1

6

h13i�45�2

�12��23�s34

�
1

6

h12i�24�h13i�h12i�24� � h13i�34��

�12��23�h51i2s34

�

� i
c�

3

h13i3h25i

h15i2h34ih45i�12�
; (7.21)

in agreement with Eq. (3.24).
This example demonstrates that, in general, if we wish to

obtain the correct large-z behavior using an auxiliary re-
cursion, we must include the contributions from the
completed-cut and overlap terms. In practice, however,
often only the recursive diagrams contribute.

VIII. COMPLETE SPLIT-HELICITY AMPLITUDES

In Sec. VII A we determined the large-z behavior, under
a �1; 2i shift, of the n-point amplitudes with three nearest-
neighboring negative helicities, AN�0

n;1 �1�; 2�; 3�; 4�;
. . . ; n��. We now use this result to evaluate the remaining
rational terms, using the formalism described in Sec. V.
The n-point tree amplitudes for these helicity configura-
tions were determined in Refs. [9,34,43,68], and are given
in Eq. (A9).

A. Cut contributions

The completed-cut contributions for general split-
helicity N � 0 amplitudes have been obtained in
Ref. [26]. For the case with three negative helicities, the
cut part of the amplitude AN�0

n;1 �1�; 2�; 3�; 4�; . . . ; n�� is

−−
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FIG. 14. Nonvanishing diagrams of the �4; 5i shift recursion
relation for AN�0

5;1 �1�; 2�; 3�; 4�; 5��. Only diagram (a), which
has legs 1 and 2 on opposite sides of the pole, contributes to the
large-z limit of the �1; 2i shift.
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FIG. 15. The overlap diagrams of the �4; 5i shift.
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Ĉn�1�; 2�; 3�; 4�; . . . ; n�� �
1

3c�
AN�1
n;1 �1�; 2�; 3�; 4�; . . . ; n�� �

2

9
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n �1

�; 2�; 3�; 4�; . . . ; n��

�
i
3

Xn�1

r�4

d̂N�0
n;r

L2�
�s3...r
�s2...r
�

s3
2...r

�
i
3

Xn�2

r�4

ĝN�0
n;r

L2�
�s2...r
�s2...�r�1�

�

s3
2...�r�1�

�
i
3

Xn�2

r�4

ĥN�0
n;r

L2�
�s3...r
�s3...�r�1�

�

s3
3...�r�1�

; (8.1)

where

 d̂N�0
n;r �

h3�j 6K3...r 6k2j1
�ih3�j6k2 6K2...rj1

�ih3�j 6K3...r�6k2; 6K2...r� 6K2...rj1
�i

h2�j 6K2...rjr
�ih2�j 6K2...rj�r� 1��i

Qr�1
k�3hk �k� 1�i

Qn
k�r�1hk �k� 1�i

; (8.2)

 

ĝN�0
n;r �

Xr�3

j�1

h3�j 6K3...�j�3� 6K2...�j�3��6kr�1; 6K2...r�j1
�ih�j� 3��j� 4�i

h2�j 6K2...�j�3�j�j� 3��ih2�j 6K2...�j�3�j�j� 4��i
Qn
k�3hk �k� 1�i

�
h3�j 6K3...�j�3� 6K2...�j�3�6kr�1 6K�r�1�...1j1

�i

s3...�j�3�s2...�j�3�
h3�j 6K3...�j�3� 6K2...�j�3� 6K�r�1�...1 6kr�1j1

�i; (8.3)

 ĥN�0
n;r � ��1�nĝN�0

n;n�r�2

���������123...n�!�321n...4�
: (8.4)

Here AN�1
n;1 is the contribution of an N � 1 supersymmetric chiral multiplet consisting of a scalar and a fermion running

in the loop. The result for this amplitude is [26,49]
 

AN�1
n;1 �1�; 2�; 3�; 4�; . . . ; n�� � c�

Atree
n

2
�K0�sn1� � K0�s34�� �

i
2
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Xn�1

r�4

d̂N�1
n;r

L0�
�s3...r
�s2...r
�

s2...r
�
i
2
c�

Xn�2

r�4

ĝN�1
n;r

L0�
�s2...r
�s2...�r�1�

�

s2...�r�1�

�
i
2
c�

Xn�2

r�4

ĥN�1
n;r

L0�
�s3...r
�s3...�r�1�

�

s3...�r�1�
; (8.5)

where

 d̂N�1
n;r �

h3�j 6K3...r 6K2...rj1
�i2h3�j 6K3...r�6k2; 6K2...r� 6K2...rj1

�i

h2�j 6K2...rjr
�ih2�j 6K2...rj�r� 1��is2...rs3...r

Qr�1
k�3hk �k� 1�i

Qn
k�r�1hk �k� 1�i

; (8.6)

 ĝN�1
n;r �

Xr�3

j�1

h3�j 6K3...�j�3� 6K2...�j�3�j1
�i2h3�j 6K3...�j�3� 6K2...�j�3��6kr�1; 6K2...r�j1

�i

h2�j 6K2...�j�3�j�j� 3��ih2�j 6K2...�j�3�j�j� 4��is3...�j�3�s2...�j�3�

h�j� 3��j� 4�iQn
k�3hk �k� 1�i

; (8.7)

 ĥN�1
n;r � ��1�nĝN�1

n;n�r�2

���������123...n�!�321n...4�
: (8.8)

From Eq. (8.1) we can extract the rational parts of the cut completion, cCRn. These terms are given by

 cCRn � �
1

3�
�

8

9

�
Atree
n �1

�; 2�; 3�; 4�; . . . ; n�� �
i
6

Xn�1

r�4

d̂N�0
n;r

s3...r � s2...r

s2...rs3...r�s3...r � s2...r�
2

�
i
6

Xn�2

r�4

ĝN�0
n;r

s2...r � s2...�r�1�

s2...rs2...�r�1��s2...�r�1� � s2...r�
2 �

i
6

Xn�2

r�4

ĥN�0
n;r

s3...r � s3...�r�1�

s3...rs3...�r�1��s3...�r�1� � s3...r�
2 : (8.9)

This cut completion has a (constant) boundary contribution as z! 1 under a �1; 2i shift, stemming from the d̂N�0-term. It
is given by

 Inf
�1;2i

Ĉn �
i
6

Xn�1

r�4

h3�j 6K3...r6k2j1
�ih13i�s3...rh13i � h3�j 6K3...r6k2j1

�i�hr �r� 1�i

s3...rh2
�j 6K2...rjr�ih2�j 6K2...rj�r� 1��i

Qn
k�3hk �k� 1�i

: (8.10)
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B. Recursive contributions

We now discuss the recursive diagrams of the �1; 2i shift, shown in Fig. 16, for a generic helicity configuration. As
explained in Sec. V, we must sum over both helicities of the gluon crossing the pole, and over loop versus tree vertices
appearing on either side of the pole, as well as factorization-function contributions [59] in multiparticle channels. For
specific helicity configurations some of the diagrams may vanish.

For the case of AN�0
n;1 �1�; 2�; 3�; 4�; . . . ; n��, the recursive contributions are

 

RDn �1
�; 2�; 3�; 4�; . . . ; n�� �

Xn�1

i�4

Atree
n�i�2�1̂

�; K̂�2...i; �i� 1��; . . . ; n��
i
s2...i

Ri�2̂
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�
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i�4

Rn�i�2�1̂
�; K̂�2...i; �i� 1��; . . . ; n��

i
s2...i

Atree
i �2̂

�; 3�; 4�; . . . ; i�;�K̂�2...i�

�
Xn�2

i�5

Rn�i�2�1̂
�; K̂�2...i; �i� 1��; . . . ; n��

i
s2...i

Atree
i �2̂

�; 3�; 4�; . . . ; i�;�K̂�2...i�

�

�
1

3�
�

8

9

� Xn�2

i�4

Atree
n�i�2�1̂

�; K̂�2...i; �i� 1��; . . . ; n��
i
s2...i

Atree
i �2̂

�; 3�; 4�; . . . ; i�;�K̂�2...i�;

(8.11)

where the last line comes from the factorization-function
contributions. We refrain from quoting the explicit expres-
sion for RDn here. It can be obtained straightforwardly by
inserting the known tree amplitudes [33,43,69] (quoted in
the appendix) and rational parts of loop amplitudes [31,32]
into Eq. (8.11).

An interesting feature of this recursion relation is that all
amplitudes on the right-hand side have fewer than three
negative helicities. In contrast, the recursion relation found
for two negative-helicity gluons [27] contains on the right-
hand side lower-point loop amplitudes with the same num-
ber of negative helicities as on the left-hand side, namely,
two. For this reason, to solve that recursion relation in
closed form for all n required an ‘‘unwinding’’ procedure
[32]. Unwinding is not necessary in the present case be-
cause all terms on the right-hand side are known—given
the two-negative-helicity solution of Ref. [32].

C. Overlap contribution

Finally, we need to compute the overlap contribution to
avoid double counting between the recursive diagrams,

Eq. (8.11), and the completed-cut terms, Eq. (8.9). First
we observe that the terms proportional to the tree ampli-
tude on the first line of Eq. (8.9) get shifted only in the
denominator, namely, only in s2...r in Eq. (A9). This means
that the overlap contribution from this term is the negative
of the term itself and thus cancels it in the full amplitude,
Eq. (5.29). Furthermore, the same happens with the term
involving ĥN�0. Thus, for these two contributions we have

 Otree
n � �

�
1

3�
�

8

9

�
Atree
n �1

�; 2�; 3�; 4�; . . . ; n��; (8.12)

 Oĥ-term
n �

i
6

Xn�2

r�4

ĥN�0
n;r

s3...r � s3...�r�1�

s3...rs3...�r�1��s3...�r�1� � s3...r�
2 :

(8.13)

The d̂N�0-term gives a contribution to the overlap,
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FIG. 16. The recursive diagrams of the �1; 2i shift for an n-point helicity amplitude. Some of the diagrams may vanish depending on
the helicity choices.
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 Od̂-term
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i
6

Xn�1

r�4

h3�j 6K3...r 6k2j1
�ih3�j 6K3...r 6K2...rj1

�i2hr �r� 1�i

h2�j 6K2...rjr
�ih2�j 6K2...rj�r� 1��i

Qn
k�3hk �k� 1�is2...rs3...r

: (8.14)

In discussing the ĝN�0-term, we first reindex Eq. (8.3) by letting j! j� 3, so the sum runs from j � 4 to j � r. The
ĝN�0-term has three different kinds of poles, since s2...j, s2...r, and s2...�r�1� are shifted,

 z�a� � �
s2...j

h1�j 6K2...jj2
�i
; z�b� � �

s2...r

h1�j 6K2...rj2
�i
; z�c� � �

s2...�r�1�

h1�j 6K2...�r�1�j2
�i
; (8.15)

corresponding to the overlap diagrams in Fig. 17. At first glance it may seem that for j � r we obtain a double pole, since
the denominator contains s2

2...r. However, from the numerator of the last factor in ĝN�0, we obtain a factor s2...r, which
cancels one of the factors in the denominator, and so we have again only single poles. Nevertheless, we treat the j � r term
separately and obtain for this contribution

 O�a�;�b�;j�rn �
i
6

Xn�2

r�4

h3�j 6K3...r6kr�1j1
�ih3�j 6K3...r 6K2...rj1

�i2hr �r� 1�i

h2�j 6K2...rjr�ih2�j 6K2...rj�r� 1��i
Qn
k�3hk �k� 1�is2...rs3...r

: (8.16)

After some straightforward algebra, we find the remaining contributions,
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i
6

Xn�2
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j�4

hj �j� 1�i
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�i

h1�j�6kr�1 6K�j�1�...r � 6K2...r 6kr�1� 6K2...jj2
�i2

�
1
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�i

�
1

h1�j 6K2...j 6K�j�1�...�r�1� 6K2...�r�1�j2
�i

�
h1�j� 6K2...r6kr�1 � 6kr�1 6K�j�1�...r� 6K2...jj2

�i; (8.17)

 

O�b�n � �
i
6

Xn�2

r�5

Xr�1

j�4

hj �j� 1�i

h2�j 6K2...jjj�ih2�j 6K2...jj�j� 1��i
Qn
k�3hk �k� 1�is3...js2...r

�
1

h1�j 6K2...r 6K�j�1�...r 6K2...jj2
�ih1�j 6K2...r 6kr�1 6K2...rj2

�i2

� �h3�j 6K3...r 6K2...rj1
�ih1�j 6K2...r 6kr�1 6K2...jj2

�i � h3�j6kr�1 6K2...rj1
�ih1�j 6K2...r 6K�j�1�...r 6K2...jj2

�i�

� �h3�j 6K3...r 6K2...rj1
�ih1�j6kr�1 6K�j�1�...r 6K2...jj2

�i � h3�j 6K3...r6kr�1j1
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�i�

� �h3�j 6K3...r 6K2...rj1
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FIG. 17. Overlap diagrams corresponding to the s2...j, s2...r, and s2...�r�1� channels.
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In term (c) we have relabeled r� 1! r in the sum.
Combining the various overlap contributions from

Eqs. (8.12), (8.13), (8.14), (8.16), (8.17), (8.18), and
(8.19) gives us the complete overlap contribution,
 

On � Otree
n �Oĥ-term

n �Od̂-term
n �O�a�;�b�;j�rn �O�a�n

�O�b�n �O
�c�
n : (8.20)

D. Assembling the three negative-helicity amplitude

The full amplitude AN�0
n;1 �1�; 2�; 3�; 4�; . . . ; n�� is ob-

tained by combining the pieces according to Eq. (5.29). In
this equation, the completed-cut terms and their large-z
behavior, Ĉn�0� and Inf�1;2i Ĉn, respectively, are given in
Eq. (8.1) and (8.10). The recursive contribution RDn is given
by Eq. (8.11), and the overlap contribution On is given in
Eq. (8.20). Finally, the large-z contribution Inf�1;2i AN�0

n;1 is
given in Eq. (7.4).

E. Four negative-helicity amplitude

The tree amplitudes for this configuration were first
computed in Ref. [68], along with all split-helicity con-
figurations, An�1�; 2�; . . . ; m�; �m� 1��; . . . ; n��, where
legs of like helicity are nearest neighbors in the color
ordering. At one loop, the coefficients of all logarithmic
terms in the split-helicity amplitudes were then computed
in Ref. [26]. Thus, we have the completed-cut terms of the
amplitude with four negative helicities. It is straightfor-
ward to subtract the spurious large-z behavior of the
completed-cut terms under a �1; 2i shift, and to extract
the overlap terms. The terms with large-z behavior under
the �1; 2i shift are given in Eq. (7.14), leaving only the
direct recursive contributions to be computed, according to
Eq. (5.29).

The �1; 2i shift recursion relation for four color-adjacent
negative-helicity gluons may be read off from Fig. 16,
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where we omitted vanishing diagrams. We have solved this
recursion relation through n � 8. Although we will not
present the analytic solution here, in Sec. IX we present the
numerical value of AN�0

8;1 �1�; 2�; 3�; 4�; 5�; 6�; 7�; 8��
at one phase-space point.

F. Consistency of the computed amplitudes

In order to confirm our procedure for constructing the
amplitudes, we have performed a number of checks on the

amplitudes. A simple check is on the reflection symmetry
of the amplitudes under a reversal of legs,

 

An;1�1
�; 2�; 3�; 4�; . . . ; n��

� ��1�n�1An;1�3
�; 2�; 1�; n�; . . . ; 4�� (8.22)

and
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 An;1�1
�; 2�; 3�; 4�; 5�; . . . ; n��

� ��1�n�1An;1�4
�; 3�; 2�; 1�; n�; . . . ; 5��: (8.23)

Our choice of shifts makes this symmetry unobvious, so
confirming the symmetry provides a rather nontrivial con-
sistency check. We have confirmed the above symmetry
numerically through n � 10 for the case with three nega-
tive helicities and at n � 8 for the case with four negative
helicities. We have also confirmed numerically that the
amplitudes have the correct factorization properties with
real momenta through n � 8. We checked that all unphys-
ical spurious poles are removable, for n � 6 (as mentioned
in Sec. IV) and for n � 7. These checks provide a strong
confirmation that we found the correct analytic expressions
for the amplitudes. Moreover, they also validate our recur-
sive determination of the amplitudes’ large-z behavior.

IX. NUMERICAL POINTS IN PHASE SPACE

In order to aid the future implementation of these am-
plitudes in numerical codes, we present values of the
amplitudes at one point in phase space. We present nu-
merics for selected helicity amplitudes up to eight points,
as a demonstration of the utility of our methods for high-
multiplicity processes. At six points, where independent
numerical values are available [3], we can use these as an
additional check on the amplitudes.

We quote the numerical results in an unrenormalized
form. The renormalization amounts to carrying out the
subtraction of Eq. (2.14).

Since we have exact analytical expressions for the am-
plitudes, it is a simple matter to evaluate the amplitudes to
arbitrary precision; we give ten significant digits. High
precision can be useful for studying the properties of the
amplitudes near (removable) spurious singularities, in or-
der to investigate numerical instabilities (round-off error,
etc.) which might be encountered under phase-space inte-
gration. Because our analytic expressions possess only a
relatively mild set of spurious singularities, in comparison
to more direct evaluations of Feynman diagrams, we do not
anticipate any significant complications arising from
round-off error when constructing an NLO program.

At six points, for ease of comparison, we choose the
same numerical point as given in Ref. [3],
 

k1 �
�
2
��1; sin	; cos	 sin
; cos	 cos
�;

k2 �
�
2
��1;� sin	;� cos	 sin
;� cos	 cos
�;

k3 �
�
3
�1; 1; 0; 0�;

k4 �
�
7
�1; cos�; sin�; 0�;

k5 �
�
6
�1; cos� cos�; cos� sin�; sin��;

k6 � �k1 � k2 � k3 � k4 � k5;

(9.1)

where

 	 �
�
4
; 
 �

�
6
; � �

�
3
; cos� � �

7

19
:

(9.2)

With this choice, the energies of k1 and k2 are negative,
representing a physical scattering process at a collider. As
in Ref. [3], we choose � � n � 6 GeV, where � is the
scale originating from the dimensionally-regulated
integrals.

At seven points, we choose the kinematic point

 

k1 �
�
2
��1; sin	; cos	 sin
; cos	 cos
�;

k2 �
�
2
��1;� sin	;� cos	 sin
;� cos	 cos
�;

k3 �
�
3
�1; 1; 0; 0�;

k4 �
�
8
�1; cos�; sin�; 0�;

k5 �
�
10
�1; cos� cos�; cos� sin�; sin��;

k6 �
�
12
�1; cos� cos�; cos� sin�; sin��;

k7 � �k1 � k2 � k3 � k4 � k5 � k6;

(9.3)

where

 

	 �
�
4
; 
 �

�
6
; � �

�
3
;

� �
2�
3
; cos� � �

37

128
; (9.4)

and � � 7 GeV.
At eight points we choose as our reference kinematic

point

 

k1 �
�
2
��1; sin	; cos	 sin
; cos	 cos
�;

k2 �
�
2
��1;� sin	;� cos	 sin
;� cos	 cos
�;

k3 �
�
3
�1; 1; 0; 0�;

k4 �
�
3
�1; cos�; sin�; 0�;

k5 �
�
4
�1; cos� cos�; cos� sin�; sin��;

k6 �
�
5
�1; cos� cos�; cos� sin�; sin��;

k7 �
�
6
�1; cos� cos�; cos� sin�; sin��;

k8 � �k1 � k2 � k3 � k4 � k5 � k6 � k7;

(9.5)

where
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	 �
�
4
; 
 �

�
6
; � �

�
3
;

� �
2�
3
; � � �

2�
3
; cos� � �

10

11
;

(9.6)

and we choose � � 8 GeV.
As explained in Sec. II, it is convenient to decompose

QCD amplitudes in terms of N � 4, N � 1, and N � 0
amplitudes. QCD amplitudes are recovered from these
components using Eq. (2.13).

We collect the numerical values of the split-helicity
amplitudes in Tables III, IV, and V. We have extracted an
overall factor of ic� from the numerical values presented in

the tables. The complete set of analytic expressions for six-
and seven-point N � 4 amplitudes was obtained in
Refs. [5,6,14,22]. The N � 1 amplitudes appearing in
Table IV were computed in Refs. [6,18,24,26,49]. The
finite N � 0 amplitudes were obtained in Refs. [66,67];
a compact representation of the amplitude with a single
negative helicity was given more recently [31]. The loga-
rithmic parts of the divergent amplitudes were computed in
Refs. [6,26], while the rational-function parts were deter-
mined in Refs. [27,32] and in Secs. IV and VIII of the
present paper. Multiple analytical calculations exist for
some of the split-helicity amplitudes appearing in the
tables. In particular, the N � 4, N � 1, and logarithmic

TABLE V. Numerical results for the N � 0 scalar contributions to six-, seven-, and eight-gluon split-helicity amplitudes. The
analytical expressions were obtained from Refs. [6,26,27,31,32,66,67] as well as Secs. IV and VIII of the present paper.

Helicity 1=� �0

������ 0 0:102 470 629 0� i0:519 802 539 7
������ 0 2:749 806 130� i1:750 985 849
������ �9:370 119 558� i1:547 789 294 �45:807 795 61� i13:036 958 70
������ �0:261 453 432 8� i0:628 864 147 0 0:388 348 204 3� i5:830 791 857
������� 0 0:181 577 802 7� i1:941 357 266
������� 0 22:529 278 21� i5:464 377 788
������� �34:853 727 99� i15:115 698 25 �176:216 923 5� i87:939 310 19
������� 0:356 451 337 4� i0:491 422 607 0 0:708 716 442 4� i11:329 166 32
�������� 0 �0:000 985 621 441 0� i0:002 143 695 508
�������� 0 0:001 078 316 199� i0:031 299 317 39
�������� �0:053 300 888 46� i0:040 517 899 81 0:055 133 506 97� i0:165 951 886 1
�������� �0:003 622 640 270� i0:000 791 099 924 6 0:027 197 520 89� i0:025 862 065 49
�������� �0:002 273 559 586� i0:001 209 645 382 0:011 548 550 76� i0:000 893 535 784 0

TABLE IV. Numerical results for the nonvanishing N � 1 chiral contributions to six-, seven-, and eight-gluon split-helicity
amplitudes. The kinematic point is given in Eqs. (9.1), (9.3), and (9.5). The analytical expressions were obtained from
Refs. [6,24,26,49].

Helicity 1=� �0

������ �28:110 358 67� i4:643 367 883 �108:941 920 6� i35:029 809 93
������ �0:784 360 298 5� i1:886 592 441 0:143 578 941 2� i5:332 008 939
������� �104:561 184 0� i45:347 094 75 �429:693 295 1� i209:056 082 3
������� 1:069 354 012� i1:474 267 821 1:619 538 641� i3:617 458 324
�������� �0:159 902 665 4� i0:121 553 699 4 �0:446 011 356 5� i0:262 624 011 0
�������� �0:010 867 920 81� i0:002 373 299 774 �0:003 818 661 190� i0:026 340 172 64
�������� �0:006 820 678 758� i0:003 628 936 145 0:020 869 092 14� i0:043 554 996 56

TABLE III. Numerical results for the nonvanishing N � 4 six- and seven-gluon split-helicity amplitudes in the FDH scheme. The
kinematic point is given in Eqs. (9.1) and (9.3). The analytic expressions used for this table are from Refs. [5,6,22].

Helicity 1=� �0

������ 448:135 097 0� i288:859 158 9 231:683 767 0� i1219:687 214
������ �12:831 496 26� i36:016 494 73 �82:745 839 78� i33:536 255 88
������� 2923:502 435� i683:472 360 7 5112:775 012� i6035:881 921
������� �45:771 748 17� i14:379 483 81 �118:675 685 3� i49:762 714 06
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parts of the N � 0 MHV amplitudes were also computed
in Refs. [11,12] using MHV vertices [9].

Table III gives the numerical values for the 1=� and
finite terms of the N � 4 super-Yang-Mills theory split-
helicity six- and seven-point amplitudes. We do not include
the coefficients of the leading 1=�2 singularities in the
tables, as these are easily extracted from the values of
tree amplitudes, for any helicity configuration,

 AN�4
n;1

��������1=�2
� �

nc�

�2 A
tree
n : (9.7)

The numerical values of the tree amplitudes may be read
off from the values of the 1=� singularities of either the
N � 1 or the N � 0 loop amplitudes

 AN�1
n;1

��������1=�
�
c�

�
Atree
n ; AN�0

n;1

��������1=�
�
c�

3�
Atree
n ; (9.8)

given in Tables IV and V.
We quote numerical values of the N � 1 and N � 0

amplitudes through eight points, but refrain from giving
numerical values for eight-point N � 4 amplitudes. (The
N � 4 amplitude with four negative helicities has not
been evaluated explicitly, although it is straightforward to
obtain using the methods of Ref. [16]. The general N � 4
n-point amplitudes with three negative-helicity legs may
be found in Ref. [37].)

We have compared our numerical results for the six-
point amplitudes to those found in Ref. [3]. After account-
ing for differing overall phase conventions, they agree to
within the number of digits quoted in Ref. [3].

X. CONCLUSIONS AND OUTLOOK

In this paper we have continued the development of the
on-shell unitarity-bootstrap method [27] for computing
complete amplitudes in nonsupersymmetric gauge theo-
ries. It combines unitarity [5,6] with on-shell recursion
[28,29]. It thereby systematizes an earlier unitarity-
factorization bootstrap [20] used to compute the one-loop
amplitudes required for Z! 4 jets and pp! W, Z� 2
jets. In the combined approach, cut-containing pieces are
obtained via unitarity, while purely rational terms are
obtained via on-shell recursion. The latter terms had pre-
viously been the most difficult part of a one-loop QCD
calculation. The use of an on-shell recursion reduces them
to treelike calculations.

On-shell recursion relations rely on continuations of the
amplitudes to complex momenta [29]. As discussed in
Refs. [27,30,31], the complex-factorization properties of
loop amplitudes are much more subtle than those of tree-
level ones. In addition to the presence of branch cuts, in
loop amplitudes we encounter double and ‘‘unreal’’ poles,
present only when the momenta are complex. Unlike the
situation for real momenta, there are as yet no general
theorems describing how loop amplitudes factorize for
complex momenta. For general helicity configurations,

some continuations of the amplitudes may require such
unknown factorizations. On the other hand, in general it is
not possible to choose a continuation where all factoriza-
tions are known without spoiling the vanishing of the
contour integral at infinity whose consideration gives rise
to the recursion relation. This unhappy situation can come
about because the continued amplitude may not vanish as
the continuation parameter becomes large.

How, then, should we avoid channels with unknown
factorization, without spoiling the recursion? In this paper
we provided a general strategy for avoiding these difficul-
ties. We construct an auxiliary recursion relation to fill in
information required to reestablish the contour integral and
hence the primary recursion. The latter is designed to avoid
channels with nonstandard factorizations, even at the price
of bad behavior as the continuation parameter becomes
large. The auxiliary recursion supplies the terms we need
to subtract from the contour integrand in order to obtain a
well-defined integral and thereby a proper recursion rela-
tion. It may have channels with nonstandard factorization,
but is designed so that these nonstandard channels will not
affect the required subtraction terms.

As an illustration of these ideas, we obtained complete
n-gluon amplitudes with a scalar in the loop and three
nearest-neighbor negative helicities in the color ordering.
The logarithmic parts of these amplitudes were obtained in
Refs. [6,26]; here we constructed a recursive expression for
all the rational terms that appear in these amplitudes. For
the six-point scalar-loop amplitude AN�0

6;1 �1�; 2�; 3�; 4�;
5�; 6�� we found a compact representation for the ampli-
tude. Using the supersymmetric decomposition [48], to-
gether with the previously computed N � 4 and N � 1
supersymmetric contributions [6,14,22,24,37,49], these
provide complete QCD amplitudes. As an additional illus-
tration, we provided a recursive expression for the eight-
point amplitude with four negative helicities,
AN�0

8;1 �1�; 2�; 3�; 4�; 5�; 6�; 7�; 8��. We gave numerical
values for the amplitudes (in the supersymmetric decom-
position) at specific points in phase space, to use as a guide
for constructing numerical programs in the future. In a
companion paper we shall present all remaining n-point
MHV amplitudes [47]. These calculations of high-
multiplicity and indeed all-n amplitudes illustrate a crucial
feature of our approach: the complexity of the calculation
grows only modestly as the number of external particles
increases.

The continuations typically used to derive recursion
relations are implemented by shifting a pair of momenta
associated with external legs. We choose pairs of such
shifts. Our strategy for choosing them is based on several
empirical properties of amplitudes: that under a ��;�i
shift, gluon amplitudes are well behaved for large shift
parameters, that the large-parameter behavior is always
polynomial in the shift parameter, and that we can suppress
unwanted channels with nonstandard complex factoriza-
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tion through appropriate choice of shifts. As yet we cannot
offer formal proofs of these properties. In lieu of such
proofs, we have checked the computed amplitudes by
verifying the stringent real-momentum factorization prop-
erties any amplitude must satisfy. The correctness of the
computed amplitudes may then be seen as further evidence
for the correctness of the empirical properties.

It would be useful to address some of these open formal
issues, and to develop a first-principles understanding of
the complex-factorization properties and large-shift--
parameter behavior of one-loop scattering amplitudes.
Recent papers connecting tree-level on-shell recursion to
the gauge theory Lagrangian [62] provide one possible
avenue to deriving the analytic properties. Unitarity in D
dimensions may also assist in this formal understanding
[7], as it can be used to determine rational parts of ampli-
tudes, even though explicit computations are often
cumbersome.

The methods we have presented in this paper are system-
atic and thus lend themselves to automation, most obvi-
ously in an analytic approach, but also plausibly in a
seminumerical one. The large number of required subpro-
cesses in many applications of phenomenological interest
makes such automation desirable. The techniques of this
paper require as input the cut-containing parts of the
amplitudes. Efficient, semiautomated procedures for eval-
uating unitarity cuts are therefore also necessary. As re-
marked in the introduction, there have been important
developments in this direction in the past year or so, which
are applicable to generic helicity configurations and exter-
nal states in nonsupersymmetric gauge theories, and which
reduce the problem to one of residue extraction [18,19]. In
particular, this approach has been used to complete the
computation of all cut-containing parts of six-gluon am-
plitudes. These methods should work well in tandem with
the ones presented here.

The empirical properties of the amplitudes are robust
enough, and sufficiently broad, to allow the computation of
arbitrary gluonic amplitudes. The same ideas should carry
over to amplitudes with external quarks, vector bosons, or
Higgs particles. Beyond that, we foresee that with suitable
extensions the method will also work for processes with
massive particles propagating inside the loops. We are
encouraged by the observation that the unitarity method
applies to massive loops [7] and that at tree level, the on-
shell recursive approach carries over to massive theories
without difficulty [44,45]. This extension of the on-shell
bootstrap, to loop-level processes containing top quarks,
for example, is an open problem.

Even before such extensions to amplitudes with massive
internal particles become available, however, the on-shell
bootstrap method we have described is ready to tackle
many of the important multiparton next-to-leading order
computations of phenomenological interest at the Large
Hadron Collider.
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APPENDIX: PREVIOUSLY COMPUTED
AMPLITUDES AND VERTICES

As discussed in the text, our bootstrap approach relies on
using previously computed amplitudes. In this appendix
we list the amplitudes that enter into our calculation. In the
text, we also need the parity conjugates of the listed
amplitudes, which are given by replacing hiji $ �ji�,

 An�1
h1 ; 2h2 ; . . . ; nhn� � �An�1

�h1 ; 2�h2 ; . . . ; n�hn��hiji$�ji�:

(A1)

Some useful tree amplitudes are

 Atree
3 �1

�; 2�; 3�� � i
h12i4

h12ih23ih31i
; (A2)

 Atree
3 �1

�; 2�; 3�� � �i
�23�4

�12��23��31�
; (A3)

 Atree
4 �1

�; 2�; 3�; 4�� � i
h12i4

h12ih23ih34ih41i
; (A4)

 Atree
5 �1

�; 2�; 3�; 4�; 5�� � i
h12i4

h12ih23ih34ih45ih51i
; (A5)

 Atree
5 �1

�; 2�; 3�; 4�; 5�� � �i
�45�4

�12��23��34��45��51�
;

(A6)

 

Atree
6 �1

�; 2�; 3�; 4�; 5�; 6��

� i
h1�j�2� 3�j4�i3

s234�23��34�h56ih61ih5�j�3� 4�j2�i

� i
h3�j�4� 5�j6�i3

s345�21��16�h34ih45ih5�j�3� 4�j2�i
: (A7)

(The three-point amplitudes are nonvanishing for complex
momenta, even though they vanish for real momenta.) The
n-point MHV amplitudes [33,69], and one sequence of
NMHV amplitudes [43], are

 Atree
n �1

�; . . . ; m�1 ; . . . ; m�2 ; . . . ; n�� � i
hm1m2i

4Qn
k�1hk �k� 1�i

;

(A8)
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 Atree
n �1

�; 2�; 3�; 4�; . . . ; n�� � �i
Xn�1

r�4

h3�j 6K3...r 6K2...rj1
�i3hr �r� 1�i

h2�j 6K3...rjr
�ih2�j 6K3...rj�r� 1��is2...rs3...r

Qn
k�3hk �k� 1�i

: (A9)

Tree amplitudes with all like-helicity gluons or only one
gluon of opposite helicity vanish.

We will also need certain classes of one-loop helicity
amplitudes, or rather, their rational parts Rn, defined in
Eq. (5.12). The following three-vertices with a scalar in the
loop vanish,

 R3�1
�; 2�;�P̂	12� � 0; (A10)

related to the vanishing of the corresponding splitting
amplitudes for real momenta [5]. In principle, there are
also vertices with like-helicity external legs, R3�1

�; 2�;
�P̂	12� and R3�1

�; 2�;�P̂	12�. However, the associated
complex-factorization properties are not fully understood
as yet, so we avoid these channels, or suppress them in a
large-z limit.

For multiparticle factorizations, factorization functions
can appear, as discussed in Sec. V. For the scalar loop, the
one-loop factorization function is

 F �K� � �
�

1

3�
�

1

3
ln
�
�2

�K2

�
�

8

9

�
: (A11)

The two-point rational vertex associated with this is a
constant,

 RF � �

�
1

3�
�

8

9

�
: (A12)

As discussed in Sec. II, it is convenient to apply a
supersymmetric decomposition of QCD loop amplitudes
into N � 4, N � 1, and N � 0 (scalar loop) pieces
[48,65]. Just as the tree-level amplitudes with all gluons of
like-helicity or all but one gluon of like-helicity vanish, so
do the corresponding supersymmetric N � 4 and N � 1
amplitudes; the scalar N � 0 amplitudes are nonvanish-
ing, but purely rational and finite. For the finite four-point
helicity amplitudes we have [57,65],

 AN�0
4;1 �1�; 2�; 3�; 4�� � �i

c�

3

�12��34�

h12ih34i
; (A13)

 AN�0
4;1 �1�; 2�; 3�; 4�� � i

c�

3

h24i�24�3

�12�h23ih34i�41�
: (A14)

The corresponding five-point amplitudes are [48]

 AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � i

c�

3

�
�12��23�

h34ih45ih51i

�
�45��51�

h12ih23ih34i

�
�25��34�

h12ih34ih51i

�
; (A15)

 AN�0
5;1 �1�; 2�; 3�; 4�; 5�� � i

c�

3

1

h34i2

�
�
�25�3

�12��51�

�
h14i3�45�h35i

h12ih23ih45i2

�
h13i3�32�h42i

h15ih54ih32i2

�
:

(A16)

Expressions for all remaining one-loop finite amplitudes
may be found in Refs. [30,66,67].

We make use of the following functions [48] to express
the other, cut-containing amplitudes at loop level,

 

K0�s� �
1

��1� 2��

�
�2

�s

�
�
�

1

�
� ln

�
�2

�s

�
� 2�O���;

L0�r� �
ln�r�
1� r

;

L1�r� �
L0�r� � 1

1� r
;

L2�r� �
ln�r� � �r� 1=r�=2

�1� r�3
;

(A17)

in order to eliminate spurious singularities for r! 1 which
are present in the pure-cut terms.

The four-point amplitude A4;1�1
�; 2�; 3�; 4�� is given

by

 AN�4
4;1 �1�; 2�; 3�; 4�� � c�A

tree�1�; 2�; 3�; 4��
�
�

2

�2

��
�2

�s12

�
�
�

�
�2

�s23

�
�
�
� ln2

�
�s12

�s23

�
� �2 �

�R
3

�
; (A18)

 AN�1
4;1 �1�; 2�; 3�; 4�� � c�Atree�1�; 2�; 3�; 4��

�
1

�
� ln

�
�2

�s23

�
� 2

�
; (A19)
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 AN�0
4;1 �1�; 2�; 3�; 4�� � c�A

tree�1�; 2�; 3�; 4��
�

1

3�
�

1

3
ln
�
�2

�s23

�
�

8

9

�
; (A20)

where the regularization-scheme parameter �R was discussed in Sec. II. The recursive vertex we need for the N � 0
scalar-loop contribution is therefore given by

 R4�1
�; 2�; 3�; 4�� �

�
1

3�
�

8

9

�
Atree�1�; 2�; 3�; 4��: (A21)

The remaining five-point amplitude with adjacent like helicities that we use is

 

AN�4
5;1 �1�; 2�; 3�; 4�; 5�� � c�A

tree�1�; 2�; 3�; 4�; 5��
�
�

1

�2

X5

j�1

�
�2

�sj;j�1

�
�
�
X5

j�1

ln
�
�sj;j�1

�sj�1;j�2

�
ln
�
�sj�2;j�2

�sj�2;j�1

�

�
5

6
�2 �

�R
3

�
; (A22)

 

AN�1
5;1 �1�; 2�; 3�; 4�; 5�� � c�Atree�1�; 2�; 3�; 4�; 5��

�
1

2�

��
�2

�s51

�
�
�

�
�2

�s34

�
�
�
� 2

�

� i
c�

2

�45�2��51�h12i�24� � �52�h23i�34��

�12��23��34��51�

L0�
�s51

�s34
�

s34
; (A23)

 

AN�0
5;1 �1�; 2�; 3�; 4�; 5�� �

1

3
AN�1

5;1 �1�; 2�; 3�; 4�; 5�� �
2

9
c�Atree�1�; 2�; 3�; 4�; 5��

� i
c�

3

h12i�24��52�h23i��51�h12i�24� � �52�h23i�34��
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where

 R̂ 5 � i
�

1

3

�13�h13i3

�12��23�h34ih45ih51i
�

1

3

h13i2�45�

�12��23�h34ih51i
�

1
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h12ih23i�24��25��45�

�12��23�s34s51

�
: (A25)

The vertex we need is given by setting the logarithms to zero in the amplitude,

 R5�1
�; 2�; 3�; 4�; 5�� �

1

c�
AN�0

5;1 �1�; 2�; 3�; 4�; 5��
��������ln�0

: (A26)

The N � 4 supersymmetric amplitude needed for constructing the complete six-point QCD amplitude with three
color-adjacent negative helicities is given by [6]

 AN�4
6;1 �1�; 2�; 3�; 4�; 5�; 6�� � c��B1W

�1�
6 � B2W

�2�
6 � B3W

�3�
6 �; (A27)

where

 B1 � i
�s123�

3

�12��23�h45ih56ih4�j�2� 3�j1�ih6�j�1� 2�j3�i
; (A28)

 B2 � i
h1�j�2� 3�j4�i3

s234�23��34�h56ih61ih5�j�3� 4�j2�i
� i

h23i3�56�3

s234h34i�61�h4�j�2� 3�j1�ih2�j�3� 4�j5�i
; (A29)

 B3 � i
h3�j�1� 2�j6�i3

s345�61��12�h34ih45ih5�j�6� 1�j2�i
� i

h12i3�45�3

s345h61i�34�h6�j�1� 2�j3�ih2�j�6� 1�j5�i
: (A30)

We have taken the parity conjugate and somewhat simplified the results compared to the expression of Ref. [6], and used
the four-dimensional helicity scheme where �R � 0. The combination of integral functions appearing in the amplitude is
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