
Confining quark-model suggestion againstD�s �2317� andD�s �2460� as chiral partners
of standardDs

P. Bicudo
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This paper presents the first study of mesons with a quark and an antiquark with different and finite
masses in a simple confining and chiral invariant quark-antiquark interaction, leading to spontaneous
chiral symmetry breaking and to constituent quarks. In the false chiral invariant vacuum, the chiral
partners are degenerate, and tachyons occur in the light-light spectrum. In the true vacuum, most of the
standard nonrelativistic quark-model spectra should be recovered except for the pion and other particular
constraints. The calibration problem of chiral quark models is also addressed here. The detailed inspection
of the different contributions to the D and Ds masses suggests that the challenging recently observed
D�s�2317� and D�s�2460� mesons might not fit as global chirally rotated quark-antiquark Ds mesons.
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I. INTRODUCTION

Recently, the discovery of the new D�s�2317� and
D�s�2460� [1–3] revived the interest in chiral partners.
Ten years before the discovery, Nowak, Rho, Zahed,
Bardeen, and Hill [4,5] already predicted that the standard
pseudoscalar meson Ds�1968� and the standard vector
meson D�s�2112� would have two chiral partners, respec-
tively, a scalar and an axial vector. The chiral partnership
conjecture was revived [6,7] with the claim that the chiral
partners are, respectively, the D�s�2317� and D�s�2460�.
Indeed, mesons can be arranged in parity multiplets. In
the false chiral invariant vacuum, the scalars and pseudo-
scalars, or the vectors and axial vectors, are degenerate. In
the true, chiral symmetry breaking vacuum, their masses
split and the important question is, does this splitting
explain the new Ds resonances?

Importantly, neither the quark model nor quenched lat-
tice QCD are able to describe the D�s�2317� and D�s�2460�
as standard quark-antiquark mesons. The newD�s do not fit
in the spectrum of standard quark-antiquark mesons, which
is governed by the quark constituent masses and by a
confining potential, together with well-known hyperfine,
spin-orbit and tensor potentials [8]; see Table I. Quenched
lattice QCD, which only accesses the quark-antiquark
spectrum, confirms that these D�s masses are too light for
standard q �q mesons [9,10].

However, here I show that the confining quark model is
compatible with spontaneous chiral symmetry breaking.
This leads to a logical incompatibility. Either it is false that
the quark model cannot account for the new D�s narrow
resonances, or it is false that the chiral models can. Thus
these two different claims should be scrutinized in detail.
Because this paper is dedicated to the implementation of
chiral symmetry in the quark model, here I choose to
analyze in detail the chiral partnership conjecture. I also
review the calibration problem of chiral quark models.
Finally this suggests that the chiral partners of the

Ds�1968� and the D�s�2112� are quark-antiquark mesons
heavier than the D�s�2317� and D�s�2460�.

In Sec. II, starting from a confining and chiral invariant
potential, the mass and bound-state equations are derived
for the first time for mesons with a quark and an antiquark
with different and finite masses. In particular the spin-
tensor potentials are studied in detail; they will be impor-
tant to discuss the calibration of the model. In Sec. III, the
bound-state equations are applied to a chiral interpolation,
designed to scrutinize chiral partnership. I interpolate from
the ideal heavy-light limit in the false chiral invariant
vacuum to the true symmetry breaking vacuum and to
the D and Ds families with finite current quark masses.
In Sec. IV, I discuss the calibration of confining and chiral
invariant quark potentials, including the model used here,
and show the conclusion on the nature of the newD�s�2317�
and D�s�2460�.

II. MASS GAP AND BOUND STATES WITH CHIRAL
SYMMETRY AND CONFINEMENT

The first models of chiral symmetry, like the �model of
Gell-Mann and Levy [11], or the Nambu and Jona-Lasinio
model [12], were only very accurate for the ground-state
pseudoscalar mesons, because they did not address con-
finement. The ideal chiral framework should access the full
phenomenology of the meson spectrum. I submit that this

TABLE I. Matrix elements of the spin-dependent potentials.

2S�1LJ �Sq;S �q
Sq � S �q �Sq � S �q� �L �Sq � S �q� �L tensor

1S0 1 �3=4 0 0 0
3P0 1 1=4 �2 0 �1=3
3S1 1 1=4 0 0 0
3D1 1 1=4 �3 0 �1=6
3S1 $

3D1 0 0 0 0
���
2
p
=6

1P1 1 �3=4 0 0 0
3P1 1 1=4 �1 0 1=6
1P1 $

3P1 0 0 0
���
2
p

0
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ideal framework is already under development. When the
quarks were discovered, the confining quark model was
calibrated with correct confining and spin-dependent po-
tentials. The first matrix elements of the spin-tensor poten-
tials are shown in Table I. However, it was realized that the
main difficulty of the confining quark model consisted in
understanding the low pion mass. But Nambu and Jona-
Lasinio [12] already had shown that the spontaneous dy-
namical breaking of global chiral symmetry provides a
mechanism for the generation of the constituent fermion
mass and for the almost vanishing mass of the pion. This
mechanism was extended to the confining quark model by
Le Yaouanc, Oliver, Ono, Pène, and Raynal with the
Salpeter equations in Dirac structure [13] and by P. B.
and Ribeiro with the equivalent Salpeter equations in a
form [14] identical to the random phase approximation
(RPA) equations of Llanes-Estrada and Cotanch [15].
Moreover, these chiral quark models also comply with
the PCAC theorems, say the Gell-Mann Oakes and
Renner relation [13,16], the Adler zero [17–19], the
Goldberger-Treiman relation [17,20], or the Weinberg
theorem [17,18,21]. However, the correct fit of the had-
ronic spectra remains to be fully addressed for confining
and chiral invariant quark-antiquark interactions.
Nevertheless, I submit that a confining chiral quark model
with the correct spin-tensor potentials should eventually
reproduce the full spectrum of hadrons, including heavy-
light systems [5,14].

For clarity, I now produce for the first time the full
mesonic spin-tensor potentials of a confining and chiral
invariant quark model for a quark and an antiquark with
different and finite masses. This will be applied to study the
D and Ds meson families with a quark u, d, or s really
lighter than the scale of QCD and an antiquark c much
heavier than the scale of QCD. The bound-state equations
are exactly solved to study chiral partners in the true
vacuum and in the limits of light or heavy quarks.

This can be accomplished in the framework of the
simplest confining and chiral invariant quark model
[13,14,16]. The Hamiltonian can be approximately derived
from QCD,

 H �
Z
d3x

�
 y�x��m0�� i ~� � ~r� �x�

�
1

2
g2
Z
d4y � �x���

�a

2
 �x�

� hAa��x�A
b
��y�i � �y���

�b

2
 �y� � � � �

�
(1)

up to the first cumulant order, of two gluons [22–24],
which can be evaluated in the modified coordinate gauge,

 g2hAa��x�Ab��y�i ’ �
3
4�abg�0g�0	K

3
0�x� y�2 �U
; (2)

and this is a simple density-density harmonic effective
confining interaction. m0 is the current mass of the quark,
and K0 ’ 0:3 to 0.4 GeV is the only physical scale in the

interaction. Like QCD, this model has only one scale in the
interaction. The infrared constant U confines the quarks
but the meson spectrum is completely insensitive to it.

The relativistic invariant Dirac-Feynman propagators
[13] can be decomposed in the quark and antiquark
Bethe-Goldstone propagators [16], close to the formalism
of nonrelativistic quark models,
 

SDirac�k0; ~k� �
i

k6 �m� i	

�
i
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X
s

usu
y
s �

�
i
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X
s

vsv
y
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us�k� �

24 ������������
1� S

2

s
�

������������
1� S

2

s
k̂ � ~��5

35us�0�;
vs�k� �

24 ������������
1� S

2

s
�

������������
1� S

2

s
k̂ � ~��5

35vs�0�;
� �i�2�5u

�
s�k�; (3)

where S � sin�’� � mc�����������
k2�m2

c

p , C � cos�’� � k�����������
k2�m2

c

p and ’

is a chiral angle. In the noncondensed vacuum, ’ is equal
to arctanm0

k , but ’ is not determined from the onset when
chiral symmetry breaking occurs. In the physical vacuum,
the constituent quark mass mc�k�, or the chiral angle
’�k� � arctanmc�k�

k , is a variational function which is de-
termined by the mass gap equation. Examples of solutions,
for different light current quark masses m0, are depicted in
Fig. 1.
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FIG. 1. The constituent quark masses mc�k�, solutions of the
mass gap equation, for different current quark masses m0.
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Then there are three equivalent methods to find the true
and stable vacuum, where constituent quarks acquire the
constituent mass. One method consists in assuming a
quark-antiquark 3P0 condensed vacuum and in minimizing
the vacuum energy density. A second method consists in
rotating the quark and antiquark fields with a Bogoliubov-
Valatin canonical transformation to diagonalize the terms
in the Hamiltonian with two quark or antiquark second
quantized fields. A third method consists in solving the
Schwinger-Dyson equations for the propagators. Any of
these methods lead to the same mass gap equation and to
the quark dispersion relation. Here I replace the propagator
of Eq. (3) in the Schwinger-Dyson equation,
 

0�uys �k�
�
kk̂ � ~��m0��

Z dw0
2


d3k0

�2
�3
iV�k�k0�

�
X
s0

�
u�k0�s0u

y�k0�s0

w0 �E�k0�� i	
�

v�k0�s0v
y�k0�s0

�w0 �E�k0�� i	

��
vs00 �k�

E�k��uys �k�
�
kk̂ � ~��m0��

Z dw0
2


d3k0

�2
�3
iV�k�k0�

�
X
s0

�
u�k0�s0uy�k0�s0

w0 �E�k0�� i	
�

v�k0�s0vy�k0�s0

�w0 �E�k0�� i	

��
us�k�;

(4)

where, with the simple density-density harmonic interac-
tion [13], the integral of the potential is a Laplacian and the
mass gap equation and the quark energy are finally

 �’�k� � 2kS�k� � 2m0C�k� �
2S�k�C�k�

k2

E�k� � kC�k� �m0S�k� �
’0�k�2

2
�
C�k�2

k2 �
U
2
:

(5)

Numerically, this equation is a nonlinear ordinary differ-
ential equation. It can be solved with the Euler-Runge-
Kutta and shooting method. Examples of solutions for the
current quark mass mc�k� � k tan’, for different current
quark masses m0, are depicted in Fig. 1.

The Salpeter-RPA equations for a meson (a color singlet
quark-antiquark bound state) can be derived from the
Lippman-Schwinger equations for a quark and an anti-
quark or by replacing the propagator of Eq. (3) in the
Bethe-Salpeter equation. In either way, one gets [16]

 ���k; P� �
uy�k1���k; P�v�k2�

�M�P� � E�k1� � E�k2�

��t�k; P� �
vy�k1���k; P�u�k2�

�M�P� � E�k1� � E�k2�
;

��k; P� �
Z d3k0

�2
�3
V�k� k0�	u�k01��

��k0; P�vy�k02�

� v�k01��
�t�k0; P�uy�k02�
;

(6)

where k1 � k� P
2 , k2 � k� P

2 , and P is the total momen-

tum of the meson. Notice that, solving for �, one gets the
Salpeter equations of Yaouanc et al. [13].

The Salpeter-RPA equations of P. B. et al. [14] and of
Llanes-Estrada et al. [15] are obtained deriving the equa-
tion for the positive energy function �� and for the nega-
tive energy function ��. The relativistic equal time
equations have double the coupled equations than the
Schrödinger equation, although in many cases the negative
energy components can be quite small. This results in four
potentials V�� respectively coupling �� � r�� to ��. The
Pauli ~� matrices in the spinors of Eq. (3) produce the spin-
dependent [25] potentials of Table II.

Notice that both the pseudoscalar and scalar equations
have a system with two equations. This is the minimal
number of relativistic equal time equations. However the
spin-dependent interactions couple an extra pair of equa-
tions both in the vector and axial vector channels. While
the coupling of the s wave and the d wave are standard in
vectors, the coupling of the spin singlet and spin triplet in
axial vectors only occurs if the quark and antiquark masses
are different, say in heavy-light systems. I now combine
the algebraic matrix elements of Table I with the spin-
dependent potentials of Table II to derive the full Salpeter-
RPA radial bound-state equations (where the infrared U is
dropped from now on). I get the JP � 0�, 1S0 pseudoscalar
(P) equations,

 ��
�
d2

dk2 � Eq�k� � E �q�k� �
’02q � ’

02
�q

4
�

1� SqS �q

k2

�

�
1 0

0 1

" #
�

�’0q’0�q
2
�
CqC �q

k2

� 0 1

1 0

" #

�M
1 0

0 �1

" #� ��1S0
�k�

��1S0
�k�

0
@

1
A � 0; (7)

the JP � 0�, 3P0 scalar (S) equations,

TABLE II. The positive and negative energy spin-independent,
spin-spin, spin-orbit and tensor potentials are shown, for the
simple density-density harmonic model of Eq. (2). ’0�k�, C�k�,
and G�k� � 1� S�k� are all functions of the constituent quark
(antiquark) mass.
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dk2 �
L2

k2 �
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�q � �

1
k2 �Gq � G �q� �U
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3k2 GqG �qSq � S �q

spin-orbit 1
k2 	�Gq � G �q��Sq � S �q� � �Gq � G �q��Sq � S �q�
 �L

tensor � 2
k2 GqG �q	�Sq � k̂��S �q � k̂� �

1
3 Sq � S �q


V�� � V��

spin-indep. 0
spin-spin � 4

3 	
1
2’
0
q’
0
�q �

1
k2 CqC �q
Sq � S �q

spin-orbit 0
tensor 	�2’0q’

0
�q �

2
k2 CqC �q
	�Sq � k̂��S �q � k̂� �

1
3 Sq � S �q
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(8)

t3he JP � 1� coupled 3S1 and 3D1 vector (V and V�) equations,
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the JP � 1�, coupled 1P1 and 3P1 axial vector (A and A�) equations
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In the light-light limit of mq � m �q ! 0 and ’! 0, it is
clear that Eqs. (7) and (8) become identical. They also
possess takyonic solutions [13]. In the same limit, Eq. (9)
can be block diagonalized [13], and each block, with mixed
s wave and d wave, is identical to one of the two indepen-
dent blocks of Eq. (10). This checks that the chiral partners

P-S and V, V�-A, A� are degenerate in the false chiral
symmetric vacuum.

Another interesting case is the heavy-light case where,
say, the antiquark has a massm �q ’ m �0q � K0; there are no
Tachyons, and the negative energy components nearly
vanish, like in nonrelativistic quark models. In the infinite
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m �q limit, S �q ! 1, and the antiquark spin is irrelevant, see
Table II, complying with the Isgur-Wise heavy quark sym-
metry [26].

For the numerical solution, I change the sign of the
second and fourth lines in Eqs. (7)–(10) and, replacing
the derivatives of the functions by finite difference matri-
ces, the equations become simple eigenvalue equations.

III. INTERPOLATING FROM THE CHIRAL AND
HEAVY LIMIT TO THE Ds AND D

I now compute in detailD andDs masses, relevant to the
conjecture of chiral partnership, respectively, between the
scalar meson D�s�2317� and the axial vector meson
D�s�2460�, and the standard quark-antiquark pseudoscalar
meson Ds�1968� and vector meson D�s�2112�.

To address the importance of chiral partnership it is
convenient to start from the chiral invariant false vacuum
where, in the ideal heavy-light limit of a massless quark
and infinitely massive antiquark, the ground-state pseudo-
scalar, the ground-state scalar, the ground-state vector, and
the ground-state axial vector are all degenerate. Then,
interpolating from this ideal limit to the actual constituent
masses of the light quark and of the heavy antiquark, the
mass splittings between the D�s�2317� and the Ds�1968�
and between their chiral partners can be computed. To
inspect in detail the contributions to the mass splittings,
it is important to decompose this chiral interpolation in
three different steps.

In the first step the current quark masses are in the ideal
chiral limit of m0q � 0 and in the ideal Isgur-Wise limit of
m �0q � 1, and I interpolate the quark mass mq from 0,
corresponding to the false chiral invariant vacuum, to the
actual constituent quark massmcq � 0 solution of the mass
gap equation (5).

In the second step the current mass m �0q of the heavy
antiquark is interpolated from the ideal Isgur-Wise limit of
m �0q � 1, to its actual value of the order of m0 �q ’ 5K0,
fitted in the J=� spectrum. Notice that in the case of heavy
quarks or antiquarks, the constituent quark mass is identi-
cal to the current quark mass, the mass gap equation (5)
essentially does not change the heavy quark masses.

I leave for the third and final step the interpolation of the
current quark mass m0q from the ideal chiral limit to the
actual values of the order of m0q ’ 0:01K0 for the u and d
and of m0q ’ 0:1K0 for the s quark. In chiral models the
current masses of light quarks are model dependent.
Although these current masses m0 are smaller than the
ones used, say, in chiral Lagrangians, in this model these
current quark masses are the ones that lead to the correct
experimental masses of the light-light 
 and K mesons.
Therefore, our m0 are not free parameters.

The results are, respectively, inspected in Sec. III A, in
Sec. III B, and in Sec. III C, and are, respectively, depicted
in Figs. 2–4. Notice that if the three figures are placed side

by side, the interpolations of the studied mesons exactly
match. At the end of the three interpolations the D and Ds
spectra is computed.

A. From the chiral invariant to the true vacua

In the first step one learns the effect of the spontaneously
and dynamically generated constituent quark mass in theD
andDs spectra. This also weights the spin-orbit interaction.

Here the quark current mass is in the ideal chiral limit of
m0q � 0, the antiquark current mass is in the ideal Isgur-
Wise limit of m �0q � 1, and I interpolate the quark mass
mq from 0, corresponding to the false chiral invariant
vacuum, to the actual constituent quark mass mcq � 0
solution of the mass gap equation (5).

When the antiquark has an infinite mass, all terms
depending on its spin vanish. In Table II it is clear that a
quark or antiquark spin always comes with the factor

 G �k� � 1�
mc�����������������

k2 �m2
c

p : (11)

Thus G�k� is maximal and equal to 1 when mc � 0 and
G�k� is minimal and equal to 0 whenmc � 1. Because the
spin of the heavy antiquark is irrelevant, the masses of the
ground-state pseudoscalar P and vector V are degenerate,
and the masses of the ground-state scalar S and axial vector
A are also degenerate. Thus I get in the present limit

 MA �MV � MS �MP: (12)

Moreover, the only spin-dependent term that does not
vanish in this case is the spin-orbit term 2

k2 GqSq �L. Thus
the mass splittings of Eq. (12) measure the angular repul-
sive barrier and the spin-orbit term.

Now, in the chiral invariant false vacuum the spin-orbit
term simplifies to 2Sq�L

k2 . In this case the spin-orbit term is
able to fully compete with the angular repulsive barrier
l�l�1�
k2 , and the spectrum only depends on the total angular

momentum J � L� Sq of the light quark,

 

1

k2
L2 �

2

k2 Sq �L �
1

k2 �J
2 � S2

q�; (13)

independently of L. Thus, in the chiral invariant false
vacuum, chiral symmetry induces an extra degeneracy in
the states, P, V, SA, in the states A�, V� and so on.

In the true vacuum the quark mass is the finite constitu-
ent quark mass mqc, and this decreases the spin-orbit
interaction 2

k2 GqSq �L, which is no longer able to cancel
the mass splittings induced by the angular repulsive barrier
l�l�1�
k2 . In the limit when this spin-orbit interaction vanishes,

the splittings are only due to the repulsive barrier.
The opposite limit of large spin-orbit may occur in the

case of very large angular excitations [13,22,27,28], lead-
ing to chiral doubles in the spectrum, even when the full
constituent mass is used.
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Notice that this first step accounts for most of the split-
ting of Eq. (12). In Fig. 2, this splitting is already of the
order of 0.61K0. After the three steps it will be of the order
of 0.81K0. This is smaller, although of a comparable order,
than the typical scale of angular splittings of the hadronic
spectra.

B. From the heavy quark limit to the c quark

In the second step one learns the effect of the large but
finite heavy antiquark mass in the D and Ds spectra. This
also weights the spin-spin and tensor interactions.

Here the current mass m �0q of the heavy antiquark is
interpolated from the ideal isgurwise limit of m �0q � 1, to
its actual value of the order of m �0q ’ 5K0. Notice that in
the case of heavy quarks or antiquarks, the constituent
quark mass is very close to the current quark mass. In
this case, the mass gap equation only changes the quark
mass in a negligible way. Thus this also interpolates the
constituent antiquark mass from 1 to m �0q ’ 5K0.

In this step the spin-spin and the tensor potentials no
longer vanish. In Fig. 3, these spin-dependent potentials
are able to split the masses of the pseudoscalar and vector
and the masses of the scalar and axial vector. It is remark-
able that these two mass splittings are almost identical,

 MV �MP ’ MA �MS; (14)

with a precision better than 1 per mil. For this result both

the spin-spin and tensor interactions have to conspire with
a beautiful precision.

Nevertheless, these hyperfine and tensor splittings are
too small. This happens because in this model the G
function, defined in Table II, suffers from a steep depen-
dence on the quark mass,

 lim
m!1

G �
k2

2m2
c
; (15)

while it is well known from phenomenology that the spin-
spin interaction dependence on the constituent quark
masses is much smoother. Thus the splittings in Fig. 3
are more than 1 order of magnitude smaller than the
experimental splittings.

C. From the chiral limit to the u; d and s quarks

In the third and final step one learns the effect of the
small light current quark masses, the ones that break ex-
plicitly chiral symmetry. This discriminates between the D
and Ds spectra.

Here the current quark massm0q is interpolated from the
ideal chiral limit to the actual values of the order of m0q ’
0:01K0 for the u and d and of m0q ’ 0:1K0 for the s quark.
In chiral models the current masses of light quarks are
model dependent. Although they are smaller than the ones
used, say, in chiral Lagrangians, in this model these current
quark masses are the ones that lead to the correct experi-
mental masses of the light-light 
 and K mesons.
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P

FIG. 3. Heavy-light meson masses. Here, m0q � 0 and
mq�k� � mc�k� remain in the chiral limit. The heavy antiquark
masses decrease from the infinite limit of Isgur-Wise to the
actual charm mass m �0q ’ 5K0.
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FIG. 2. Heavy-light meson masses. Here m �0q � 1 and m0q �
0. The light constituent quark mass is interpolated from the zero
mass of the chiral invariant false vacuum to the solution mc of
the mass gap equation in the true vacuum.
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Notice that interpolating from vanishing to finite current
quark masses, in this model, essentially does not change
the MV �MP and MA �MS splittings. Essentially the
MS �MV splitting is slightly increased and the MA� �
MA splitting is slightly decreased.

IV. DISCUSSION OF CHIRAL MODEL
CALIBRATION AND CONCLUSION

For the first time a quark model with a chiral symmetric
and confining interaction is applied to compute exactly
different D and Ds meson masses for finite u, d, s, and c
current quark masses. The different spin-tensor contribu-
tions to the meson masses are also analyzed in detail. I now
discuss the results both qualitatively and quantitatively,
and address the new D�s�2317� and D�s�2460� resonances.

My qualitative conclusion is that chiral models have the
same number of meson states in the spectrum as the normal
quark model. The mass splittings can be related, as usual in
quark models, to spin-tensor potentials. At the same token
the spectrum complies with the chiral relations. For in-
stance, the well-known mass formula, first predicted by the
heavy-light chiral papers [4,5],

 MA �MV ’ MS �MP (16)

is correct, in this model, up to the fourth decimal case. This
is no coincidence; it is a general result for any chiral
symmetric interaction. Analytically, the potentials that
create the splitting in the left side and in the right side of
Eq. (16) are exactly equal. It is quite remarkable that all the
spin and angular momentum tensor potentials precisely
conspire to achieve this result. The only difference, affect-
ing only the fourth decimal case, comes from different
sizes for the functions. Therefore, I confirm that Eq. (16)
must be correct for the standard quark-antiquark mesons
Ds�1968�, the Ds�2112� and for their scalar and axial
vector chiral partners. Moreover, a very similar pattern to
the one of Eq. (16) also occurs within the D sector; see
Figs. 2–4. The similar pattern of the quark-antiquark, or
quenched, spectra for the D and Ds family is expected in
confining quark models but here it is mentioned for the first
time in a chiral calculation.

Before the quantitative conclusion is presented, notice
that, quantitatively, all chiral models, including this simple
density-density harmonic confining model of Eq. (2), and
the chiral models of Nowak, Rho, and Zahed, and of
Bardeen and Hill, suffer from a calibration problem. The
present model is confining, so it belongs to a class of
models already able to fit the angular and radial excitations
of the hadronic spectra. In this sense, the confining models
upgrade the nonconfining models like the � model [11] or
the Nambu and Jona-Lasinio model [12], and the related
interactions used by Nowak, Rho, and Zahed and by
Bardeen and Hill. Nevertheless, the spin-tensor interac-
tions remain to be calibrated, and this is precisely ad-
dressed in this paper. This calibration problem is

equivalent to the problem of chiral symmetry with scalar
confinement recently mentioned, for instance, by Adler
[29]. Notice that the calibration problem of chiral quark
models is quite important. If this problem was solved, the
confining quark model would be further improved, both in
accuracy because the pion mass and other particular con-
straints like Eq. (16) would be correct and in consistency
because fewer parameters would be needed to fit the had-
ron spectra. But I submit that the under development chiral
invariant quark models with a confining funnel interaction
[15,30] including a short range vector interaction [16,31],
and a long-range confining scalar interaction [32,33], can
be correctly calibrated. Llanes-Estrada, Cotanch,
Szczepaniak, and Swanson showed that the Coulomb po-
tential is crucial to produce correct hyperfine splittings
both for light and heavy quark masses. Possibly the scalar
confining potential suggested by P. B. and Marques would
also suppress the spin-orbit interaction. An important ex-
ample is provided by quenched lattice QCD calculations
with Ginsparg-Wilson or Staggered fermions, which repro-
duce the spectrum of quark-antiquark mesons, including
the low pion mass. Then the correct implementation of
chiral symmetry should not affect the broad picture of the
quark-model spectrum for q �q mesons except for particular
constraints like the low pion mass and Eq. (16).

Quantitatively, our result for the splittings of Eq. (16),
depicted in Fig. 4, may be as large as 325 MeV for the
upper bound of 400 MeV for the potential strengthK0. This
splitting MS �MP is the crucial one for the Ds chiral
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s

FIG. 4. Heavy-light meson masses. Here m �0q is the charm
mass, and the light quark current quark mass m0 interpolates
from the vanishing mass of the chiral limit, passes by the u and d
current quark masses, and ends up at the s quark mass.
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conjecture [6,7] (although I also mention here the hyper-
fine splitting MV �MP). Notice that the present splitting
of 325 MeV is close to the splitting of 350 MeV advocated
by the conjecture of chiral partnership [6,7], so apparently
the present results confirm the conjecture. However, the
educated analysis of this result does not confirm the con-
jecture of chiral partnership. Notice that the model used
here is known to suffer from a calibration problem. It is
well known that in the present model the spin-orbit inter-
action produced by this potential is too large [13] and that
the hyperfine interaction is also too small, when compared
with the different meson spectra. In a sense, the model is
too close to the starting point of the present interpolation,
the light quark chiral limit and the infinite Isgur-Wise
heavy quark limit, in the false chiral invariant vacuum,
where the spin-orbit is so large that it kills the angular
splitting and the hyperfine and tensor potentials vanish. If
the spin-orbit interaction could be suppressed, the split-
tings of Eq. (16) would increase. This increase would
easily reach the 423 MeV separating the axial vector
D�s�2535� from the ground-state vector D�s�2112� (if the
hyperfine splitting could be increased, the splitting be-
tween the vector D�s�2112� and the pseudoscalar
Ds�1968� also would be easily reproduced). I also notice
in Fig. 4 that, whatever these splittings turn out to be in a
particular chiral quark model, the D and Ds families must
have similar patterns. Then the similar [34] experimental
410 to 423 MeV mass splittings of the vector D��2007�

2010� and axial vector D�2420�, and vector D�s�2112� and
axial vector D�s�2535�, and the larger lattice splittings
[9,10], all suggest that the chiral partners of the q �q mesons
D�s�2112� and Ds�1968� are, respectively, the q �q axial
vector D�s�2535� and a yet undetected scalar D�s�2392�.
This educated analysis of the present results disagree
with the beautiful and important conjecture of chiral part-
nership for the new D�s�2317� and D�s�2460� narrow
resonances.

Importantly, this suggests that a large non-q �q compo-
nent [35,36], say a tetraquark or a hybrid, must be present
in the new narrowDs resonances. Coupled channels [37] or
tetraquark [38] explicit calculations, where D and K me-
sons play a significant role, either as a molecular state or as
a coupled meson-meson state, also lead to the D�s�2317�
and D�s�2460�, and to the perfect splitting between these
mesons and the ground states Ds�1968� and D�s�2112�.

Nevertheless, once the calibration problem is solved for
confining and chiral invariant quark potentials, the tech-
niques developed here should again be applied to the
computation of the D and Ds spectra, for a final evaluation
of the chiral partnership conjecture for the newD�s mesons.
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