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In the first part of this work we discuss possible effects of stochastic space-time foam configurations of
quantum gravity on the propagation of ‘‘flavored’’ (Klein-Gordon and Dirac) neutral particles, such as
neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on
random averages of quantum fluctuations of space-time metrics over which the propagation of the matter
particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors
which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to
the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law
cutoff of the time-profile of the respective probability. In the second part we consider space-time foam
configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass
differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of
neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine
quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary
matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.
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I. INTRODUCTION AND MOTIVATION

The important feature of classical general relativity, is
the fact that space-time is not simply a frame of coordinates
on which events take place, but is itself a dynamical entity.
For conventional quantization this poses a problem, since
the space-time coordinates themselves appear ‘‘fuzzy.’’
The ‘‘fuzzyness’’ of space-time is associated with micro-
scopic quantum fluctuations of the metric field, which may
be singular. For instance, one may have Planck size
(10�35 m) black holes, emerging from the quantum-
gravity (QG) ‘‘vacuum,’’ which may give space-time a
‘‘foamy,’’ topologically nontrivial structure.

An important issue arises which concerns the existence
of a well-defined scattering matrix in the presence of black
holes, especially such microscopic ones (i.e. for strong
gravity); the information encoded in matter fields may
not be delivered intact to asymptotic observers. In this
context we refer the reader to a recent claim by S.
Hawking [1] according to which information is not lost
in the black-hole case, but is entangled in a holographic
way with the portion of space-time outside the horizon. It is
claimed that this can be understood formally within a
Euclidean space-time path-integral formulation of QG. In
this formulation the path-integral over the topologically
trivial metrics is unitary, but the path-integral over the
topologically nontrivial black-hole metrics, leads to corre-
lation functions that decay to zero for asymptotically long
times. Consequently only the contributions over trivial
topologies are important asymptotically, and so informa-
tion is preserved. In simple terms, according to Hawking
himself, the information is not lost but may be so mangled
that it cannot be easily extracted by an asymptotic ob-
server. He drew the analogy to information encrypted in
‘‘a burnt out encyclopedia,’’ where the information is

radiated away in the environment, but there is no paradox,
despite the fact that it is impossibly difficult to recover.

However, there are fundamental issues we consider as
unanswered by the above interesting arguments. This
makes the situation associated with the issue of unitarity
of effective matter theories in foamy space-times unre-
solved. On the technical side, one issue that causes concern
is the Euclidean formulation of QG. According to Hawking
this is the only sensible way to perform the path ntegral
over geometries. However, given the uncertainties in ana-
lytic continuation, it may be problematic. Additionally, it
has been argued [1] that the dynamics of formation and
evaporation of (microscopic) black holes is unitary using
Maldacena’s holographic conjecture of AdS/CFT corre-
spondence [2] for the case of anti-de Sitter (supersymmet-
ric) space-times. This framework describes the process in a
very specific category of foam, and may not be valid
generally for theories of QG. However even in this context
the rôle of the different topological configurations is ac-
tually important, a point recently emphasized by Einhorn
[3]. In Maldacena’s treatment of black holes [4], the non-
vanishing of the contributions to the correlation functions
due to the topologically nontrivial configurations is re-
quired by unitarity. Although such contributions vanish
in semiclassical approximations, the situation may be dif-
ferent in the full quantum theory, where the rôle of
stretched and fuzzy (fluctuating) horizons may be impor-
tant, as pointed out by Barbon and Rabinovici [5].

The information paradox is acutest [3] in the case of
gravitational collapse to a black hole from a pure quantum
mechanical state, without a horizon; the subsequent evapo-
ration due to the celebrated Hawking-radiation process,
leaves an apparently ‘‘thermal’’ state. It is in this sense
that the analogy [1] is made with the encoding of informa-
tion in the radiation of a burning encyclopedia. However
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the mangled form of information in the burnt out encyclo-
pedia, is precisely the result of an interaction of the ency-
clopedia with a heat bath that burned its pages, thereby
leading to an irreversible process. The information cannot
be retrieved due to entropy production in the process.

In our view, if microscopic black holes, or other defects
forming space-time foam, exist in the vacuum state of
quantum gravity (QG), this state will constitute an ‘‘envi-
ronment’’ which will be characterized by some entangle-
ment entropy, due to its interaction with low-energy matter.
This approach has been followed by the authors [6,7] in
many phenomenological tests or microscopic models of
space-time foam [8], within the framework of noncritical
string theory; the latter, in our opinion, is a viable (non-
equilibrium) theory of space-time foam [9], based on an
identification of time with the Liouville mode. The latter is
viewed as a dynamical local renormalization-group scale
on the world-sheet of a nonconformal string. The non-
conformality of the string is the result of its interaction
with backgrounds which are out of equilibrium, such as
those provided by twinkling microscopic black holes in the
foam. The entropy in this case can be identified with the
world-sheet conformal anomaly of a �-model describing
the propagation of a matter string in this fluctuating back-
ground [9,10]. Although within critical string theory, argu-
ments have been given that entanglement entropy can
characterize the number of microstates of anti-de Sitter
black holes [11], we do not find these to be entirely
convincing.

It should be stressed at this stage that our approach, and
the underlying conceptual background, to (Liouville-
string) quantum space-time foam ground state of QG dif-
fers from conventional local effective theories of quantum
gravity involving loops of virtual particles such as grav-
itons, discussed, for instance, in [12]. In such local field
theory models, dressing of a matter quantum state with
virtual gravitons, say, does not lead to decoherence, since
the latter does not induce any additional ‘‘environmental’’
interaction that would induce irreversibility and decoher-
ence. If virtual local black holes behaved like virtual
photons within a framework of ordinary quantum field
theory, as argued by Diósi [13],it is the state dressed (by
such virtual particles) in such models that is accessible to
experimenters, and thus no decoherence is expected, unless
these virtual black holes emit somehow ‘‘real’’ gravitons.

The above picture for QG effects on matter is quite
different from our point of view in important ways.
Blackholes, microscopic or otherwise, have horizons,
which are real, in a sense to be clarified below, within
the context of Liouville strings, which is a specific string-
inspired framework for which one can discuss such ideas in
a quantitative manner. In our picture there are several
parallel three-brane worlds, one of which represents the
observable Universe, embedded in a higher-dimensional
bulk where only gravitational (closed) string states propa-

gate. On the brane world there are only open string states
propagating, representing ordinary matter, with their ends
attached to the brane hypersurface. Of course, there are
also closed string states, either propagating along the lon-
gitudinal brane directions, or crossing the brane boundary
from the bulk. As discussed in [14] consistent supersym-
metric models of D-particle foam can be constructed, in
which the bulk space between, say, two parallel brane
worlds is populated by pointlike D-particle defects which
cross brane boundaries These D-particle defects can even
represent compactified black holes from a four-
dimensional view point, with the extra dimensions being
wrapped up appropriately in Planckian size compactifica-
tions. One may then encounter a situation in which
D-particle pointlike space-time defects from the higher-
dimensional bulk space-time cross the three brane (where
ordinary-matter resides). Such constructions clearly lead to
a radically different picture from virtual excitations in a
vacuum.

In Ref. [8] we have discussed the details of dynamical
formation of horizons on the brane world (in the context of
(Liouville) string theory), as a result of the encounter of
brane matter with the crossing D-particle defect.
Schematically, ordinary string matter on the brane creates
- through backreaction (recoil) effects due to scattering off
D-particles- sufficient distortion of space-time for dynami-
cal horizons, surrounding the defect, to appear. The appear-
ance of horizons in this way looks - from the point of view
of a four-dimensional observer—as a dynamical ‘‘flashing
on and off of a black hole,’’ coming from the ‘‘vacuum.’’
The lifetime of such objects is of the order of the Planck
time, since this is the time uncertainty for the defect to
cross the brane world and interact with stringy matter
excitations. Once horizons form there is entropy produc-
tion [10] and through this irreversibility and decoherence.
Consequently such stringy black-hole defects are not
equivalent to ordinary virtual particles in flat space-time
field theories or to effective local quantum-gravity ap-
proaches from the point of view of decoherence (cf. [12]).

The presence of dynamical horizons is a real effect of
the ground state of quantum gravity (at least in such
Liouville-string approaches to QG), which implies real
environmental entanglement of matter systems with (gravi-
tational) degrees of freedom behind the horizons. This
leads to the problem of loss of information for particles
propagating outside the horizon, and as such can lead to
microscopic time-irreversibility à la Wald [15], and thus to
CPT violation and QG-induced decoherence. There is then
a consequent nonunitary evolution of particles outside the
horizon. Somewhat general arguments (even in flat space-
times but with a boundary) have been put forward in the
literature [16] to support this point of view. The generic
property of nonunitary evolution has then been extracted
and modeled by phenomenological Lindblad master equa-
tions [17,18] over two decades [7,19] to describe particles
evolving in space-time foam.
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We cannot, of course, advocate at this stage that this
(noncritical, Liouville) string approach, is the only consis-
tent approach to quantum gravity. Consequently we cannot
rule out other approaches given in given in [12] or the
suggestion that the environment due to quantum-gravity is
a sort of thermal heat bath, a point of view advocated in
Ref. [20]. It is therefore a challenging experimental issue to
seek signatures for such quantum-gravity-induced deco-
herencelike effects, which could definitely discriminate
between several models of quantum gravity.

In general, for phenomenological purposes, the impor-
tant feature of such situations is the fact that gravitational
environments, arising from space-time foam or some other,
possibly semiclassical feature of QG, can still be described
by nonunitary evolutions of density matrices. Such equa-
tions have the form

 @t� � �1���2�; (1.1)

where

 �1� �
i
@
��;H�

and H is the hamiltonian with a stochastic element in a
classical metric. Such effects may arise from backreaction
of matter within a quantum theory of gravity [21] which
decoheres the gravitational state to give a stochastic en-
semble description. Furthermore within models of
D-particle foam arguments in favor of a stochastic metric
have been given [6]. The Liouvillian term �2� gives rise to
a nonunitary evolution. A common approach to �2�, not
based on microscopic physics, is to parametrize the
Liouvillian in a so-called Lindblad form [17,18]. We note
at this point that any nonlinear evolutions that may char-
acterize a full theory of QG (see e.g. a manifestation in
Liouville strings [22]), can be ignored to a first approxi-
mation appropriate for the accuracy of contemporary ex-
perimental probes of QG. Generically space-time foam and
the backreaction of matter on the gravitational metric may
be modeled as a randomly fluctuating environment; for-
malisms for open quantum mechanical systems propagat-
ing in such random media can thus be applied and lead to
concrete experimental predictions. The approach to these
questions have to be phenomenological to some degree
since QG is not sufficiently developed at a nonperturbative
level.

One of the most sensitive probes of such stochastic
quantum-gravity phenomena are neutrinos [7,23–27], in
particular, high-energy ones [28]. It is the point of this
article to present various approaches to gravitationally-
induced decoherence of matter and to classify some char-
acteristic experimental predictions that could be falsified in
current or near future neutrino experiments.

The neutrino, being almost massless, and weakly inter-
acting, can travel long distances in the Universe essentially
undisturbed. Thus the detection of high-energy neutrinos,
which are produced at early stages of our Universe, say in

gamma-ray-bursters or other violent phenomena, can carry
important information on the Universe’s past which would
not have reached us otherwise. If space-time has therefore
a stochastic foamy structure, the longer the neutrino travels
the greater the cumulative quantum-gravity effects be-
come. For instance, due to their known mass differences,
the neutrinos exhibit oscillations between their various
flavors, and such oscillations appear to attenuate with
time in stochastic environments. Although such an attenu-
ation may be too small to be detected in laboratory experi-
ments, it may nevertheless be appreciable in the case of
ultra-high-energy neutrinos, which have travelled cosmo-
logical distances before reaching the observation point on
Earth [7,28]. From such (non) observations of damping
effects, one may place important bounds on quantum-
gravity effects, information that may prove quite useful
in our theoretical quest of understanding space-time.

Moreover, there is another interesting possibility regard-
ing neutrinos. As pointed out recently in [23], the tiny mass
differences between neutrino flavors may themselves (in
part) be the result of a CPT violating quantum-gravity
background. The phenomenon, if true, would be the gen-
eralization of the celebrated Mikheyev-Smirnov-
Wolfenstein (MSW) effect [29,30]. The latter arises from
effective mass differences between the various neutrino
flavors, as a result of different type of interactions of the
various flavors with matter within the context of the stan-
dard model. The phenomenon has been generalized to
randomly fluctuating media [31], which are of relevance
to solar and nuclear reactor �-decays neutrinos. This sto-
chastic MSW effect will be more relevant for us, since we
consider space-time foam, as a random medium which
induces flavor-sensitive mass differences. Moreover the
Liouvillian in (I) can be derived and is not an assumption
in this framework.

The structure of the article will be the following: we
commence our analysis by considering in Sec. II flavor
oscillations between two generations of neutrinos, whose
dynamics are governed by Klein-Gordon or Dirac
Lagrangians in the presence of weakly fluctuating back-
ground random gravitational fields. The Klein-Gordon
case is an idealization when the effects of neutrino spin
are ignored. Moreover it can be of interest in its own right
when flavor oscillations of neutral mesons are considered.
The case of Dirac particles with two flavors is considered
in Sec. III. An effective description in terms of two-level
systems is derived and analyzed. We then proceed in
Sec. IV to discuss gravitational MSW effects in oscillation
phenomena (also for two flavors) for the case when the
particles are highly relativistic (a situation applicable to
neutrinos). We pay particular attention to disentangling
potential genuine quantum-gravity-induced decoherence
effects from conventional effects due to the passage of
the neutrino probe through ordinary stochastic fluctuating
matter. As we shall discuss, the disentanglement is
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achieved via the energy E and oscillation length L depen-
dence of the relevant probability. In particular, conven-
tional effects attenuate to zero as the parameter L=E! 0
[32,33], in contrast to the genuine quantum-gravity deco-
herence effects which, at least in some models of space-
time foam decoherence, exhibit a L � E dependence.
Conclusions and outlook are presented in Sec. V, followed
by three appendices that contain some technical details of
our formalism.

II. GRAVITATIONAL DECOHERENCE
CALCULATIONS FOR SCALAR PARTICLES

Since the effects of stochastic space-time foam can
appear through both �1� and �2� in (I) we shall for clarity
isolate their individual signatures. The most satisfactory
way of dealing with the effects of such a background is by
coupling covariantly the gravitational field to a Klein-
Gordon or Dirac Lagrangian. This avoids intuitive argu-
ments which are sometimes presented [34] and correctly
incorporates covariance unlike these other approaches.

For the case of scalar particles of massm, such as neutral
mesons (or in the toy case where the spin of a neutrino of
mass m is ignored), we can describe the motion of the
particle in a curved background by means of a Klein-
Gordon equation for a field �. The Klein-Gordon equation

in a gravitational field reads:

 g��D�D���m2� � 0: (2.1)

where g�� is the metric tensor and D� is a covariant
derivative. We will consider the neutrino to be moving in
the x-direction. For simplicity [34] we will examine the
situation where the relevant part of the contravariant metric
can be regarded as being in 1� 1 dimension. Moreover if
metric fluctuations are caused by D-particle foam [8] there
are further arguments in favor of such a truncated theory. A
small stochastic perturbation of the flat metric can be
written as

 g � O�OT (2.2)

with

 O �
a1 � 1 a2

a3 a4 � 1

� �
; � �

�1 0
0 1

� �
(2.3)

and where the static coefficients ai’s are Gaussian random
variables satisfying haii � 0 and haiaji � �ij�i. This is a
simplified model and could be made more complicated, for
example, by having a general symmetric covariance matrix
for the ai’s. Such complications will not affect our quali-
tative results and magnitudes of estimates. From (2.2):

 g�� �
��a1 � 1�2 � a2

2 �a3�a1 � 1� � a2�a4 � 1�
�a3�a1 � 1� � a2�a4 � 1� �a2

3 � �a4 � 1�2

� �
: (2.4)

Since the Christoffel symbols ���� � 0 and R � 0 for
static ai’s the Klein-Gordon equation is

 �g00@2
0 � 2g01@0@1 � g11@2

1�	�m
2	 � 0: (2.5)

For positive energy plane wave solutions

 	�x; t� 	 ’�k;w�ei��!t�kx�

we have the dispersion relation

 ! �
g01

g00 k�
1

�g00

���������������������������������������������������������
�g01�2k2 � g00�g11k2 �M2�

q
: (2.6)

For an initial � flavor state with momentum k, the density
matrix � at time t is

 ��t� �
X
j;l;�;


U�jU
�jU


�lU
lei�!l�!j�tjf�ihf
j; (2.7)

where � is a flavor index and j, l�� 1; 2� denote indices for
mass eigenstates with eigenvalue M � m1 and M � m2.
The bras and kets in (2.7) are flavor eigenstates (corre-
sponding to the flavors denoted by the subscripts) and U is
the mixing matrix which can be parametrized by an angle
�:

 U �
cos� sin�
� sin� cos�

� �
: (2.8)

Now since the !’s are functions of classical random var-
iables (which thus have a positive probability distribution),
the averaging of ��t� over these random variables is a
positively weighted (generalized) sum over density matri-
ces. Hence the averaged density matrix is also positive and
represents a mixed state. The probability of transition from
an initial state of flavor 1 to 2 is

 Prob �1! 2� �
X
j;l

U1jU


2jU



1lU2le

i�!l�!j�t; (2.9)

where the time dependent part is

 U12U
22U


11U21ei�!1�!2�t �U11U
21U



12U22ei�!2�!1�t:

Since the faig are assumed to be independent Gaussian
variables, our covariance matrix � has the diagonal form

 � �

1
�1

0 0 0

0 1
�2

0 0

0 0 1
�3

0

0 0 0 1
�4

0
BBBBB@

1
CCCCCA; (2.10)

with �i > 0. The calculation of transition probabilities
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requires the evaluation

 hei�!1�!2�ti �
Z
d4a exp�� ~a �� � ~a�ei�!1�!2�t

det�

�2 :

(2.11)

From (2.6) we obtain

 !1 �!2 �
1

�g00 �
���������������������������������������������������������
�g01�2k2 � g00�g11k2 �m2

1�
q

�
���������������������������������������������������������
�g01�2k2 � g00�g11k2 �m2

2�
q

�: (2.12)

Now, since fluctuations are small, we can make the
expansion
 

1

�g00 �
���������������������������������������������������������
�g01�2k2 � g00�g11k2 �m2

l �
q

�

� c�ml� �
X
i

di�ml�ai �
X
i;j

aifij�ml�aj �O�a3�; (2.13)

where the nonzero expansion coefficients are

 c�ml� �
�����������������
k2 �m2

l

q
; d1�ml� � �

�����������������
k2 �m2

l

q
;

d4�ml� �
k2�����������������

k2 �m2
l

q ; f11�ml� �
�����������������
k2 �m2

l

q
;

f14�ml� � �
1

2

k2�����������������
k2 �m2

l

q ; f22�ml� �
m2
l � 2k2

2
�����������������
k2 �m2

l

q ;

f23�ml� �
�k2

2
�����������������
k2 �m2

l

q ; f44�ml� �
1

2

k2m2
l

�k2 �m2
l �

3=2
:

(2.14)

and fij is symmetric. In this approximation we find that

 hei�!1�!2�ti �

�
det�

detB

�
1=2

exp
�
1

2

�
exp�i~bt�

�
4~d2

�P1P2�
1=2

exp
�
1

2

�
exp�i~bt�; (2.15)

where

 B �

1
�1
� i~bt 0 0 � i~b

2 ~d
k2t

0 1
�2
� it~b

2 ~d
�~d� k2� �ik2 ~bt

2~d
0

0 �ik2 ~bt
2~d

1
�3

0
�i~b
2 ~d
k2t 0 0 1

�4
� 1

2 ik
2~ct

0BBBBBB@

1CCCCCCA;

 1��4�~d2�1��4k
4�~b2t2�2i~d2 ~b2~ck2�1�4t

3;

2�4~d2�2i~d2�k2~c�4�2~b�1�t� ~bk2�~bk2�2~d2~c��1�4;

P1�4~d2�2i~d ~b�k2� ~d��2t� ~b2k4�2�3t
2;

P2�4~d2�2i~d2�k2~c�4�2~b�1�t�O��2�

with

 

~b �
�����������������
k2 �m2

1

q
�

�����������������
k2 �m2

2

q
;

~c � m2
1�k

2 �m2
1�
�3=2 �m2

2�k
2 �m2

2�
�3=2;

~d �
�����������������
k2 �m2

1

q �����������������
k2 �m2

2

q
:

(2.16)

It is particularly illuminating to consider the limit k� m1,
m2 for which ~d � k2, ~b � ��m�2

2k , where ��m�2 �

m2
1 �m

2
2, and ~c � ��m�2

k3 . We then have

 P1P2 �

�
4k4 �

1

4
��m�4k2�2�3t

2

��
�3

4
��m�4k2t2�1�4 � 2ik3��m�2��1 � �4�t� 4k4

��
1

2

�

� �
1

2

�2k4�1 � ik3��m�2�1�4t� 2k4�4���m�4t2

k2��3
4 ��m�

4k2t2�1�4 � 2ik3��m�2��1 � �4�t� 4k4�
:

Hence we see that for highly energetic scalar particles the
stochastic model of space-time foam leads to a modifica-
tion of oscillation behavior quite distinct from that of the
Lindlbad formulation. In particular for the transition
probability there is a Gaussian decay with time, a modifi-
cation of the oscillation period as well an additional power
law falloff both decays are invariant under t! �twhich is
of course related to their origin from �1. From this char-
acteristic time dependence bounds can be obtained for the
fluctuation strength of space-time foam. They are compat-
ible with previous estimates and will be discussed later.

III. DECOHERENCE OF DIRAC PARTICLES

Although scalar flavor oscillation is the relevant case for
neutral mesons, for the important case of neutrino oscil-

lations and space-time foam it can only be a rudimentary
approximation. The spinorial structure should be incorpo-
rated into the description. The usual discrete level descrip-
tions of oscillation phenomena cannot suggest the natural
way to incorporate the background and this leads to con-
sideration of the Dirac equation in the presence of a
stochastic gravitational background. For definiteness we
will take neutrinos to be described by two flavors and by
massive Dirac spinors �; also a term is introduced which
incorporates in mean field the role of a medium that leads
to the MSW effect. The neutrinos will interact via the weak
interactions with electrons produced via evaporation of
microscopic black holes. Any rigorous discussion of such
a process would involve a full theory of QG which is not
available currently. In the next section some semiclassical
arguments from black-hole physics are summarized which
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motivate this possibility. Of course for such a medium it is
also necessary to incorporate fluctuations and this will be
investigated at length in the next section through the in-
troduction of a �2 with a specific double commutator
structure.

As in the scalar case only weak fluctuations h�� around
the flat metric ��� are considered and as for that case we
will consider the form of g�� in (2.4). The Lagrangian Lf

for a Dirac particle of mass mf (in standard notation) is
(see, for example, [35])
 

Lf � ��
��

1�
1

2
h
�
�i
�@� �mf�

�
��

i
2

��h��
�@��

�
i
4

���@�h���
� ���
i
4

���@�h�
��; (3.1)

where h � h������� a2
1 � a

2
2 � a

2
3 � a

2
4 � 2�a1 � a4��.

The total Lagrangian will have contributions from electron
and muon neutrino spinor fields �e and �� in the form of
(3.1) together with a Dirac mass mixing term (proportional
to me�) and a MSW interaction. On writing

 � �

	

� �
; (3.2)

where  and 	 represent Weyl spinors, our total
Lagrangian, including the mixing and MSW terms, be-
comes [36]

 

L�

�
1�

1

2
h
�
�ye i@0e�

y
e�1i@1e�	

y
e i@0	e�	

y
e�1i@1	e� �

i
2
�ye �b11� b3�1�@0e�

y
e �b31� b2�1�@1e�

�
i
2
�	ye �b11� b3�1�@0	e�	

y
e �b31� b2�1�@1	e� � fe!�g �

�
1�

1

2
h
�
�me��

y
e	��	

y
�e�

y
�	e�	

y
e��

�V	ye	e� �

�
1�

1

2
h
�
me�

y
e	e�	

y
ee� � fe!�g: (3.3)

Here V is the coupling which represents an MSW effect
and is proportional to the density of the microscopic black-
hole density. Moreover, for convenience, we have made the
definitions

 b1 � a2
1 � 2a1 � a2

2; b2 � a2
3 � a

2
4 � 2a4;

b3 � a1a3 � a3 � a2a4 � a2:
(3.4)

We follow the basic procedure presented in [36] but now
in the presence of a stochastic gravitational background. In
the absence of V the mixing matrix U has the same form as
in the last section with

 tan�2�� �
2me�

m� �me
(3.5)

and so

 

	e

	�

� �
�

cos� sin�
� sin� cos�

� �
	1

	2

� �
(3.6)

and

 

�
e
�

�
�

�
cos� sin�
� sin� cos�

��
1

2

�
: (3.7)

This results in

 

L �

�
1�

1

2
h
�
�y1 �i@0 � i�1i@1�1 � 

y
2 �i@0 � �1i@1�2 �	

y
1 �i@0 � �1i@1�	1 �	

y
2 �i@0 � �1i@1�	2

�m1�
y
1	1 �	

y
11� �m2�

y
2	2 �	

y
22� � V�cos�	y1 � sin�	y2 ��cos�	1 � sin�	2��

�
i
2
�y1 �b11� b3�1�@01 � 

y
2 �b11� b3�1�@02 � 

y
1 �b31� b2�1�@11 � 

y
2 �b31� b2�1�@12�

�
i
2
�	y1 �b11� b3�1�@0	1 �	

y
2 �b11� b3�1�@0	2 �	

y
1 �b31� b2�1�@1	1� �	

y
2 �b31� b2�1�@1	2�: (3.8)

Owing to translation invariance for the MSW medium in mean field V is constant and we make an expansion of the fields in
terms of helicity eigenstates
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	i �
X
k

eik�xf�Pi��k; t� � N
i
��k; t����k� � �P

i
��k; t�

� Ni
��k; t����k�g;

i �
X
k

eik�xf�Qi
��k; t� �M

i
��k; t����k� � �Q

i
��k; t�

�Mi
��k; t����k�g; (3.9)

where the motion is in the x-direction, Pi�, Qi
� (with � �

�, �) are positive frequency and Ni
�, Mi

� are negative

frequency field components. The properties of the helicity
eigenstates can be summarized by the relations [36]

 �1k��k� � �k��k� ) �1��k� � ���k�;

�1k��k� � k��k� ) �1��k� � ��k�:
(3.10)

On substituting the expansions (3.9) into the equations of
motion (B2) and taking the projection of the equations of
motion onto positive frequency and negative helicity states
we obtain

 �
1�

1

2
h
�
��i@0�k�Vcos2��P1

��k;t��m1Q
1
��k;t��V cos�sin�P2

��k;t���
i
2
�b1�b3� _P1

��k;t��
k
2
�b3�b2�P

1
��k;t��0;�

1�
1

2
h
�
�i _Q1

��k;t��kQ
1
��k;t��m1P1

��k;t���
i
2
�b1�b3� _Q1

��k;t��
k
2
�b3�b2�Q1

��k;t��0;�
1�

1

2
h
�
��i@0�k�Vsin2��P2

��k;t��m2Q
2
��k;t��V cos�sin�P1

��k;t���
i
2
�b1�b3� _P2

��k;t��
k
2
�b3�b2�P

2
��k;t��0;�

1�
1

2
h
�
��i@0�k�Q2

��k;t��m2P2
��k;t���

i
2
�b1�b3� _Q2

��k;t��
k
2
�b3�b2�Q2

��k;t��0:

(3.11)

We seek solutions with time dependence e�iEt. This leads
to an eigenvalue equation for E (cf. Appendix B for de-
tails). As with the scalar case, to find the flavor oscillation
probability it is necessary to compute hei�!1�!2�ti. Gaussian
integration gives

 hei�!1�!2�ti �
Z
d4ae� ~a�B� ~a� ~u� ~a �

�2e~u�B
�1� ~u����������

detB
p ; (3.12)

where, in our case,

 ~u �
�
i
3�m2

1 �m
2
2�

2k
t� i2Vt cos2�; i

�m2
1 �m

2
2�

2k
t

� iVt cos2�; (3.13)

 � i
�m2

1 �m
2
2�

2k
t� iVt cos2�; i

�m2
1 �m

2
2�

2k
t
�
; (3.14)

and the components of the symmetric matrix B are

 

B11 �
1

�1
� it

�
�m2

1 �m
2
2�

k
� 4Vk cos2�

�
; B12 � B21 � it

�
m2

1 �m
2
2

8k
�
V
2

cos2�
�
;

B13 � B31 � it
�
5�m2

1 �m
2
2�

8k
� V cos2�

�
; B14 � B41 � it

�
m2

1 �m
2
2

2k
� V cos2�

�
;

B22 �
1

�2
�
it
2

�
m2

1 �m
2
2

k
� V cos2�

�
; B23 � B32 �

it
2

�
V cos2��

m2
1 �m

2
2

2k

�
; B24 � B42 �

it�m2
1 �m

2
2�

8k
;

B33 �
1

�3
�
i
2
tV cos2�; B34 � B43 � �

it
2

�
m2

1 �m
2
2

4k
� V cos2�

�
; B44 �

1

�4
: (3.15)

These expressions have been obtained in the physically relevant limit k2 � m2
1, m2

2, and j�j  1 where � � Vk
m2

1�m
2
2
. On

using these relations and substituting into Eq. (3.12) we find
 

hei�!1�!2�ti � ei��z
�
0 �z

�
0 �t=k�e��1=2���i�1t��m2

1�m
2
2�=k�V cos2���i��2t=2���m2

1�m
2
2�=k�V cos2����i�3t=2�V cos2��

� e����m
2
1�m

2
2�

2=2k2��9�1��2��3��4���2V cos�2���m2
1�m

2
2�=k��12�1�2�2�2�3��t2 ; (3.16)

where

 z�0 �
1
2�m

2
1 ���1� cos2���m2

1 �m
2
2� ��2�m2

1 �m
2
2�sin22��;

z�0 �
1
2�m

2
2 ���1� cos2���m2

1 �m
2
2� ��2�m2

1 �m
2
2�sin22��:

(3.17)
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There is again a suppression of the oscillations which is
Gaussian with time and also the oscillation period is modi-
fied in an interesting way which depends both on the square
of the mass differences, the mean density of microscopic
black holes and the effects of backreaction on the gravita-
tional metric.

Although not done explicitly here, the analysis of the
effect of stochastic quantum fluctuations of the background
space-time for the case of Majorana fermions leads to
qualitatively similar results.

IV. SPACE-TIME FOAM MODELLED AFTER THE
MSW EFFECT

A. MSW-like effects of stochastic space-time foam
medium

In [23] the suggestion that the observed mass differences
between neutrinos are generated by a sort of stochastic
space-time foam has been proposed. If microscopic
charged virtual black/white hole pairs were created out of
the vacuum then information loss would be induced and the
subsequent Hawking radiation would produce a medium
with stochastically fluctuating electric charges. This radia-
tion would have a preponderence of electron/positron pairs
(e �e) (over other charged particles (muons, etc.) from
kinematics) and the ‘‘evaporating‘‘ white hole could then
absorb, say, the positrons. According to the standard model
of particle physics, the resultant electric current fluctua-
tions would interact more strongly with �e rather than ��,
and lead to flavor oscillations, and hence, effective mass
differences, for the neutrinos. This parallels the celebrated
MSW effect [29,30] for neutrinos in ordinary media.

From semiclassical calculations there is a significant
difference between neutral and charged black holes. As
neutral black holes evaporate they become less massive
and there is an increase in the rate of evaporation.
Consequently they have a short lifetime. The force on a
neutrino � due to the emitted electron-positron pair is [37]P
�G��n� where n� is the particle density of species � in

the medium and
 

G�� �
GF���

2
p ����e � ��e�����e � ���e��1� 4sin2�W��

�O
�
GF

m2
W

�
(4.1)

and mW is the mass of the charged weak boson and �W is
the weak angle. If ne � ne then the force on a �e would
vanish to O�GFm2

W
�. Similar subdominant terms are produced

for other flavors of neutrinos and so neutral black holes
would have an equivalent interaction with all flavors of
neutrinos. On the other hand charged (Reissner-
Nordstrom) black holes of charge Q and mass M emit
electron-positron pairs for M>Q but as M! Q, the
extremal black-hole limit, the surface gravity �! 0 and
evaporation ceases (see e.g. [38] and references therein).

The limiting behavior of near extremal charged-black
holes can be made more precise from field theoretic studies
of black holes [38], by actually bounding the number N!0

of massless (scalar) particles (or pairs of particles/antipar-
ticles) created in a state represented by a wave packet
centered around an energy !0:

 Nn!o‘m �
2c�!0�jt�!0�j

2

�2n��2k�1
: (4.2)

Here c�!0� is a positive function, k > 0 is an arbitrary but
large power, ‘;m are orbital angular momentum quantum
numbers (arising from spherical harmonics in the wave-
function of the packet), and 2n�, n being a positive integer,
is a special representation of the retarded time in Kruskal
coordinates [38]. The wave packet has a spread � in
frequencies around !0, and in fact it is the use of such
wave packets that allows for a consistent calculation of the
particle creation in the extremal black-hole case. From the
expression (4.2), we observe that since 2n� represents
time, the rate of particle creation would drop to zero faster
than any (positive) power of time at late times. The limit of
extremality is obtained by means of certain analyticity
properties of the particle creation number [38]. In the
expression (4.2) t�!0� denotes the transmission amplitude
describing the fraction of the wave that enters the collaps-
ing body, whose collapse produced the extreme black hole
in [38].

In the case of space-time foam, we have currently no
rigorous way of understanding the spontaneous formation
of such black holes from the QG vacuum, and hence in our
case, it is an assumption that the above results can be
extrapolated to this case. Nevertheless, in the introduction,
within a Liouville-string framework [8] in the context of
brane worlds, we have mentioned some concrete attempts
to discuss the formation of dynamical Planck (more pre-
cisely string-scale)-size horizons, with ‘‘real effects’’ on
matter. We recall that in such models the rôle of black holes
is played by pointlike defects in the bulk space-time, which
cross the brane hypersurfaces, and interact stringy matter
propagating on the brane worlds. Such situations can lead
[8,10] to real (nonthermal) particle creation and decoher-
ence, as a result of the quantum instability of the pertinent
horizons, established through the study of the appropriate
positive energy conditions for the associated space-times.
On identifying the world-sheet Liouville zero mode with
the target-space-time, it can be shown [9] that the decoher-
ence effects of the recoiling D-particles, as a result of their
scattering with matter (’’D-particle foam’’), can be quanti-
fied within a closed-time-path formalism on the world-
sheet of the string, within a first quantization framework.
It should be stressed that decoherent particle production is
achieved only upon considering quantum fluctuations of
the recoil velocity of the D-particle defect.

The above example should only be considered as a
simplified model of space-time foam within string theory;
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in general one may encounter more complicated situations,
and so our understanding is very incomplete. For the
phenomenological purposes of this work, therefore, we
shall not specify the model of space-time foam that might
characterize the QG vacuum but instead try to apply ge-
neric considerations.

In such a situation, then, t�!0� in (4.2) would be a family
of parameters describing the space-time foam medium.
From the smooth connection of nonextremal black holes
to the extremal ones, encountered in string theory [39], we
can also conclude that near extremal black holes would be
characterized by relatively small particle creation rate, as
compared with their neutral counterparts. Hence black
holes which are close to being extremal have long life-
times. Furthermore when a charged black and white hole
pair is produced, the absorption of the positron by the white
hole leaves electrons to preferentially interact with the
electron neutrinos. Hence the flavor- favoring medium is
characterized by charged black/white hole configurations.
This flavor bias of the foam medium, which could then be
viewed as the ‘‘quantum-gravitational analogue’’ of the
MSW effect in ordinary media. In this sense, the QG
medium would be responsible for generating effective
neutrino mass differences [24]. Since the charged-black
holes lead to a stochastically fluctuating medium, we shall
consider the formalism for the MSW effect in stochasti-
cally fluctuating media [31], where the density of electrons
replaces the density of charged black hole/anti-black hole
pairs. It should be stressed, however, that we have no way
of rigorously checking the required extrapolation to micro-
scopic black holes, with the present understanding of QG.
However, we shall argue later in this paper, one can already
place stringent bounds on the portion of the neutrino mass
differences that may be due to QG foam, as a result of
current neutrino data.

B. Two generations of neutrinos

Following the MSW formalism, it was proposed in [24]
that the stochastically fluctuating media caused by the
space-time foam can give a mass square difference of the
form:

 h�m2
foami / GNhn

c
bh�r�ik;

where k is the neutrino momentum scale and hncbh�r�i is the
average number of virtual particles emitted from the foam.
These flavor violating effects would contribute to the de-
coherence through quantum fluctuations of the foam-
medium density by means of induced non-Hamiltonian
terms in the density matrix time evolution. In this paper
we model this foam/neutrino interaction by analogy to the
MSW interaction Hamiltonian and follow corresponding
procedures to calculate the relevant transition probabilities.
Moreover, QG-induced Gaussian fluctuations of energy
and oscillations lengths may be distinguished from the
corresponding ones due to the conventional uncertainties

by their energy dependence: conventional effects decrease
with increasing (neutrino) energy, while QG effects have
exactly the opposite effects, increasing with energy.

In keeping with our analysis of the effects of �1, and for
simplicity, we restrict ourselves to the case of two gener-
ations of neutrinos which suffices for a demonstration of
the generic properties of decoherence. We take the effec-
tive Hamiltonian to be of the form

 Heff � H � ncbh�r�HI; (4.3)

where HI is a 2� 2 matrix whose entries depend on the
interaction of the foam and neutrinos and H is the free
Hamiltonian. For the purposes of this paper we take this
matrix to be diagonal in flavor space. Although we leave
the entries as general constants, a�i , we expect them to be
of the form / GNn

c
bh�r�; so we write HI as

 HI �
a�e 0
0 a��

 !
: (4.4)

where the foam medium is assumed to be described by
Gaussian random variables [23]. We take the average
number of foam particles, hncbh�t�i � n0 (a constant), and
hncbh�t�n

c
bh�t

0�i 		2n2
0��t� t

0�. Following [31] we can de-
duce the modified time evolution of the density matrix as

 

@
@t
h�i � �i�H� n0HI; h�i� �	2n2

0�HI; �HI; h�i��;

(4.5)

where h:::i represents the average over the random varia-
bles of the foam. The double commutator is the CPT
violating term since although it is CP symmetric it induces
time-irreversibility. It is also important to note that �2 here
is of the Markovian-Liouville-Lindblad form for a self-
adjoint operator. This is as an appropriate form for deco-
herence for environments about which we have little a
priori knowledge. In the CPT violating term we can re-
quire the density fluctuation parameter to be different for
the antiparticle sector from that for the particle sector, i.e.
�	 � 	, while keeping hncbh�t�i � n0 the same in both

sectors. Physically this means that neutrinos and antineu-
trinos with the same momenta, and hence interacting with
the same amount of foam particles on average, will evolve
differently; this is a result of CPT violation.

We expand the Hamiltonian and the density operator in
terms of the Pauli spin matrices s� (with s0

2 � 12 the 2� 2
identity matrix) as follows

 Heff �
X3

��0

�h� � n0h
0
��
s�
2
; � �

X3

��0

��
s�
2

(4.6)

(where Heff � H � n0HI). We find that

 h� �
m2

1 �m
2
2

4k
��0 �

m2
1 �m

2
2

2k
��3 (4.7)

and
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n0h
0
� �

a�e � a��
2

��0 � �a�e � a��� sin2���1

� �a�e � a��� cos2���3: (4.8)

The master equation in (4.5) simplifies to

 _� l �
X3

j�1

Llj�j: (4.9)

for l � 1; . . . ; 3 (see Appendix C for further details). The
pure state representing �e is given by

 h�i��e� �
1

2
12 � sin�2��

s1

2
� cos�2��

s3

2
(4.10)

and the corresponding state for �� is

 h�i���� �
1

2
12 � sin�2��

s1

2
� cos�2��

s3

2
: (4.11)

If h�i�0� � h�i��e� then the probability P�e!���t� of the
transition �e ! �� is given by

 P�e!���t� � Tr�h�i�t�h�i�����: (4.12)

In order to study decoherence we will calculate the eigen-
vectors ~e�i� and corresponding eigenvalues �i of L to
leading order in 	2. In terms of auxiliary variables U
and W where

 U � �a�e � a��� cos�2�� �
m2

1 �m
2
2

2k
(4.13)

and

 W � �a�e � a��� sin�2��; (4.14)

it is straightforward to show that

 

~e �1� ’
�
W

U
; 0; 1

�
;

~e�2� ’
�
�

U

W
;�i

�����������������������
U2 �W 2
p

W
; 1
�
;

~e�3� ’
�
�

U

W
; i

�����������������������
U2 �W 2
p

W
; 1
�
;

(4.15)

and
 

�1 ’ �	2�W cos�2�� �U sin�2���2;

�2 ’ �i
�����������������������
U2 �W 2

p
�

	2

2
�U2 �W 2 � �U cos�2��

�W sin�2���2�;

�3 ’ i
�����������������������
U2 �W 2

p
�

	2

2
�U2 �W 2 � �U cos�2��

�W sin�2���2�: (4.16)

In (4.9) the vector ~� (0) can be decomposed as

 ���0� � b1 ~e�1� � b2 ~e�2� � b2~e�3� (4.17)

with

 b 1 �
U2 cos�2�� �UW sin�2��

U2 �W 2
(4.18)

and

 b 2 �
W 2 cos�2�� �UW sin�2��

2�U2 �W 2�
: (4.19)

Hence

 ��t� � 1
2�b1e�1t ~e�1�:s� b2 ~e�2�:s� b2~e�3�: ~s� 12� (4.20)

and so

 P�e!���t� �
1

2
1� sin�2��fb1e�1�1 e

�1t � b2�e
�2�
1 e

�2t � e�3�1 e
�3t�g

� cos�2��fb1e�1�3 e
�1t � b2�e

�2�
3 e

�2t � e�3�3 e
�3t�g

" #
:

On writing � � a�e � a�� and �k �
m2

1�m
2
2

2k , P�e!���t�
readily simplifies to give

 P�e!���t� �
�1�t� � �2�t�

2��2 � �2
k � 2�k� cos�2���

; (4.21)

where

 �1�t� � ��� cos�2���k�
2�1� e�	2sin2�2���2

kt� (4.22)

and

 �2�t���
2
ksin2�2��

�

8>><>>:
1

�cos�
�������������������������������������������������
�2��2

k�2�k�cos�2��
q

t�

exp
�
�	2

2 �2����kcos�2���2��2
ksin2�2���t

�
9>>=>>;:

(4.23)

Since we are concerned with relativistic neutrinos, we
have t � x (in natural units)and we can use this to put our
expression in terms of the oscillation length, L. The ex-
ponent in the damping factor in (4.21) has a generic form

 exponent / 	2f���L

with f��� � ��� �k cos�2���2 � 1
2�

2
ksin2�2�� or

�2
ksin2�2��

2 .
Hence the damping is directly proportional to the stochas-
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tic fluctuations in the medium. The limit �k ! 0 character-
izes the situation where the dominant contribution to neu-
trino mass differences is due to space-time foam [23]. The
damping exponent should then be independent of the mix-
ing angle for consistency. Indeed we find the purely gravi-
tational MSW to give exponentgravitational MSW / 	2�2L
which is independent of �. However this stochastic gravi-
tational MSW effect, although capable of inducing neu-
trino mass differences, gives an oscillation probability
which is suppressed by factors proportional to �2

k. Hence
the bulk of the oscillation is due to conventional flavor
physics.

C. Comparison with decoherence from conventional
sources

In experiments with neutrino beams there is an uncer-
tainty over the precise energy of the beam (and, in some
cases, over the oscillation length), which can destroy co-
herence, as discussed in [32]. There are also small effects
due to the wave packet nature of the incoming neutrino
state. The coherence length associated with the latter is
typically much larger than L and so a plane-wave approxi-
mation is sufficient. Below we first review the situation
briefly, for the benefit of the inexpert.

In Refs. [32,33] the following expression for the neu-
trino transition probability has been considered:

 P�!� � P���L;E�

� ���

� 4
Xn
a�1

Xn
b�1a<b

<�U
�aU�aU�bU


�b�sin2

�
�m2

abL
4E

�

� 2
Xn
a�1

Xn
b�1a<b

=�U
�aU�aU�bU


�b�sin2

�
�m2

abL
2E

�
;

�; � � e;�; �; . . . ;

where L is the neutrino path length, E is the neutrino
energy, n is the number of neutrino flavors, and �m2

ab ( �
m2
a �m

2
b) andU�a as before is the mixing matrix. As there

are uncertainties in the energy and oscillation length, in
Refs. [32,33] a Gaussian average over the L/E dependence
was taken. This average is defined by

 hPi �
Z 1
�1

dxP�x�
1

�
�������
2�
p e���x�l�

2=2�2�:

where x � L
4E , l � hxi, and � �

������������������������
h�x� hxi�2i

p
.

Furthermore if L and E are independent then l � hL=Ei �
hLi=4hEi (for highly peaked distributions) and one obtains
for the averaged expression

 

P���L;E� � ��� � 2
Xn
a�1

Xn
b�1a<b

<�U
�aU�aU�bU


�b�

� �1� cos�2l�m2
ab�e

�2�2��m2
ab�

2
�

� 2
Xn
a�1

Xn
b�1a<b

=�U
�aU�aU�bU
�b�

� sin2�2l�m2
ab�e

�2�2��m2
ab�

2
;

�; � � e;�; �; . . . : (4.24)

It should be noted that l has to do with the sensitivity of
the experiment and � the damping factor of neutrino
oscillation probabilities. A pessimistic (less stringent)
and an optimistic (more stringent) upper bound for �
(obtained from a first order Taylor expansion of x around
hEi and hLi) can be given [32]

(i) pessimistic: �’�x�� L
4E��Lj @x@LjL�hLi;E�hEi�

�Ej @x@EjL�hLi;E�hEi �
hLi

4hEi �
�L
hLi�

�E
hEi�

(ii) optimistic: � & hLi
4hEi

����������������������������
��L
hLi�

2 � ��E
hEi�

2
q

For the case of two generations, using this procedure, the
transition probability between flavor eigenstates is [32]

 hP�e!��i �
1

2
sin22�

�
1� e�2�2��m2

12�
2

cos
�
�m2

12hLi
2hEi

��
:

(4.25)

Owing to the averaging over Gaussian fluctuations,
(4.25) shares one characteristic with the backreaction ef-
fects of �1 (discussed earlier) viz. the L2 dependence of
the decohering decay and is dissimilar to the L dependence
of the space-time foam (as modeled by the gravitational
MSW effect). This clearly, in principle, is a way of distin-
guishing the MSW type effect. Although typically experi-
mental data make allowances for systematics, it is
interesting to consider whether for a given L the magnitude
of the decoherence effect may be assigned to conventional
sources. When one compares the damping factors of the
conventional averaging and our MSW effect we get

 2�2��m2
12�

2 � �	2��� �k cos�2���2 � 1
2�

2
ksin2�2���L;

(4.26)

which we can express as

 	2��� �k cos�2���2 �
1

2
�2
ksin2�2�� �

��m2
12�

2

8E2 Lr2;

(4.27)

where r � �L
L �

�E
E for the pessimistic case or r �����������������������������

��LL �
2 � ��EE �

2
q

for the optimistic case. For decoherence
due to standard matter effects with L	 12000 Km, r	
O�1�, E	O�1� GeV, �m2

12 	O�10�5� eV2 and �atm 	

1:5� 1022 GeV�1 one obtains 
atm;fake��
��m2

12�
2

8E2 Lr2�<
10�24 GeV.
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It is worth pointing out here that such a small order of
magnitude is of a similar order to that found in quantum-
gravity decoherence suppressed by a single power of
Planck mass [9,19,40]. In [40] the cases for the decoher-
ence damping factor being of the form 
 � 
0�

E
GeV�

n, with

0 as a constant, has been analyzed for the n � 0;�1, 2
cases (a more pessimistic view is presented in [41] with

 � ��m2�2

E2MQG
, for which there is no experimental sensitivity

at least in the foreseeable future). An effect of a similarly
miniscule order appears to characterize also cosmological
decoherence, i.e. the decoherence due to the (future) hori-
zon in de Sitter space, in the case of a Universe with a
cosmological constant [7,42]).

In order to investigate experimental signals of quantum-
gravitational decoherence it will be necessary to distin-
guish genuine quantum-gravity effects from the above
‘‘fake’’ ordinary-matter effects through the dependence
of the respective transition probabilities on the energy
and oscillation length. Indeed, it is expected, at least in-
tuitively, that the fuzzyness of space-time caused by
quantum-gravity-induced stochastic fluctuations of the
metric tensor, would lead to effects that are enhanced by
the energy of the probe, i.e. the higher the energy the
greater the backreaction on the surrounding space-time
fluid. Such an expectation is confirmed in detailed micro-
scopic models of the so-called D-particle foam [8]. Then,
in such cases we may write in a generic way

 

�L
L
;

�E
E
	 �

�
E
MQG

�
�

(4.28)

for some positive integer � � 1, and some coefficient, �.
For this case we would have r	 �� EMQG

�� then from the

Gaussian average we would have

 	2��� �k cos�2���2 �
1

2
�2
ksin2�2��

	
��m2

12�
2

8E2 �2

�
E

MQG

�
2�
L: (4.29)

For the specific model of D-particle foam of Ref. [8] � �
�1, andMQG 	Ms=gs withMs the string scale and gs < 1
the (weak) string coupling.

Since for the oscillation length L, L�1 	
�m2

12

E , from
(4.29) and the above analysis, it becomes clear that genuine
quantum-gravity effects in some models are characterized
by damping factors which are proportional to E2�, � � 1,
and thus are enhanced by the energy of the probe, leading
to significantly more damped oscillations for high-energy
probes as compared to the low-energy ones. This is to be
contrasted with the conventional effects, due to the passage
of neutrinos through matter, which are diminished with the
energy [33].

Although in the presence of �2, as shown in [15], the
CPT operator cannot be defined, the CPT violating differ-

ence between neutrino and antineutrino sectors [33],

�
�PCPT��

P �� ��
��decoh� �

P�decoh�
��

P�decoh�
�� ��

� 1 vanishes unless the decoherence

coefficients between particles and antiparticles are distinct,
a case considered in [24]. Here the superscript decoh
denotes the decohering piece of the relevant probability.
In the case of different decoherence coefficients between
particle and antiparticle sectors, the QG-induced difference
�PCPT�� would either increase or decrease with energy, at
least as fast as a Gaussian, depending on the relative
magnitudes of the decoherence parameters in the neutrino
and antineutrino sectors. In contrast the conventional mat-
ter induced CPT difference saturates with increasing E. In
this way, at least in principle, the two effects can be
disentangled. It must be noted, though that, as seen from
(4.29) the proportionality coefficient �2��m2

12�
2 accompa-

nying �E=MQG�
2��L=E�2 in the decoherence exponents is

very small (for natural values of �, although in principle
this is another phenomenological parameter to be con-
strained by data). Hence, for this particular model of QG
decoherence, appreciable effects might only be expected in
situations involving very high-energy cosmological neutri-
nos. In view of this, the analysis of high-energy neutrinos
performed in [28], which was based only on conventional
Lindblad decoherence, needs to be repeated in order to
incorporate the above effects.

V. CONCLUSIONS AND OUTLOOK:
PRELIMINARY DATA COMPARISON

It is hoped that decoherence due to quantum gravity can
be confirmed or ruled out by physical observation. We will
make a few remarks concerning possible conclusions from
data from reactors and the atmosphere. Different ap-
proaches have been used in examining transitions of at-
mospheric neutrinos. As mentioned above, more
pessimistic expressions for damping factors such as 
 �
��m2�2

E2MP
have been presented [41]. However, more optimistic

values can be obtained. In [40] a phenomenological analy-
sis is done for the case of atmospheric neutrino transitions
(�� $ ��). They obtain upper bounds to the decoherence
parameters and find that the Super-Kamiokande data can
be a be a good probe into quantum-gravity-induced deco-
herence. They discuss three possible energy dependencies
of the decoherence parameter, in particular 
 �

0�E=GeV�n with n � �1, 0, 2, with 
0 a constant, and
the subsequent constraints. The controversial data obtained
by LSND [43], if confirmed by future experiment (for
instance MiniBOONE), could provide important data
which may lead to evidence of space-time foam interacting
with antineutrinos.

We would now like to mention briefly some preliminary
attempts to constrain the models presented here by means
of currently available neutrino data. In a recent work [44]
we have presented a fit of a three-generation (completely
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positive) Lindblad [17] decoherence model for neutrinos
with mixing to all the available data, including the LSND
result in the antineutrino sector. In contrast to the mani-
festlyCPT-violating fit of [24], which attempted to explain
the LSND result from the point of view of CPT-violating
decoherence, in [44] it was assumed that the decoherence
coefficients were the same in the particle and antiparticle
sectors. The best fit that was obtained showed that only
some of the oscillation terms in the three-generation proba-
bility formula had nontrivial damping factors; moreover
over an oscillation length the exponent of such nontrivial
damping, D � L, satisfied [44]:

 D � �
1:3 � 10�2

L
; (5.1)

in units of 1=km with L � t the oscillation length.
In the light of (5.1) it is possible to analyze [44] the two

types of theoretical models of space-time foam discussed
in sections III and IV of the present paper. The conclusion
is that models incorporating stochastically fluctuating
MSW-like QG media as in (4.21) cannot provide the full
explanation for the fit. Indeed if the decoherent result of the
fit (5.1) was exclusively due to such a model, then the
pertinent decoherent coefficient D in the damping expo-
nent, for, say, the KamLand experiment with an L	
180 Km, would be jDj � 	2�2 	 2:84 � 10�21 GeV
(note that the mixing angle part does not affect the order
of the exponent). Smaller values are found for longer L,
appropriate to atmospheric neutrino experiments. In this
context the L independence of D � L, as required by (5.1),
may be interpreted as follows: (4.21) suggests that we write
� � � �m2

E , where � 1 parametrizes the contributions of
the foam to the induced neutrino mass differences. Hence,
the damping exponent becomes in this case �2	2��m2�2 �
L=E2. Thus, for oscillation lengths L (since L�1 	
�m2=E) one is left with the following estimate for the
dimensionless quantity �2�m2	2=E	 1:3 � 10�2. This
implies that the quantity 	2 is proportional to the probe
energy E. Since backreaction effects, which affect the
stochastic fluctuations 	2, are expected to increase with
probe energy E, this is not an unreasonable result in
principle. However, due to the smallness of the quantity
�m2=E, for energies of the order of a GeV, �m2 	
10�3 eV2 and � 1), we can conclude that 	2, in this
case, would be unrealistically large for a quantum-gravity
effect in the model. We remark at this point that, in such a
model, we can in principle bound independently the 	 and
� parameters by also examining the period of oscillation.
However in this example, �ae�  �12 and so the modi-
fication in the period is too small to be detected.

The second model (3.16) of stochastic space-time can
also be confronted with the data. In this case (5.1) would
imply for the pertinent damping exponent

 �
�m2

1 �m
2
2�

2

2k2 �9�1 � �2 � �3 � �4�

�
2V cos2��m2

1 �m
2
2�

k
�12�1 � 2�2 � 2�3�

�
t2

	 1:3 � 10�2: (5.2)

Ignoring, for simplicity, subleading MSW effects from V,
and considering oscillation lengths t � L	 2k

�m2
1�m

2
2�

, we

observe that the experimental fit (5.1), may be interpreted,
in this case, as bounding the stochastic fluctuations of the
metric (2.4) to 9�1 � �2 � �3 � �4 	 1:3: � 10�2. Again,
this is too large to be a quantum-gravity effect, which
means that in this model the L2 contributions to the damp-
ing, (3.16), due to stochastic fluctuations of the space-time
metric cannot be the sole explanation of the fit of [44].

The analysis of [44] also demonstrated that, at least as
far as the order of magnitude of the effect in (5.1) is
concerned, a reasonable explanation is provided by
Gaussian-type energy fluctuations, due to standard physics
effects, leading to decoherencelike damping of oscillation
probabilities of the form (4.25). The order of magnitude of
these fluctuations, consistent with the independence of the
damping exponent on the oscillation length L (irrespective
of the power of L), is

 

�E
E
	 1:6 � 10�1 (5.3)

if one assumes that this is the principal reason for the result
of the fit.

However, not even this can be the end of the story, given
that the result (5.1) applies only to some but not all of the
oscillation terms; this would not be the case expected for
standard physics uncertainties (4.25). The fact that the best
fit model includes terms which are not suppressed at all
calls for a more radical explanation, and so the issue is still
wide open. It is interesting, however, that the current
neutrino data can already impose stringent constraints on
quantum-gravity models, and exclude some of them from
being the exclusive source of decoherence, as we have
discussed above.

We reiterate that, within the classes of stochastic models
discussed, one can safely conclude space-time foam can be
at most responsible only for a small part of the observed
neutrino mass difference, and certainly the foam-induced
decoherence cannot be the primary reason for the result of
the best fit (5.1), obtained from a global analysis of the
currently available neutrino data. Of course, it is not pos-
sible to exclude other classes of theoretical models of
quantum gravity, which could escape these constraints.
At present, however, we are not aware of any such theory.

In the near future we plan to make a more complete and
systematic comparison of our new formulae, especially
those derived in Secs. II and III, with all experimental
data available and perhaps arrive at new constraints.
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APPENDIX A: SCALAR PARTICLE AVERAGES

For integration over metric fluctuations we shall use the
formula

 

Z
d4ae� ~a�B� ~a� ~u� ~a �

�2e~u�B
�1� ~u����������

detB
p :

(Here the a’s are assumed to be in the range ��1;1� and
the form of B must be such that ‘‘convergence’’ of the
integral is assured.)

 B � �� it�f�m1� � f�m2��:

For simplicity we define

 F � f�m1� � f�m2�

and

 

~d �
�����������������
k2 �m2

1

q �����������������
k2 �m2

2

q
;

~b �
�����������������
k2 �m2

1

q
�

�����������������
k2 �m2

2

q
;

~c � m2
1�k

2 �m2
1�
�3=2 �m2

2�k
2 �m2

2�
�3=2:

So we can write

 

F 11 � ~b; F 14 �
k2

2

~b
~d
;

F 22 �
m2

1 � 2k2

2
�����������������
k2 �m2

1

q �
m2

2 � 2k2

2
�����������������
k2 �m2

2

q
�

1

2

�
~b� k2

~b
~d

�
�

~b

2~d
�~d� k2�;

F 23 �
k2

2

~b
~d
; F 44 �

1

2
k2~c;

and the remaining F ij � 0.
Putting this information together we find

 B �

1
�1
� i~bt 0 0 � i~b

2~d
k2t

0 1
�2
� it~b

2~d
�~d� k2� �ik2 ~bt

2 ~d
0

0 �ik2 ~bt
2 ~d

1
�3

0
�i~b
2~d
k2t 0 0 1

�4
� 1

2 ik
2~ct

0BBBBBB@

1CCCCCCA;

 u1 � �it~b; u4 � �it
~b
~d
k2;

i.e. ~u � it~b
�
�1; 0; 0;�

k2

~d

�
;

 detB �
1

16�1�2�3�4
~d4
P1P2;

where

 

P1 � 4~d2 � 2i~d ~b�2k
2t� 2i~b�2

~d2t� ~b2k4t2�2�3

� 4~d2 � 2i~d ~b�2�k2 � ~d�t� ~b2k4�2�3t2;

P2 � 4~d2 � 2i~d2�k2~c�4 � 2~b�1�t

� ~bk2�1�4�~bk
2 � 2~d2~c�t2;

 det� �
1

�1�2�3�4
:

So we obtain

 

�
det�

detB

�
1=2
�

�
16~d4

P1P2

�
1=2
�

4~d2

�P1P2�
1=2
;

 B�1 ~u � �v1; v2; v3; v4�:

Now

 v1�
2�1

~bt�k2�4�~bk2� ~d2~c�t�2i~d2�

4~d2� ~b�1k
2�4�~bk

2�2i~d2�t2�2i�k2~c�4�2~b�1�~d
2
;

v2�0; v3�0;

v4�
�2�~b�1t�2i�~b ~d�4k

2t

4~d2�2i~d2�k2~c�4�2~b�1�t� ~bk2�1�4t
2�~bk2�2~c~d2�

;

 exp� ~u � ~v� � exp
�
1

2

�
;

where

 

1 � �2�2~d2�1 � i~d
2k2~c�1�4t� 2�4k

4�~b2t2;

2 � 4~d2 � �2i~d2k2~c�4 � 4i~d2 ~b�1�t

� ~bk2�1�4�~bk
2 � 2~d2~c�:

APPENDIX B: DIRAC PARTICLE AVERAGES

The equations of motion which follow from (3.9) are
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 �
1�

1

2
h
�
�i@0	1� �i�1@1	1�m11�� �V cos��cos�	1� sin�	2� �

i
2
��b11� b3�1�@0	1� �b31� b2�1�@1	1� � 0;�

1�
1

2
h
�
�i@01� i�@11�m1	1� �

i
2
��b11� b3�1�@01� �b31� b2�1�@11 � 0;�

1�
1

2
h
�
�i@0	2� i�1@1	2�m22�V sin��cos�	1� sin�	2�� �

i
2
��b21� b3�1�@0	2� �b31� b2�1�@1	2� � 0;�

1�
1

2
h
�
�i@02� i�1@12�m2	2� �

i
2
��b21� b3�1�@02� �b31� b2�1�@12� � 0:

(B1)

On using (3.9) in (B2) we have a

 M

~P1
��k; E�

~Q1
��k; E�

~P2
��k; E�

~Q2
��k; E�

0BBBB@
1CCCCA � 0; (B2)

where M is a 4� 4 matrix with components

 M11 � E
�
1�

1

2
h�

1

2
�b1 � b3�

�
�

�
1�

1

2
h
�
k�

�
1�

1

2
h
�
Vcos2���; M12 � �

�
1�

1

2
h
�
m1;

M13 � �V
�
1�

1

2
h
�

sin��� cos���; M14 � 0; M21 � �

�
1�

1

2
h
�
m1;

M22 � E
�
1�

1

2
h�

1

2
�b1 � b3�

�
� k

�
1�

1

2
h�

1

2
�b2 � b3�

�
; M23 � M24 � 0;

M31 � �

�
1�

1

2
h
�
V cos��� sin���; M32 � 0;

M33 � E
�
1�

1

2
h�

1

2
�b1 � b3�

�
� k

�
1�

1

2
h�

1

2
�b2 � b3�

�
�

�
1�

1

2
h
�
Vsin2���; M34 � �

�
1�

1

2
h
�
m2;

M41 � M42 � 0; M43 � �m2

�
1�

1

2
h
�
; M44 � E

�
1�

1

2
h�

1

2
�b1 � b3�

�
� k

�
1�

1

2
h�

1

2
�b2 � b3�

�
:

Using these equations one can eliminate ~Q1;2
� by substitu-

tion to obtain

 N
~P1
�

~P2
�

 !
� 0; (B3)

where

 N 11 � M11 �
M12

M22
m1

�
1�

1

2
h
�
;

N 12 � �V sin� cos�
�
1�

1

2
h
�
;

N 21 � M31; N 22 � M33 �
m2

2�1�
1
2h�

2

M44
:

(B4)

We take the momentum k to be very large, and so we
write E ’ k� m2

2k . We make the substitution

 m2 � z0 �
X
i

ziai �
X
ij

zijaiaj (B5)

and expand the components of N in terms of the stochastic
parameters ai. This allows us to use the condition detN �
0 to find the zi terms. There are two solutions ofm2 labeled
by z�0 and z�i .

We use (A) to evaluate

 hei�!1�!2�ti �
Z
d4a exp�� ~a �� � ~a�ei�!1�!2�t

det�

�2

(B6)

with

 ~u � �
it
2k
�z�1 � z

�
1 ; z

�
2 � z

�
2 ; z

�
3 � z

�
3 ; z

�
4 � z

�
4 �

and
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 B �

1
�1
� i�z�11 � z

�
11�

t
k � it

2k �z
�
12 � z

�
12� � it

2k �z
�
13 � z

�
13� � it

2k �z
�
14 � z

�
14�

� it
2k �z

�
12 � z

�
12�

1
�2
� i�z�22 � z

�
22�

t
k � it

2k �z
�
23 � z

�
23� � it

2k �z
�
24 � z

�
24�

� it
2k �z

�
13 � z

�
13� � it

2k �z
�
23 � z

�
23�

1
�3
� i�z�33 � z

�
33�

t
k � it

2k �z
�
34 � z

�
34�

� it
2k �z

�
14 � z

�
14� � it

2k �z
�
24 � z

�
24� � it

2k �z
�
34 � z

�
24�

1
�4
� i�z�44 � z

�
44�

t
k

0
BBBBB@

1
CCCCCA: (B7)

On substituting the detailed expressions for z�0 and z�i it is
straightforward to obtain the forms in (3.14) and (3.16).

APPENDIX C: LINDBLAD DECOHERENCE

A useful generic form of the Lindblad master equation
for a N � N density matrix � is

 

d
dt
� � L�; (C1)

where [17]

 L� � �i�H;�� �
1

2

XN2�1

k;l�1

ckl��Fk�; Fl� � �Fk; �Fl��:

(C2)

The complex N � N matrices Fl�� Fyl �, l � 1; . . . ; N2 �
1, together with the identity matrix 1N�� F0� form a basis
for a space of complexN � N matrices and so any operator
O can be written as O �

PN2�1
��0 O�F�. If fcklg is a non-

negative matrix, Tr�Fl� � 0, and Tr�FiFj� �
1
2�ij, then the

density matrix � evolves in the space of physical density
matrices [18] and so probabilities are non-negative. On
writing H �

P8
��0 h�F� we have

 L� � �i
XN2�1

j;k�1

hj�Fj; �kFk� �
1

2

XN2�1

k;l�1

cklnkl; (C3)

where

 nkl �
1

2
�Fk; ��; Fl�� � fFk; ��; Fl�g � ��Fk; ��; Fl�

�f�Fk; ��; Flg � 2f�; �Fk; Fl�g

� �
:

(C4)

For N � 2, Fj �
sj
2 (where sj are the Pauli matrices)

O0 �
1
2 Tr�O� and Oj � Tr�Osj�. The master equation of

[(4.5)] becomes

 

@
@t
h�i � �i�H� n0HI; h�i� �	2n2

0��HIh�i; HI�

� �HI; h�iHI�� (C5)

on noting that

 �HI; �HI; h�i�� � ���HIh�i; HI� � �HI; h�iHI��: (C6)

The nonzero elements of the associated c matrix for (C5)
are

 c11 � 2	2�a�e � a���
2sin22�;

c13 � c31 � 2	2�a�e � a���
2 sin2� cos2�;

c33 � 2	2�a�e � a���
2cos22�:

(C7)

On using (4.6)
 

�H0 � n0HI; h�i� � i
X3

j;l�1

�"1jln0h
0
1 � i"3jl�n0h

0
3 � h3��

� �j
sl
2
: (C8)

Also

 cplnpl � �
1

2
cpl

X3

j;r�1

�2�jr�pl � �jp�rl � �jl�pr��j
sr
2
:

(C9)

�0 is independent of time from the structure of (C5)
whereas �q �q � 1; 2; 3� satisfies

 

d
dt
�q �

X3

j�1

�n0h01"1jq � �n0h03 � h3�"3jq��j �
	2

2

�
X3

p;l;j�1

cpl�2�jq�pl � �jp�ql � �jl�pq��j:

(C10)

Using this it is straightforward to show that the L corre-
sponding to (4.9) is

 

�	2�2cos2�2�� �U 	2�2 sin�2��cos�2��
U �	2�2 �W

	2�2 sin�2��cos�2�� W �	2�2sin2�2��

0B@
1CA;

where U and W are defined in (4.13) and (4.14).
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