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I demonstrate that the chiral properties of domain wall fermions (DWF) in the large to intermediate
lattice spacing regime of QCD, 1 to 2 GeV, are significantly improved by adding to the action two standard
Wilson fermions with supercritical mass equal to the negative DWF five-dimensional mass. Using
quenched DWF simulations I show that the eigenvalue spectrum of the transfer matrix Hamiltonian
develops a substantial gap and that the residual mass decreases appreciatively. Furthermore, I confirm that
local topology changing remains active and that the hadron spectrum of the added Wilson fermions is
above the lattice cutoff and therefore is irrelevant. I argue that this result should also hold for dynamical
DWF and furthermore that it should improve the chiral properties of related fermion methods.
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I. INTRODUCTION

Domain wall fermions (DWF) and other closely related
methods provide the most faithful lattice regularization of
QCD with unprecedented chiral symmetry and topological
properties. These methods have produced an impressive
wealth of results and have brought about a new and brave
era for lattice gauge theory. Several proposals for improve-
ment have also been demonstrated. The reader is referred
to the reviews [1–9], related works [10], and references
therein for more details. Here I will focus on DWF and
QCD. The method I will describe should apply to all
closely related lattice fermions as well as to other gauge
theories similar to QCD (such as N � 1 Super Yang-
Mills [11]). The method was first proposed in [1].

Using the new generation supercomputers and numeri-
cal simulation algorithms, one can now simulate dynami-
cal QCD at zero and finite temperature in the strong to
intermediate coupling regime with lattice spacing a in the
region 1 GeV & a�1 & 2 GeV and for the number of lat-
tice points Ls along the fifth dimension in the neighbor-
hood of Ls � 20 to 100 depending on the lattice spacing a.
These Ls values are now certainly within the reach of the
latest supercomputers. However, one obviously would like
to do better. A method that would improve DWF so that
smaller values of Ls are needed would be very welcomed,
not only for the obvious benefits in computing time but also
as a matter of theoretical interest. The reasons behind the
need for rather large values of Ls are as involved as they are
interesting. But they are also a lattice artifact. It should be
possible to remove it without spoiling the important fea-
tures of DWF.

In this work I demonstrate that the chiral properties of
DWF in the large to intermediate lattice spacing regime
1 GeV & a�1 & 2 GeV are significantly improved by
adding to the action two standard Wilson fermions with
mass equal to the negative DWF five-dimensional massm0

(Wilson supercritical region). These fermions produce a
fermion determinant that is identically zero when the fifth
dimension transfer matrix Hamiltonian H4�m0� has a zero.
Therefore, small eigenvalues of H4�m0� ought to be sup-
pressed in the simulation. It is precisely these eigenvalues
that are a lattice artifact and are directly responsible for the
large Ls requirement. Suppressing them allows one to
achieve the same chiral symmetry restoration for smaller
values of Ls. Indeed, I show that the eigenvalue spectrum
of H4�m0� develops a substantial gap and that the residual
mass mres, quantifying the remnants of chiral symmetry
breaking, decreases appreciatively. I use this key property
to name this fermion regulator as gap domain wall fermi-
ons (GDWF). For other DWF related fermions (for ex-
ample overlap-Neuberger fermions) I argue that this
method of adding gap fermions (GF) should also improve
their chiral properties.

In order to make sure there are no adverse ‘‘side ef-
fects,’’ I confirm that local topology changing (measured
using the overlap index method) remains active; instantons
and anti-instantons with size larger than a lattice spacing
are active appearing and disappearing in the gauge field
configurations (note that this does not necessarily imply
that the net index is changing). Also, I confirm that the
hadron spectrum of the added Wilson fermions is above the
lattice cutoff and therefore is irrelevant. Furthermore, I
check that parity is not broken and therefore the added
Wilson fermions are well outside the Aoki phase. All
numerical simulations in this work were performed on
512-node IBM BlueGene/L supercomputers.

This paper is organized as follows: In Sec. II, DWF and
the difficulties with chiral restoration are briefly reviewed.
In Sec. III, the GDWF method is presented. In Sec. IV,
numerical results using GDWF in the quenched approxi-
mation on 163 � 32 lattices are given for three lattice
spacings a�1 � 1:0, 1.4, and 2.0 GeV, and are compared
with the quenched approximation of standard DWF at the
same lattice spacings. Also, in this section I argue that
these results will hold for dynamical GDWF as well. In*Electronic address: vranasp@us.ibm.com
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Sec. V, an example of a quenched two-flavor QCD simu-
lation with GDWF at the rather large lattice spacing a�1 �
1:4 GeV is presented. It is shown that the pion mass
acquires physical values already for an Ls as small as 24
withmres contributing about 10% to the bare quark mass. In
Sec. VI I discuss issues that relate to topology. In Sec. VII,
the ease of implementing GDWF, as well as the small
GDWF computational cost added to the cost of a DWF
simulation, is discussed. In Sec. VIII, some curious theo-
retical thoughts brought up by GDWF are pondered upon.
In Sec. IX, I discuss the applicability of the method to
overlap and Neuberger fermions and furthermore to the
N � 1 Super Yang-Mills theory. Also, I present open
issues for further exploration. The conclusions are given
in Sec. X.

II. DWF AND THE CHIRAL RESTORATION
PROBLEM

Lattice DWF [12–16] are defined in five dimensions.
The fifth dimension has Ls lattice sites and the five-
dimensional fermion has positive bare mass m0 (domain
wall height). The five-dimensional Dirac operator DF em-
ploys free boundary conditions at the edges of the fifth
dimension (walls). As a result, the plus chirality fermionic
components are localized on one wall while the minus
chirality components are localized on the other. The two
chiralities are explicitly mixed with a mass parameter mf.
The gauge fields are defined in four dimensions only. They

are the same along the fifth dimension and have no fifth
component. This allows for a definition of a transfer matrix
T along the fifth direction that is the same in all ‘‘slices’’
along that direction. The product of the transfer matrices
along the fifth direction is therefore TLs . The single particle
Hamiltonian H4�m0� associated with this transfer matrix is
then also independent of the fifth dimension. It is defined in
four dimensions and, for the case where the fifth dimension
is continuous, one can show that H4�m0� � �5D6 w��m0�
where D6 w��m0� is the standard Wilson fermion Dirac
operator with mass �m0. When the fifth dimension is not
continuous the Hamiltonian has a more complicated form,
but one can show that it has the same zero eigenvalues as
H4�m0�.

The five-dimensional Dirac operator is given by the
equation:

 DF�x; s; x0; s0;m0; mf� � ��s� s0�D6 �x; x0;m0�

�D6 ?�s; s0;mf���x� x
0;mf�

(1)

 

D6 �x; x0;m0� �
1

2

X
�

��1� ���U��x���x� �̂� x0�

� �1� ���U
y
��x

0���x0 � �̂� x�	

� �4�m0���x� x
0� (2)

 D6 ?�s; s0;mf� �

8<
:
PR��1� s0� �mfPL��Ls � 1� s0� � ��0� s0� s � 0
PR��s� 1� s0� � PL��s� 1� s0� � ��s� s0� 0< s< Ls � 1
�mfPR��0� s0� � PL��Ls � 2� s0� � ��Ls � 1� s0� s � Ls � 1

(3)

 PR;L �
1
 �5

2
; (4)

where m0 is the five-dimensional mass representing the
‘‘height’’ of the domain wall and mf is the explicit bare
quark mass. The gamma matrices � are taken in the chiral
basis.

The standard Wilson fermion Dirac operator is

 D6 w�x; x
0;��� � D6 �x; x0;��: (5)

The localization of the two chiral components on the
opposite walls is exponentially good. The slowest decay
coefficient is proportional to the smallest, in absolute
value, negative eigenvalue ofH4�m0�. For infinite Ls (over-
lap fermions) the two chiralities completely decouple pro-
vided that H4�m0� does not have eigenvalues that are
exactly zero. That possibility is of measure zero and is
therefore of no concern. Nevertheless, at finite Ls, where
simulations are performed, the two chiralities will mix and
break chiral symmetry. Furthermore, if H4�m0� has very
small eigenvalues the exponential decay will be overshad-

owed by slow power law decay even for very large Ls. This
mixing is of a similar nature as the one produced by a mass
term. It is possible to calculate this ‘‘effective’’ mass
(usually called residual mass, mres) and use it to quantify
the quality of the DWF regulator. Clearly, at finite Ls one
would like H4�m0� to have a substantial gap which in turn
would result to a rapidly decreasing mres as Ls is increased.

Obviously the spectrum of H4��� at various values � is
of particular importance. A small review is given below. It
will serve to explain GDWF. The reader is referred to the
original work [13] for more details. For any gauge field
configuration H4��� has the same number of positive (n�)
and negative (n�) eigenvalues for�< 0. However, as� is
increased above zero some eigenvalue of H4��� may cross
zero and change sign. Then n� � n� would not be zero
just after the crossing occurs. It has been shown that the
number and direction of crossings is directly related to the
number of instantons and anti-instantons present in the
gauge configuration [13,17] and that n� � n� is in fact
equal, in a statistical sense, to the net (global) topological
charge of the gauge field configuration [18]. The Atiyia-
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Singer index theorem is realized on the lattice in a statis-
tical sense. These are rather remarkable properties.

A very nice way to look at the spectrum of H4��� is to
plot the eigenvalues ofH4��� as a function of�. This is an
eigenvalue flow diagram [13,17,18] (see Fig. 4). Instantons
that are larger than the lattice spacing are of course of
physical interest and it has been shown [17] that they
produce crossings in rather localized neighborhoods of �
that correspond to the edges of the standard Brillouin
zones. For a single flavor DWF, one picks � � m0 in-
between the first and second set of crossings. Since this
is a finite range no fine-tuning is required. In the continuum
limit the range for one flavor extends from 0 to 2 and the
width of the neighborhoods where crossings occur tends to
zero. The location and width of the crossing neighborhoods
is renormalized from their continuum values as the cou-
pling is made stronger. For example, for lattice spacing
a�1 � 1:4 GeV, the first set of crossings occur in the
neighborhood of �min � 0:9 and the second in the neigh-
borhood of �max � 2:2. Their width is approximately 0.2.
However, small instantons of the size of the lattice spacing
are generated/destroyed because they can ‘‘come up/fall
in’’ through the discrete lattice. This generates additional
crossings throughout the �min, �max region.

In a numerical simulation at small lattice spacing (weak
coupling) there are few to no such small instanton cross-
ings. The simulation is performed at a � � m0 in the
middle of the relevant range. At that value, since there
are no crossings, the eigenvalue gap is large and therefore
the localization on the walls is good. As a result, the two
chiralities mix very weakly and break chiral symmetry
minimally (as a result mres decreases rapidly with increas-
ing Ls). However, at large lattice spacings (strong cou-
pling) the small instantons generate crossings across the
whole range and therefore also close to m0. As a result the
eigenvalue gap becomes very small. To be sure the proba-
bility of an eigenvalue crossing exactly atm0 is zero. There
is always a gap but it may be very small at large lattice
spacings. The challenge is to suppress the crossings due to
the lattice spacing size instantons, which are obviously an
artifact of the lattice ‘‘discreteness,’’ without destroying
the crossings due to the all-important physical instantons
with size of many lattice spacings.

III. GAP DOMAIN WALL FERMIONS

A method that would produce a sizable gap in the spec-
trum of H4�m0� for lattice spacings in the 1 GeV &a�1 &

2 GeV region would be of great use. Here I describe such a
method. Gap domain wall fermions are similar to standard
domain wall fermions but they have the desired gap.

Since H4�m0� � �5Dw��m0� where Dw��m0� is the
standard Wilson fermion Dirac matrix, one can induce a
larger gap by adding to the theory standard dynamical
Wilson fermions with mass �m0. Here I add two flavors.
When integrated out these fermions contribute a factor of

det2�Dw��m0�	 � det2�H4�m0�	 to the Boltzmann weight.
Gauge field configurations for which H4�m0� has small
eigenvalues will be suppressed by this Boltzmann weight
and therefore they will be sampled very infrequently. In
particular, any gauge field configuration for which H4�m0�
has a zero eigenvalue is explicitly excluded (not to mention
that the set of such configurations is of measure zero). But
more to the point is the fact that this Boltzmann weight
‘‘repels’’ gauge configurations for which the gap at m0 is
small. One can expect a substantially larger gap even for
strong couplings. In Sec. IV, I present numerical results
that demonstrate that indeed this is the case. Notice that I
have not added any extra parameters since the Wilson
fermions have mass equal to the negative five-dimensional
mass which is already a parameter of the theory.

The Wilson fermions that I added to the theory have
mass �m0 with m0 somewhere in the middle of the cross-
ings region ��min; �max	. I have chosen m0 � 1:9 which is
a good choice for the whole range of lattice spacings of
interest. Such a mass is in the supercritical region of
Wilson fermion masses and is very heavy. The hadron
spectrum, including the pions, of these two flavors of
Wilson fermions, should be above the cutoff. In that case
their contribution to the low energy physics of the theory is
irrelevant. Indeed, in Sec. IV, I present numerical results
that demonstrate that their hadron spectrum is above the
cutoff. Here it should be noted that for smaller lattice
spacings than the ones I considered in this work the con-
tribution of the heavy Wilson fermions should obviously
remain irrelevant provided that m0 is always chosen in the
supercritical region. However, for larger lattice spacings
than the ones considered here one should be cautious. With
increasing lattice spacing the size of the supercritical re-
gion gets smaller and may be completely overtaken by the
adjacent Aoki phase regions and therefore shrink to zero
size. If this happens one cannot choose a value form0 in the
supercritical region, the Wilson operator will have mass-
less excitations and this method will not work. Here I do
not investigate this case since such large lattice spacings
are of no direct interest to current numerical simulations. In
any case, I show that parity is not broken for the lattice
spacings considered in this work and therefore the added
Wilson fermions are well outside the Aoki phase.

As mentioned earlier, it is important that crossings due
to the all-important physical instantons with size of many
lattice spacings are present. The added Wilson fermions
have mass�m0 and they suppress the crossings around m0

but have little effect further away. Because m0 is chosen
somewhere in the middle of the allowed range, the larger
instanton crossings are not affected since they occur at the
edges of the allowed range. Again, in Sec. IV, I present
numerical results that demonstrate that this is the case.

The GDWF full partition function for QCD is given by

 Z �
Z
�dU	

Z
�d �XdX	

Z
�d ��d�	

Z
�d�yd�	e�S; (6)
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U��x� is the gauge field, X�x� is the four-dimensional
Wilson fermion field, ��x; s� is the five-dimensional fer-
mion field, and ��x; s� is the five-dimensional bosonic
Pauli Villars (PV) type field. x is a coordinate in the
four-dimensional space-time box with extent L along
each of the directions, � � 1, 2, 3, 4, and s �
0; 1; . . . ; Ls � 1, where Ls is the size of the fifth direction
and is taken to be an even number. The action S is given by

 S � S��;L; Ls; m0; mf�

� SG�U;�;L� � SW� �X;X;U;�m0; L�

� SF� ��;�; U;m0; mf; L; Ls�

� SPV��
y;�; U;m0; L; Ls�; (7)

where SG, is the standard plaquette Wilson gauge action
with coupling g (� � 6=g2) [19]. Of course, any pure
gauge action can be chosen instead. In particular, one can
choose a lattice gauge action that most closely resembles
the continuum action. For example, a popular choice is the
Iwasaki action [20]. Because, as mentioned above, DWF
maintain a connection between their index and the topo-
logical charge, it is possible to improve them by suppress-
ing small instantons by an appropriate choice of the lattice
pure gauge action [1,3,21,22]. The Iwasaki-type actions
have been shown to have this property but mostly for lattice
spacings in the lower end of the interval considered here
and below. In any case, in order to be able to evaluate
GDWF alone I did not want the improvements due to these
actions to obscure the results and that is why I use the
standard Wilson gauge action. However, it should be ob-
vious that for production simulations one should use an
improved gauge action not only because of the possible
additional improvement on the chiral properties but also
because of the closer resemblance to the continuum gauge
action. SW is the standard Wilson fermion action [19] with
mass �m0. SF � SPV is the standard domain wall fermion
action with the Pauli Villars regulator, five-dimensional
mass m0 and explicit bare quark mass mf [12–15].

IV. NUMERICAL RESULTS

In this section, I present numerical results that demon-
strate the properties of GDWF.

Because of limited computational resources, I use the
‘‘quenched’’ approximation for the DWF sea fermions.
However, unlike standard quenched simulations I consider
large lattice spacings that are of interest to dynamical DWF
simulations. I compare results obtained from simulations
with no dynamical Wilson flavors with results obtained at
the same lattice spacing with two dynamical Wilson flavors
with mass�m0. I use only one value of m0 � 1:9 through-
out this work. In order to compare results, I match the
lattice spacing between the two cases by adjusting �. Here
I achieve a 5% or better matching level at three values of
the lattice spacing a�1 � 1:0 GeV, 1.4 GeV, and 2.0 GeV.

Measurements are done using the DWF operator at m0 �
1:9. The space-time volume of all simulations is 163 � 32.
More technical details about the numerical simulations are
given in the Appendix.

Therefore, the two cases correspond to standard
quenched DWF simulations and to quenched GDWF simu-
lations. Again, the lattice spacings I use are large and of
interest to dynamical simulations. I expect that the effects
on chiral symmetry due to the DWF quenching are to a
large extent taken into account by simulating at these large
lattice spacings. To be sure the quenched approximation
does not allow for the calculation of a systematic error.
However, if previous results are of any guide, I expect that
quenching may affect mass measurement results at the
10% level. Since the improvements observed here are at
the 1 order of magnitude level, I do not expect that quench-
ing is affecting the results in any significant way.

The first order of business is to match the lattice spacings
between DWF and GDWF. I measure the � and nucleon
masses at Ls � 16 and extrapolate to mf � 0. The results
for three values of � are shown in Fig. 1. These values of �
were chosen so that the mf � 0 extrapolated � masses
match the quenched DWF masses of [23].

The matching for the mf � 0 extrapolated masses is
shown in Fig. 2. The DWF � masses match well (better
than 5%). I choose the DWF mf � 0 extrapolated � mass
to set the scale. The values of � shown correspond to
a�1 � 1:0 GeV, 1.4 GeV, and 2.0 GeV. The nucleon
masses also match well (better than 5%) which is an
indication that the method works properly. From now on,
I will use these values of beta to perform comparisons of
the chiral properties of DWF and GDWF. The inverse
lattice spacing in GeV corresponding to the quenched
GDWF � values is plotted in Fig. 3.

In Fig. 4 the ten smallest magnitude eigenvalues of
H4�m0� are plotted vs m0. The eigenvalues are calculated
with an accuracy 10�6 and are measured in m0 steps of
0.025. An aggregate of the results from 20 independent
configurations (separated by 20 configurations) is plotted
in each plot. The left column is from 0-flavor Wilson
simulations while the right column is from 2-flavor
Wilson with mass �m0. Horizontally, the 0-flavor and 2-
flavor � values correspond to the same lattice spacing
(Fig. 2). From top to bottom a�1 � 1:0 GeV, 1.4 GeV,
and 2.0 GeV. Notice the difference in the y-axis scale for
the different lattice spacings. The ‘‘crosshairs’’ indicate the
m0 � 1:9 point. One can clearly see that the 2-flavor
Wilson fermions generate a substantial gap around m0

where none existed before even at the large lattice spacing
a�1 � 1:0 GeV.

Furthermore, it is very important to observe in Fig. 4 that
the 2-flavor Wilson fermions generate the gap at a neigh-
borhood of m0 � 1:9, but allow for a copious amount of
crossings at the edges of the allowed m0 range. As men-
tioned in Sec. II, these crossings correspond to instantons
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FIG. 3 (color online). The inverse lattice spacing in GeV vs the
quenched GDWF � values used in this work.

FIG. 2 (color online). Matching the scale of quenched GDWF
with the scale of quenched DWF. The nucleon (top points) and
the rho (bottom points) mass in lattice units for three values of �
is shown. The diamonds are for DWF from Ref. [23] and the
crosses are for GDWF. Also the � values for DWF are the
bottom numbers of the x-axis while the GDWF � values are the
top numbers of the x-axis.

FIG. 1 (color online). The quenched GDWF nucleon (top points) and the rho (bottom points) mass in lattice units vs mf at Ls � 16
for three values of �. The extrapolated mf � 0 rho mass is used to set the scale.
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with size larger than a lattice spacing and are of physical
interest. Although Fig. 4 shows the cumulative results of 20
configurations, by close inspection I confirmed that the
number of crossings changes from configuration to con-
figuration. This indicates instanton, anti-instanton activity.
However, with the current resolution, I am not able to
measure the net topological index. This is beyond the scope
of this work. For further discussion see Sec. VI.

In order to get a better picture of the small eigenvalue
distribution I chose to look at them0 � 1:9 ‘‘cross section’’
for the 0 and 2 flavor cases at a�1 � 1:4 GeV (� � 5:85,
4.6) using a larger number of eigenvalues and configura-
tions. I measured the 100 smallest magnitude eigenvalues
of H4�m0� at m0 � 1:9 for 110 independent configurations
(separated by 20 configurations, i.e. a total of 2200 con-
figurations were generated). The fraction of eigenvalues

with values between � and �� d� is plotted vs � in Fig. 5.
Here d� � 0:007. The difference in the distributions is
telling. The 0-flavor Wilson distribution has nonzero sup-
port at � � 0 and is raising almost linearly with a small
slope as � increases. On the other hand, the 2-flavor Wilson
distribution has zero support between � � 0 and � �
0:015. After that it is raising very slowly until � � 0:05.
It does not exceed the 0-flavor distribution until � gets
larger than � 0:12. Larger statistics are needed to paint a
clearer picture. Of course it may be that the distribution has
zero support only at � � 0 and then it increases perhaps
quadratically. Nevertheless the point is that for a numerical
simulation of QCD that typically generates a few thousand
configurations the method creates a substantial gap.

As discussed, it is expected that the added 2-flavors of
Wilson flavors with supercritical mass � � �1:9 should

FIG. 4 (color online). The ten smallest magnitude eigenvalues of H4�m0� vs m0. An aggregate of the results from 20 independent
configurations is plotted in each plot. The left column is from 0-flavor Wilson (quenched) simulations while the right column is from 2-
flavor Wilson with mass�m0. Horizontally the 0-flavor and 2-flavor � values correspond to the same lattice spacing (Fig. 2). From top
to bottom, a�1 � 1:0 GeV, 1.4 GeV, and 2.0 GeV. Notice the difference in the y-axis scale for the different lattice spacings.
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have a hadron spectrum above the lattice cutoff. This is
verified in Fig. 6. The pion (diamonds), rho (squares), and
nucleon (stars) masses vs a�1 in GeV measured using 2-
flavor dynamical Wilson fermions (both for the propagator
and the sea quarks) are shown. The scale is set using the
GDWF � mass. The straight line marks the cutoff. Masses
above that line are above the lattice cutoff. Clearly the
Wilson hadron spectrum is above the lattice cutoff. Most
importantly the pion mass is very heavy and above the
cutoff. This ensures that the added 2-flavors of Wilson
fermions do not affect the low energy physics. On the other
hand, they clearly affect the physics near the cutoff. For
example, they renormalize the value of �. At a�1 �
1:4 GeV, � changes from 5.85 to 4.6. But, of course, this
is expected and is of no consequence.

Also, one may worry that the Wilson fermions may
break parity since they have mass in the supercritical
region. This is obviously not the case as can be seen
from Fig. 4 where the corresponding operator H4�m0� �
�5D6 w��m0� has no zero eigenvalues at m0 � 1:9.
Nevertheless, I measure the expectation value of ���5�
for the three lattice spacings used in this work. The results
are shown in Fig. 7. Its value is of the order 10�6 with an
error that is an order of magnitude larger. It is consistent
with zero well within the error. Clearly parity is not broken
and one is away from the Aoki phase [24].

The residual mass mres is measured using the ratio
method (see for example [23]). In Fig. 8 the quenched
DWF and GDWF residual masses mres vs Ls at a�1 �

1:0 GeV are shown. The top points (squares) are from
the quenched DWF simulations at � � 5:7, while the
bottom points (diamonds) are from the quenched GDWF

FIG. 7 (color online). The expectation value of the ���5�
condensate in lattice units vs a�1 in GeV using 2-flavor dynami-
cal Wilson fermions (both for the propagator and the sea quarks)
with mass � � �1:9. It is consistent with zero well within the
error. The lattice spacing is set using the GDWF � mass. The
straight line marks the y-axis zero line.

FIG. 6 (color online). The pion (diamonds), rho (squares), and
nucleon (stars) masses vs a�1 in GeV measured using 2-flavor
dynamical Wilson fermions (both for the propagator and the sea
quarks) with mass � � �1:9. The scale is set using the GDWF
rho mass. The straight line marks the cutoff. Masses above that
line are above the lattice cutoff.

FIG. 5 (color online). The 100 smallest magnitude eigenvalues
of H4�m0� at m0 � 1:9 were measured for 110 independent
configurations for � � 5:85 and 0-Wilson flavors and for � �
4:6 and 2-Wilson flavors. Both have a�1 � 1:4 GeV. The frac-
tion of eigenvalues with values between � and �� d� is plotted
vs �. Here d� � 0:007.
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simulations at � � 4:4. In both cases m0 � 1:9 and mres

was measured at mf�0:02 (the value of mres is fairly
insensitive to the value of mf as can clearly be seen in
Fig. 11). The expected faster exponential decay and much
smaller values ofmres are evident. Already at Ls � 24,mres

is smaller by almost an order of magnitude. Furthermore,
its value mres�0:002 is rather nice for such a large lattice
spacing. At Ls � 40 mres � 0:0005. The difference be-
comes more dramatic as the lattice spacing is decreased.
The results for a�1�1:4 GeV are shown in Fig. 9 and for
a�1�2:0 GeV are shown in Fig. 10. Figure 9 is most
interesting since it corresponds to the lattice spacing of
dynamical Nt � 8 thermodynamics at the critical tempera-
ture. At Ls � 24 mres�0:0006 and at Ls � 32 mres �
0:0002.

As mentioned abovemres is rather insensitive tomf. This
is shown in Fig. 11 for the GDWF simulations at all three
values of �.

Regarding chiral symmetry, one of the most telling
observables is the pion mass. At the end of the day any
improvement method should result to small pion masses.
In Fig. 12 the GDWF pion mass squared vs mf from
quenched GDWF simulations is shown. The squares are
the measured data points, the straight line is a least �2 fit
and the star is the mf�0 extrapolated point. Here ��4:4
corresponding to a�1�1:0 GeV, m0�1:9, and Ls�16.
The straight line fit intersects the x-axis at mf��0:004
which is consistent with the value of mres�0:006 from

FIG. 10 (color online). The quenched DWF and GDWF resid-
ual masses mres vs Ls at a�1 � 2:0 GeV. The top points
(squares) are from quenched DWF simulations at � � 6:0 while
the bottom points (diamonds) are from quenched GDWF simu-
lations at � � 4:8. In both cases m0 � 1:9 and mres was mea-
sured at mf � 0:02.

FIG. 9 (color online). The quenched DWF and GDWF residual
masses mres vs Ls at a�1 � 1:4 GeV. The top points (squares)
are from quenched DWF simulations at � � 5:85 while the
bottom points (diamonds) are from quenched GDWF simula-
tions at � � 4:6. In both cases m0 � 1:9 and mres was measured
at mf � 0:02.

FIG. 8 (color online). The quenched DWF and GDWF residual
masses mres vs Ls at a�1 � 1:0 GeV. The top points (squares)
are from quenched DWF simulations at � � 5:7 while the
bottom points (diamonds) are from quenched GDWF simula-
tions at � � 4:4. In both cases m0 � 1:9 and mres was measured
at mf � 0:02.
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FIG. 12 (color online). The pion mass squared vs mf from
quenched GDWF simulations. The squares are the measured data
points, the straight line is a least �2 fit, and the star is the mf � 0
extrapolated point. Here � � 4:4 corresponding to a�1 �
1:0 GeV, m0 � 1:9, and Ls � 16.

FIG. 11 (color online). The quenched GDWF residual mass mres vs mf at Ls � 16 for three values of �.

FIG. 13 (color online). The pion mass squared vs mf from
quenched GDWF simulations. The squares are the measured data
points, the straight line is a least �2 fit, and the star is the mf � 0
extrapolated point. Here � � 4:6 corresponding to a�1 �
1:4 GeV, m0 � 1:9, and Ls � 16.
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Fig. 8. The data for ��4:6 corresponding to a�1�
1:4 GeV are shown in Fig. 13 and for ��4:8 correspond-
ing to a�1�2:0 GeV are shown in Fig. 14. In both cases
the straight line fit givesm2

� � 0 atmf � 0 within the error
bar.

V. LIGHT PIONS IN RUGGED TERRAIN

In this section, I present a simulation of quenched
GDWF at a�1 � 1:356�75� GeV, Ls � 24, and mf �

0:005. The space-time volume is 163 � 32 and m0 � 1:9.
Think of this as the icing on the cake or the cherry on top of
the sundae. The point is that this simulation should closely
resemble a dynamical GDWF simulation near the Nt � 8
critical point of QCD thermodynamics. Also notice that, in
order to mimic the way dynamical simulations are ana-
lyzed, I calculated the lattice spacing using the � mass at
the bare quark mass mf � 0:005 and not at the mf � 0
extrapolated value.

I find that mres � 0:000 64�4� which is about 10% of the
explicit quark mass mf � 0:005. Finally the pion mass is
under control. I find m� � 140�40� MeV at mf � 0:005.

VI. TOPOLOGICAL ISSUES

The resolution of the flow diagrams of Fig. 4 does not
allow me to measure the net index but does allow me to
observe that the number and location of crossings change
from configuration to configuration. This indicates the
desired instanton anti-instanton activity. Measuring the

net index requires more computational resources and is
outside the scope of this paper. However, a few remarks are
in order.

If the update algorithm ‘‘smoothly’’ transforms the
gauge field configuration then the net index will also
have to change in a smooth way. In that case the heavy
Wilson fermion determinant will prohibit any flow line
from crossing through m0 and as a result the net index
will not be able to change. The simulation will generate
configurations with the same net index as the initial con-
figuration and will not be able to tunnel between sectors.
For example, for an ordered start the net topology will
always remain zero. This does not change the ability of the
simulation to generate crossings (for example as in Fig. 4).
It simply means that the appearance/disappearance of an
instanton will always be accompanied by that of an anti-
instanton of some size at some location.

Because I could not measure the net index, it is not clear
if the HMC Phi algorithm that I used in this work is capable
of topologically nonsmooth gauge field evolution that
would generate tunneling between sectors. However, this
is an algorithmic issue and is not particular to GDWF. For
example, net index change is suppressed as the lattice
spacing gets smaller irrespectively of using or not using
GDWF. The gauge action barriers between topological
sectors are a property of QCD. This has not been identified
as a problem yet because the couplings used in today’s
simulations are not weak enough. Even so, algorithms that
are able to tunnel between sectors have already been
proposed (for example, see [25] and references therein).

Therefore if net index change is important to the physics
at hand, one should check the net index properties of HMC
Phi under GDWF. If they are not satisfactory then one
should use a properly augmented evolution algorithm. In
any event, although the subject of net topology is of interest
in many cases, one only needs to stay within sector zero
provided that the volume is large for the physics at hand.
For a very nice investigation on the subject see [26].

VII. ALGORITHMIC AND COMPUTATIONAL
COSTS

The algorithmic implementation of a new method is of
course a matter of effort and not a matter of concept.
However, this effort is not always small. A method that
is simple and is easily implemented as an extension of
existing methods is highly desirable. This is the case for
GDWF. Any QCD code that employs standard DWF or
related fermions already has an implementation of the
Wilson D6 w�x; x

0;�� operator and evolution force term.
Typically one should simply have to add to the DWF force
term the Wilson force term and to the corresponding
energy function the extra Wilson fermion energy.

The additional computational cost of adding 2-flavors of
heavy Wilson fermions to a 2-flavor dynamical DWF
simulation is obviously at most an 1=Ls fraction. For

FIG. 14 (color online). The pion mass squared vs mf from
quenched GDWF simulations. The squares are the measured data
points, the straight line is a least �2 fit, and the star is the mf � 0
extrapolated point. Here � � 4:8 corresponding to a�1 �
2:0 GeV, m0 � 1:9, and Ls � 16.
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example, at Ls � 24 it should be less than a� 5% addition
to the computation cost.

VIII. CURIOUS THOUGHTS

GDWF bring up a few thoughts that are worthwhile
pondering.

Clearly the addition of heavy fermions to the theory is an
alteration in the ultraviolet regime. But in the GDWF case
it dramatically affects the infrared properties of the theory.
After all, this was its purpose. This is an example of
physics above the cutoff affecting the physics far below
the cutoff. These ‘‘spectator’’ fermions may be pointing to
some interesting theoretical directions.

GDWF were described as the addition of two extra
Wilson fermions with supercritical mass. This leads to a
fermionic determinant that directly suppresses the un-
wanted gauge configurations. In this light, GDWF are
simply a device for better simulations of QCD on the
lattice. Perhaps there is nothing more to it than that. But
it is interesting that GDWF can be interpreted in two
additional and different ways.

Another way to think about GDWF is to consider the log
of the two-flavor Wilson determinant (with mass �m0) as
part of the pure gauge action. As mentioned above it is
irrelevant and therefore it is a valid addition to the lattice
gauge action. Thinking about it this way opens the method
to be applied to the existing wealth of improvement tech-
niques for DWF and related fermions.

Yet another and perhaps most curious way to think of
GDWF is to extend the five-dimensional DWF Dirac op-
erator to include two additional diagonal terms along the
fifth direction. These terms can be inserted ‘‘behind’’ the
walls. The determinant of this new Dirac operator is the
product of the original DWF determinant times the two-
flavor Wilson determinant. More specifically, one will have
Ls � 2 fermion fields (but still Ls Paulli-Villars fields) and
the DWF Dirac operator of Eq. (1) will have to be aug-
mented to the GDWF operator by extending it along the
fifth dimension to include two D6 terms [see Eq. (2)] along
the diagonal. In matrix form on the fifth dimension index
the GDWF operator is [for simplicity I have setmf � 0, all
blank entries are zero, and PR;L is given in Eq. (4)]

 

D6
D6 � 1 PR
PL D6 � 1

. .
.

D6 � 1 PR
PL D6 � 1

D6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (8)

In some sense this is a natural extension of DWF. One
can think of this as having fermions beyond the walls that
do not communicate directly with the fermions inside the
walls. Their presence is felt only through their coupling to

the gauge field in the bulk. Notice that the fifth direction
midpoint reflection property of DWF is maintained this
way. However, also notice that this way one adds two
heavy Wilson fermions per DWF flavor. For example, 2-
flavor QCD will have an additional four flavors of heavy
Wilson fermions. In the numerical simulations of this
work, I only used 2-flavors of Wilson fermions. However,
using more flavors should not present problems.

IX. OPEN ISSUES

As mentioned earlier, one does not expect dynamical
simulations of GDWF to change the quenched results by
much, simply because the lattice spacings considered here
are large and are the ones of current interest to dynamical
simulations. Nevertheless, dynamical tests of GDWF
would be very welcomed.

The 2-flavors of Wilson fermions that were added in the
action are designed to produce a determinant det�H4	

2.
This suppresses the configurations for which the transfer
matrix of DWF has eigenvalue 1. However, H4 is the
transfer matrix Hamiltonian for DWF with a continuous
fifth direction. Here I used DWF with a discrete fifth
direction. To be sure, the continuous and discrete transfer
matrix Hamiltonians have the same zeroes. But the con-
tinuous transfer matrix Hamiltonian used here may be
more effective for the overlap-Neuberger fermions
[13,16] as well as their variants and improvements (see
[1–9] and references therein) since it directly relates to
them. On the other hand, for DWF with discrete fifth
dimension one may want to use instead of a standard
Wilson fermion an augmented Wilson fermion that will
perhaps further improve the chiral properties of DWF. The
exact form of H4 for the discrete case is known exactly
[13,27]. Both of these observations deserve further scru-
tiny. Furthermore, investigating the applicability of GF to
other related fermion regulators [28] is of great interest.

Throughout this work the reader may have been wonder-
ing why one should only consider two flavors of Wilson
fermions. Why not more? This is indeed a very interesting
question deserving further exploration for the obvious ex-
tra benefits it may provide in the cost of numerical simu-
lations, but also for purely theoretical reasons. Is a theory
with many spectator fermions above the cutoff of any
interest?

As mentioned earlier, in production simulations GDWF
should be used with improved gauge actions (for example
Iwasaki). It is not clear if this will further improve the
chiral properties. This certainly deserves more investiga-
tion. However, it should be used anyway because it more
closely resembles the continuum gauge action.

As discussed in Sec. VI the subject of net-topology
change is beyond the scope of this work. However, it is
an interesting open issue that needs further investigation.
Besides the algorithmic approach discussed in Sec. VI one
may want to consider alternative ideas. For example, it has
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been proposed that usingD6 w2 � h2, where h is a small real
number, instead of D6 w2 for the two heavy Wilson flavors
will produce more frequent net-topology changes as h is
increased from zero [1,29]. Clearly h interpolates between
GDWF (h � 0) and DWF (h� 1).

Finally, simulations of the N � 1 Super Yang-Mills
theory are possible [16,30] and have been performed [11]
using DWF. Issues similar to the chiral symmetry of QCD
are present and therefore one would expect that GDWF
should work there as well. Further exploration is needed.

X. CONCLUSIONS

In this work I demonstrated that the chiral properties of
DWF in the large to intermediate lattice spacing a regime
of QCD, 1 GeV & a�1 & 2 GeV, are significantly im-
proved by adding to the action two standard Wilson fer-
mions with supercritical mass equal to the negative DWF
five-dimensional mass m0. Here I used m0 � 1:9. I per-
formed quenched DWF simulations and showed that the
eigenvalue spectrum of the transfer matrix Hamiltonian
develops a substantial gap and that the residual mass
decreases appreciatively (by about an order of magnitude).
I used this key property to name this fermion regulator as
GDWF. For other DWF related fermions (for example
overlap-Neuberger fermions) I argued that this method of
adding ‘‘gap fermions’’ (GF) should also improve their
chiral properties.

In order to make sure there are no adverse ‘‘side ef-
fects,’’ I confirmed that local topology changing (measured
using the overlap index method) remains active; instantons
and anti-instantons with size larger than a lattice spacing
are active appearing and disappearing in the gauge field
configurations (note that this does not necessarily imply
that the net index is changing). Also, I confirmed that the
hadron spectrum of the added Wilson fermions is above the
lattice cutoff and therefore is irrelevant. Furthermore, I
checked that parity is not broken and therefore the added
Wilson fermions are well outside the Aoki phase. All
numerical simulations in this work were performed on
512-node IBM BlueGene/L supercomputers.

Furthermore, I argued that the results of this work should
also hold for dynamical GDWF since I considered rather
large lattice spacings which are typical to currently pos-
sible dynamical DWF simulations. In particular, the middle
of the range of the lattice spacings 1 GeV & a�1 & 2 GeV
approximately corresponds to the Nt � 8 critical coupling
of the QCD thermal phase transition. This makes the
method very appealing for dynamical QCD
thermodynamics.
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APPENDIX

The evolution in all simulations was done using the
standard HMC Phi algorithm. In all cases the trajectory
length was set to 0.5. The step size was set to 0.005 or 0.01
depending on the acceptance rate. The acceptance rate in
all cases was above 85%. An initial 200 trajectories were
used for thermalization. A total of 50 to 100 measurements
were done for all propagators. All measurements were
separated by 20 trajectories. The conjugate gradient resid-
ual was set to 10�7.

The 2-flavor Wilson simulations are obviously full dy-
namical simulations in the Wilson fermions (they are
quenched only with respect to the DWF fermions). The
conjugate gradient residual was set to 10�6. The conjugate
gradient iterations for the evolution varied between 100
and 200.

All fits in this work including the propagator fits to
extract the hadron masses (not shown) had a �2 per degree
of freedom less than 1.

XI. Tables

The numerical simulation results are presented in the
following Tables I, II, III, IV, V, VI, VII, and VIII.

TABLE I. The � (m�) and nucleon (mN) masses in lattice units
for quenched GDWF with 2-flavor Wilson fermions, V � 163 �
32, Ls � 16, and m0 � 1:9. The mf � 0:0 data are from linear
extrapolation. Plotted in Fig. 1.

� mf m� mN

4.4 0.0 0.720(12) 0.969(23)
4.4 0.02 0.759(10) 1.058(26)
4.4 0.04 0.789(10) 1.115(14)
4.4 0.06 0.815(11) 1.203(14)
4.4 0.08 0.868(10) 1.275(12)

4.6 0.0 0.541(9) 0.712(25)
4.6 0.02 0.596(7) 0.823(22)
4.6 0.04 0.636(19) 0.935(20)
4.6 0.06 0.690(6) 1.036(14)
4.6 0.08 0.753(7) 1.154(15)

4.8 0.0 0.399(16) 0.558(30)
4.8 0.02 0.441(27) 0.640(47)
4.8 0.04 0.522(9) 0.776(19)
4.8 0.06 0.589(7) 0.890(9)
4.8 0.08 0.644(6) 0.993(11)
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TABLE IV. The residual mass mres for quenched DWF and
GDWF for various Ls values. The parameters are V � 163 � 32,
�DWF � 5:7, �GDWF � 4:4, m0 � 1:9, and mf � 0:02. Plotted
in Fig. 8.

a�1 � 1:070�18� GeV

Ls mresDWF mresGDWF

8 0.034 860(885) 0.024 820(705)
16 0.016 765(610) 0.006 180(285)
24 0.010 395(545) 0.002 215(120)
32 0.007 595(585) 0.001 075(45)
40 0.006 565(270) 0.000 550(30)

TABLE II. Matching the scale of quenched GDWF with the scale of quenched DWF. The m�
and mN data are from mf � 0 extrapolations and are in lattice units. The a�1 is derived from the
GDWF m� mass. The DWF data are from Ref. [23]. The parameters are as in Table I. Plotted in
Figs. 2 and 3.

� DWF � GDWF m� DWF m� GDWF mN DWF mN GDWF a�1 GeV

5.7 4.4 0.756(22) 0.720(12) 1.03(6) 0.969(23) 1.070(18)
5.85 4.6 0.549(14) 0.541(9) 0.74(2) 0.712(25) 1.423(25)
6.0 4.8 0.404(8) 0.399(16) 0.566(21) 0.557(30) 1.930(77)

TABLE VI. The residual mass mres for quenched DWF and
GDWF for various Ls values. The parameters are V � 163 � 32,
�DWF � 6:0, �GDWF � 4:8, m0 � 1:9, and mf � 0:02. Plotted
in Fig. 10.

a�1 � 1:930�77� GeV

Ls mresDWF mresGDWF

8 0.005 810(345) 0.006 640(405)
16 0.001 085(70) 0.000 650(30)
24 0.000 495(35) 0.000 096 0(85)
32 0.000 310(25) 0.000 020 55(195)
40 0.000 225(25) 0.000 005 25(45)

TABLE VIII. The quenched GDWF pion mass squared m2
� for

various values of mf and for three values of �. The mf � 0 data
are from linear extrapolation. The parameters are V � 163 � 32,
Ls � 16 and m0 � 1:9. Plotted in Figs. 12–14.

mf m2
�, � � 4:4 m2

�, � � 4:6 m2
�, � � 4:8

0.00 0.021(13) �0:005�12� �0:0001�94�
0.02 0.137(12) 0.086(8) 0.063(6)
0.04 0.227(9) 0.166(15) 0.117(9)
0.06 0.343(12) 0.259(14) 0.182(13)
0.08 0.451(8) 0.363(22) 0.255(18)

TABLE VII. The quenched GDWF residual mass mres for
various values of mf and for three values of �. The parameters
are V � 163 � 32, Ls � 16 and m0 � 1:9. Plotted in Fig. 11.

mf mres, � � 4:4 mres, � � 4:6 mres, � � 4:8

0.02 0.006 180(285) 0.002 095(65) 0.000 650(30)
0.04 0.005 665(145) 0.001 945(105) 0.000 655(25)
0.06 0.005 720(160) 0.001 900(80) 0.000 650(15)
0.08 0.005 665(105) 0.001 995(80) 0.000 655(15)

TABLE III. The m�, m�, and mN in GeV measured using 2-
flavor dynamical Wilson fermions (both for the propagator and
the sea quarks) with mass � � �1:9 for three values of the
lattice spacing. The a�1 is derived from the GDWF m� mass and
is the same as in Table II. All hadron masses are above the cutoff.
Also in the table the expectation value of the Wilson fermion
���5� condensate is shown in lattice units. It is consistent with

zero well within the error. Plotted in Figs. 6 and 7.

a�1 GeV m� GeV m� GeV mN GeV h ���5�i

1.070(18) 1.373(25) 1.530(26) 2.97(24) �0:59�13:77� � 10�6

1.423(25) 1.791(31) 1.906(33) 3.80(15) �1:65�10:65� � 10�6

1.930(77) 2.318(93) 2.406(97) 4.71(23) �3:16�11:94� � 10�6

TABLE V. The residual mass mres for quenched DWF and
GDWF for various Ls values. The parameters are V � 163 �
32, �DWF � 5:85, �GDWF � 4:6, m0 � 1:9, and mf � 0:02.
Plotted in Fig. 9.

a�1 � 1:423�25� GeV

Ls mresDWF mresGDWF

8 0.013 650(325) 0.012 700(450)
12 0.006 950(385) 0.004 785(115)
16 0.004 585(155) 0.002 095(65)
20 0.003 255(110) 0.001 035(75)
24 0.002 660(100) 0.000 595(34)
32 0.001 950(75) 0.000 231(14)
40 0.001 560(65) 0.000 102(7)
48 0.001 380(60) 0.000 051(4)

GAP DOMAIN WALL FERMIONS PHYSICAL REVIEW D 74, 034512 (2006)

034512-13



[1] P. M. Vranas, hep-lat/0001006.
[2] P. M. Vranas, Nucl. Phys. B, Proc. Suppl. 94, 177 (2001).
[3] G. T. Fleming, Ph.D. thesis, Columbia University, 2001,

hep-lat/0404020.
[4] R. Edwards, Nucl. Phys. B, Proc. Suppl. 106, 38 (2002).
[5] L. Giusti, Nucl. Phys. B, Proc. Suppl. 119, 149 (2003).
[6] Ting-Wai Chiu, Nucl. Phys. B, Proc. Suppl. 129, 135

(2004); M. Golterman and Y. Shamir, Nucl. Phys. B,
Proc. Suppl. 129, 149 (2004).

[7] A. D. Kennedy, Nucl. Phys. B, Proc. Suppl. 140, 190
(2005).

[8] Robert G. Edwards, Balint Joo, Anthony D. Kennedy,
Kostas Orginos, and Urs Wenger, Proc. Sci., LAT2005
(2006) 146 [hep-lat/0510086]; N. Christ, Proc. Sci.,
LAT2005 (2006) 345, Lattice 2005 Proceedings; N.
Cundy, S. Krieg, and Th. Lippert, Proc. Sci., LAT2005
(2006) 107 [hep-lat/0511044].

[9] M. Creutz, hep-lat/0511052; R. G. Edwards et al. (LHPC
Collaboration), Phys. Rev. Lett. 96, 052001 (2006).

[10] Hidenori Fukaya, Ph.D. thesis, Kyoto University, 2006,
hep-lat/0603008; M. Golterman, Y. Shamir, and B.
Svetitsky, Phys. Rev. D 72, 034501 (2005); 71, 071502
(2005); M. Golterman and Y. Shamir, Phys. Rev. D 68,
074501 (2003); K. Nagai and K. Jansen, J. High Energy
Phys. 12 (2003) 038; T. Izubuchi and C. Dawson, Nucl.
Phys. B, Proc. Suppl. 106, 748 (2002); P. Hernández, K.
Jansen, and M. Lüscher, hep-lat/0007015; Y. Shamir,
Phys. Rev. D 59, 054506 (1999).

[11] G. T. Fleming, J. Kogut, and P. M. Vranas, Phys. Rev. D
64, 034510 (2001).

[12] D. B. Kaplan, Phys. Lett. B 288, 342 (1992); Nucl. Phys.
B, Proc. Suppl. 30, 597 (1993).

[13] R. Narayanan and H. Neuberger, Phys. Lett. B 302, 62
(1993); Phys. Rev. Lett. 71, 3251 (1993); Nucl. Phys.
B412, 574 (1994); B443, 305 (1995); Patrick Huet, R.
Narayanan, and H. Neuberger, Phys. Lett. B 380, 291
(1996); R. Narayanan and H. Neuberger, Nucl. Phys.
B477, 521 (1996); Nucl. Phys. B, Proc. Suppl. 53, 658
(1997); 53, 661 (1997); Phys. Lett. B 393, 360 (1997); Y.
Kikukawa, R. Narayanan, and H. Neuberger, Phys. Lett. B
399, 105 (1997).

[14] Y. Shamir, Nucl. Phys. B406, 90 (1993); V. Furman and Y.
Shamir, Nucl. Phys. B439, 54 (1995).

[15] P. M. Vranas, Nucl. Phys. B, Proc. Suppl. 53, 278 (1997);
Phys. Rev. D 57, 1415 (1998).

[16] H. Neuberger, Phys. Rev. D 57, 5417 (1998).
[17] R. Edwards, U. Heller, and R. Narayanan, Nucl. Phys.

B522, 285 (1998); B535, 403 (1998); Phys. Lett. B 438, 96
(1998); Phys. Rev. D 60, 034502 (1999).

[18] R. Narayanan and P. M. Vranas, Nucl. Phys. B506, 373
(1997).

[19] K. G. Wilson, in New Phenomena in Subnuclear Physics,
edited by A Zichichi (Plenum Press, New York, 1975),
Part A, p. 69.

[20] Y. Iwasaki, Nucl. Phys. B258, 141 (1985).
[21] Lingling Wu et al. (RBC Collaboration), Nucl. Phys. B,

Proc. Suppl. 83, 224 (2000).
[22] L. Levkova and R. Mawhinney, Nucl. Phys. B, Proc.

Suppl. 129, 399 (2004); K. Orginos, Nucl. Phys. B,
Proc. Suppl. 106, 721 (2002); Y. Aoki et al., Phys. Rev.
D 69, 074504 (2004).

[23] T. Blum et al. (RBC Collaboration), Phys. Rev. D 69,
074502 (2004).

[24] S. Aoki, Phys. Rev. D 30, 2653 (1984).
[25] H. Dilger, Int. J. Mod. Phys. C 6, 123 (1995); Z. Fodor,

S. D. Katz, and K. K. Szabo, J. High Energy Phys. 08
(2004) 003; S. Schaefer and T. DeGrand, Proc. Sci.,
LAT2005 (2005) 140 [hep-lat/0508025].

[26] H. Leutwyler and A. Smilga, Phys. Rev. D 46, 5607
(1992).

[27] A. Borici, hep-lat/9912040.
[28] P. Hasenfratz, Nucl. Phys. B, Proc. Suppl. 63, 53 (1998);

T. DeGrand, A. Hasenfratz, P. Hasenfratz, F. Niedermayer,
and U. Weise, Nucl. Phys. B, Proc. Suppl. 42, 67 (1995);
P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649
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